JPS6331029B2 - - Google Patents

Info

Publication number
JPS6331029B2
JPS6331029B2 JP56200734A JP20073481A JPS6331029B2 JP S6331029 B2 JPS6331029 B2 JP S6331029B2 JP 56200734 A JP56200734 A JP 56200734A JP 20073481 A JP20073481 A JP 20073481A JP S6331029 B2 JPS6331029 B2 JP S6331029B2
Authority
JP
Japan
Prior art keywords
gear
shift
clutch
speed
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56200734A
Other languages
Japanese (ja)
Other versions
JPS58102851A (en
Inventor
Mitsuru Nagaoka
Yoshihito Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP56200734A priority Critical patent/JPS58102851A/en
Publication of JPS58102851A publication Critical patent/JPS58102851A/en
Publication of JPS6331029B2 publication Critical patent/JPS6331029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1204Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures for malfunction caused by simultaneous engagement of different ratios resulting in transmission lock state or tie-up condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Control Of Transmission Device (AREA)

Description

【発明の詳細な説明】 本発明は、所定の変速歯車を備えた複数の入力
軸と、該各入力軸のエンジンとの断続を行う複数
のクラツチとを備え、該各クラツチを交互に断続
させながら複数段の自動変速を行うようにした複
合クラツチ式多段歯車変速機に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a plurality of input shafts equipped with predetermined speed change gears, and a plurality of clutches that connect and connect each input shaft with the engine, and alternately connects and disconnects each of the clutches. The present invention relates to a composite clutch type multi-stage gear transmission that performs automatic transmission in multiple stages.

従来より、この種の複合クラツチ式多段歯車変
速機として、例えば特公昭48−12507号公報に開
示されているように、第1速および第3速の変速
歯車を備えた第1入力軸と、第2速の変速歯車を
備えた第2入力軸と、該第1および第2の入力軸
をエンジン駆動軸に連結する第1および第2のク
ラツチとを設け、該各クラツチを交互に断続させ
て連続する複数段の自動変速を行うようにしたも
のは知られている。
Conventionally, this type of composite clutch type multi-stage gear transmission has been disclosed, for example, in Japanese Patent Publication No. 12507/1983, which includes a first input shaft equipped with first speed and third speed change gears; a second input shaft having a second speed gear; and first and second clutches connecting the first and second input shafts to the engine drive shaft, the clutches being alternately engaged and engaged. It is known that automatic gear shifting is performed in a plurality of successive stages.

そして、本出願人は、このような複合クラツチ
式多段歯車変速機を電子制御により自動変速し得
るようにしたものを提案している(特願昭56−
64995号、特願昭56−64996号および特願昭56−
64997号明細書等参照)。すなわち、各入力軸の変
速歯車を選択して出力軸へのトルク伝達経路を切
換える流体式変速アクチユエータと、各クラツチ
の継続操作を行う流体式クラツチアクチユエータ
と、該変速アクチユエータおよびクラツチアクチ
ユエータへの流体の供給を制御する電磁弁群と、
該各電磁弁群を車速信号等に基いて作動制御する
制御回路とを設け、該制御回路により上記電磁弁
群を作動制御して、所定の変速アクチユエータを
作動させて所定の変速歯車を選択し、且つ各クラ
ツチを各クラツチアクチユエータの交互作動によ
つてエンジン駆動軸に交互に接続することによ
り、連続する複数段の自動変速を可能としたもの
である。
The present applicant has proposed a composite clutch type multi-gear transmission capable of automatically shifting speeds through electronic control (Japanese Patent Application No. 1983-1999).
No. 64995, Patent Application No. 1983-64996, and Patent Application No. 1983-
64997 specification, etc.). That is, a hydraulic speed change actuator that selects the speed change gear of each input shaft and switches the torque transmission path to the output shaft, a fluid type clutch actuator that continuously operates each clutch, and the speed change actuator and the clutch actuator. a group of solenoid valves that control the supply of fluid to the
A control circuit is provided to control the operation of each of the solenoid valve groups based on a vehicle speed signal, etc., and the control circuit controls the operation of the solenoid valve groups to operate a predetermined shift actuator and select a predetermined shift gear. , and by alternately connecting each clutch to the engine drive shaft by alternately operating each clutch actuator, it is possible to perform continuous automatic gear shifting in a plurality of stages.

ところで、複数の入力軸のうち任意の1つに後
退速歯車を設けた場合には、変速歯車の場合と同
様に、後退速歯車選択用の変速アクチユエータ
と、該変速アクチユエータ作動制御用の電磁弁と
を設けることが考えられるが、この場合には、後
退速歯車と変速歯車とが同一入力軸に設けられる
関係上、後退速歯車と変速歯車とが対応する電磁
弁の誤作動によつて同時に噛合してしまうと、最
悪の場合にはギヤロツク状態となつて走行不可能
になるという問題がある。また、後退速歯車選択
用の変速アクチユエータを電磁弁で制御するよう
にすると、電磁弁の使用数が多くなり、制御回路
はその分制御対象が増えるため、制御回路による
信号処理が複雑になるという問題もある。
By the way, when a reverse speed gear is provided on any one of the plurality of input shafts, as in the case of a speed change gear, a speed change actuator for selecting the reverse speed gear and a solenoid valve for controlling the operation of the speed change actuator are provided. However, in this case, since the reverse speed gear and the speed change gear are installed on the same input shaft, the reverse speed gear and the speed change gear may malfunction at the same time due to the malfunction of the corresponding solenoid valve. If the gears engage, there is a problem that in the worst case, the gears will be locked, making it impossible to drive. In addition, if the speed change actuator for selecting the reverse speed gear is controlled by a solenoid valve, the number of solenoid valves will increase, and the control circuit will have more objects to control, making the signal processing by the control circuit more complicated. There are also problems.

そこで、本発明は斯かる点に鑑みてなされたも
ので、別途に、手動シフト操作レバーにより摺動
操作される流体弁を設けて、該流体弁により流体
供給源からの流体供給通路を切換え、シフトレバ
ーが前進走行位置にあるときには、流体供給源と
前進用アクチユエータ用電磁弁とを連通させる一
方、シフトレバーが後退走行位置にあるときに
は、流体供給源と後退用アクチユエータとを連通
させて該後退用アクチユエータを作動させると共
に、そこへの流体供給量を流量制御弁で制御する
ことにより、電磁弁を制御する制御回路での信号
処理を簡単にし、後退速歯車と前進速歯車との同
時噛合を確実に防止し得るようにした複合クラツ
チ式多段歯車変速機を提供して、上記問題点を解
消せんとするものである。
Therefore, the present invention has been made in view of the above, and includes a separate fluid valve that is slidably operated by a manual shift operation lever, and the fluid supply passage from the fluid supply source is switched by the fluid valve. When the shift lever is in the forward travel position, the fluid supply source and the solenoid valve for the forward movement actuator are communicated with each other, while when the shift lever is in the reverse movement position, the fluid supply source and the reverse actuator are communicated with each other, and the fluid supply source and the reverse movement actuator are communicated with each other when the shift lever is in the forward movement position. By operating the actuator and controlling the amount of fluid supplied to it with a flow control valve, signal processing in the control circuit that controls the solenoid valve is simplified, and the simultaneous meshing of the reverse speed gear and the forward speed gear is achieved. It is an object of the present invention to provide a composite clutch type multi-gear transmission which can reliably prevent the above-mentioned problems.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図において、1はエンジン、
1aはエンジン駆動軸、2および3は該エンジン
駆動軸1aに前後に遊嵌合された第1入力軸およ
び第2入力軸であつて、該第1入力軸2とエンジ
ン駆動軸1aとの間には、容量の大きい乾式クラ
ツチで構成した第1クラツチ4が介設され、該第
1クラツチ4の接続により第1入力軸2をエンジ
ン駆動軸1aに連結するように構成されていると
ともに、上記第2入力軸3とエンジン駆動軸1a
との間には、軽量小型の湿式クラツチで構成した
第2クラツチ5が介設され、該第2クラツチ5の
接続により第2入力軸3をエンジン駆動軸1aに
連結するように構成されている。また、6は出力
軸であつて、該出力軸6にはデフアレンシヤルギ
ヤ7を介して例えば左右の前輪(図示せず)が接
続され、該出力軸6のトルクにより左右の前輪
(図示せず)を回転駆動させるように構成されて
いる。
In FIGS. 1 and 2, 1 is an engine;
1a is an engine drive shaft, 2 and 3 are a first input shaft and a second input shaft that are loosely fitted in the front and back of the engine drive shaft 1a, and between the first input shaft 2 and the engine drive shaft 1a. A first clutch 4 constituted by a dry clutch with a large capacity is interposed therein, and the first clutch 4 is connected to connect the first input shaft 2 to the engine drive shaft 1a. Second input shaft 3 and engine drive shaft 1a
A second clutch 5 constituted by a lightweight and small wet type clutch is interposed between the engine and the engine drive shaft, and is configured to connect the second input shaft 3 to the engine drive shaft 1a by connecting the second clutch 5. . Reference numeral 6 denotes an output shaft, to which, for example, left and right front wheels (not shown) are connected via a differential gear 7, and the torque of the output shaft 6 drives the left and right front wheels (not shown). (2) is configured to rotate.

また、8は上記第1入力軸2および第2入力軸
3に組合わされた変速歯車群であつて、上記第1
入力軸2の変速歯車は、変速段において互いに隣
り合つていない第1速の変速歯車9と第3速の変
速歯車10と後退速の歯車11とにより構成さ
れ、また、上記第2入力軸3の変速歯車は、同様
に変速段において互いに隣り合つていない第2速
および第4速の変速歯車12,13により構成さ
れており、第1入力軸2を、第1速、第3速およ
び後退速の変速歯車9〜11を介して出力軸6に
駆動関係に連結するとともに、第2入力軸3を第
2速および第4速の変速歯車12,13を介して
出力軸6に連結するように構成されている。
Further, reference numeral 8 denotes a gear change gear group combined with the first input shaft 2 and the second input shaft 3;
The transmission gear of the input shaft 2 is composed of a first speed transmission gear 9, a third speed transmission gear 10, and a reverse speed gear 11, which are not adjacent to each other in the gear stage. The transmission gear No. 3 is similarly composed of second and fourth speed transmission gears 12 and 13 which are not adjacent to each other in the gear stage, and connects the first input shaft 2 to the first and third speed gears. and is connected to the output shaft 6 in a driving relationship through the reverse speed change gears 9 to 11, and the second input shaft 3 is connected to the output shaft 6 through the second speed and fourth speed change gears 12, 13. is configured to do so.

さらに、14は上記第1入力軸2の第1速歯車
9と第3速歯車10との間にスプライン結合され
た1−3セレクト歯車であつて、該1−3セレク
ト歯車14は第1速歯車9と第3速歯車10とに
噛合可能に形成されているとともに、該1−3セ
レクト歯車14にはロツド15を介して流体式変
速歯車用アクチユエータを構成する1−3シフト
シリンダ16が連結され、上記ロツド15には該
1−3セレクト歯車14を中立に保持する2個の
スプリング14a,14bが接続されている。ま
た、上記1−3シフトシリンダ16には第1速用
管路17および第3速用管路18を介して1−3
シフトバルブ電磁弁19が接続されており、該1
−3シフトバルブ19により上記1−3シフトシ
リンダ16への流体圧の供給を制御して、該1−
3シフトバルブ19の非作動時には流体圧を第1
速用管路17を介して1−3シフトシリンダ16
に供給することにより、ロツド15を介して1−
3セレクト歯車14を第1速歯車9方向に摺動さ
せて第1速歯車9と噛合させる一方、1−3シフ
トバルブ19の作動時には流体圧を第3速用管路
18を介して供給することにより、1−3セレク
ト歯車14を第3速歯車10方向に摺動させて該
第3速歯車10と噛合させ、よつて、第1入力軸
2から出力軸6へのトルク伝達経路を2段に切換
えるように構成されている。
Furthermore, 14 is a 1-3 select gear spline-coupled between the first gear 9 and the third gear 10 of the first input shaft 2, and the 1-3 select gear 14 is the first gear gear 10. The gear 9 and the third speed gear 10 are formed to mesh with each other, and the 1-3 select gear 14 is connected to a 1-3 shift cylinder 16 that constitutes a hydraulic speed change gear actuator via a rod 15. Two springs 14a and 14b are connected to the rod 15 to hold the 1-3 select gear 14 in a neutral position. Further, the 1-3 shift cylinder 16 is connected to the 1-3 shift cylinder 16 via a first speed conduit 17 and a third speed conduit 18.
A shift valve solenoid valve 19 is connected, and the 1
-3 shift valve 19 controls the supply of fluid pressure to the 1-3 shift cylinder 16, and the 1-3 shift valve 19 controls the fluid pressure supply to the 1-3 shift cylinder 16.
3. When the shift valve 19 is not activated, the fluid pressure is
1-3 shift cylinder 16 via speed conduit 17
1- through rod 15.
The 3 select gear 14 is slid in the direction of the 1st speed gear 9 and meshed with the 1st speed gear 9, while fluid pressure is supplied through the 3rd speed conduit 18 when the 1-3 shift valve 19 is operated. As a result, the 1-3 select gear 14 is slid in the direction of the third speed gear 10 and meshed with the third speed gear 10, thereby changing the torque transmission path from the first input shaft 2 to the output shaft 6 to 2. It is configured to switch in stages.

加えて、20は上記第2入力軸3の第2速歯車
12と第4速歯車13との間にスプライン結合さ
れた2−4セレクト歯車であつて、該2−4セレ
クト歯車20は第2速歯車12と第4速歯車13
とに噛合可能に形成されているとともに、該2−
4セレクト歯車20にはロツド21を介して流体
式変速歯車用アクチユエータを構成する2−4シ
フトシリンダ22が連結され、上記ロツド21に
は該2−4セレクト歯車20を中立に保持する2
個のスプリング20a,20bが接続されてい
る。また、上記2−4シフトシリンダ22には第
2速用管路23および第4速用管路24を介して
2−4シフトバルブ電磁弁25が接続されてお
り、該2−4シフトバルブ25により上記2−4
シフトシリンダ22への流体圧の供給を制御し
て、該2−4シフトバルブ25の非作動時には流
体圧を第4速用管路24を介して2−4シフトシ
リンダ22に供給することにより、ロツド21を
介して2−4セレクト歯車20を第4速歯車13
方向に摺動させて該第4速歯車13と噛合させる
一方、2−4シフトバルブの作動時には流体圧を
第2速用管路23を介して供給することにより、
2−4セレクト歯車20を第2速歯車12方向に
摺動させて該第2速歯車12と噛合させ、よつ
て、第2入力軸3から出力軸6へのトルク伝達経
路を2段に切換えるように構成されている。
In addition, 20 is a 2-4 select gear spline-coupled between the second speed gear 12 and the fourth speed gear 13 of the second input shaft 3, and the 2-4 select gear 20 is connected to the second speed gear 12 and the fourth speed gear 13 of the second input shaft 3. Speed gear 12 and fourth speed gear 13
The 2-
A 2-4 shift cylinder 22 constituting a hydraulic transmission gear actuator is connected to the 4-select gear 20 via a rod 21, and the rod 21 has a 2-4 shift cylinder 22 that holds the 2-4 select gear 20 neutrally
springs 20a, 20b are connected. Further, a 2-4 shift valve solenoid valve 25 is connected to the 2-4 shift cylinder 22 via a second speed conduit 23 and a fourth speed conduit 24. According to 2-4 above
By controlling the supply of fluid pressure to the shift cylinder 22 and supplying fluid pressure to the 2-4 shift cylinder 22 via the fourth speed conduit 24 when the 2-4 shift valve 25 is not in operation, The 2-4 select gear 20 is connected to the 4th speed gear 13 via the rod 21.
By sliding in the direction and meshing with the fourth speed gear 13, while supplying fluid pressure through the second speed conduit 23 when the 2-4 shift valve is activated,
2-4 The select gear 20 is slid in the direction of the second speed gear 12 and meshed with the second speed gear 12, thereby switching the torque transmission path from the second input shaft 3 to the output shaft 6 to two stages. It is configured as follows.

また、26は上記第1入力軸2の後退速歯車1
1の前位にスプライン結合された後退セレクト歯
車であつて、該後退セレクト歯車26は後退速歯
車11と噛合可能に形成されているとともに、該
後退セレクト歯車26にはロツド27を介して流
体式後退速歯車用アクチユエータを構成する後退
シリンダ28が接続され、また、上記ロツド27
には該ロツド27を後退速歯車11とは反対側に
付勢するスプリング29が接続されており、常時
は該スプリング29のバネ力によつてロツド27
を後退速歯車11とは反対側に付勢することによ
り、後退セレクト歯車26と後退速歯車11との
噛合を外す一方、上記後退シリンダ28への流体
圧の供給時には、該後退シリンダ28の作動によ
り後退セレクト歯車26を上記スプリング29の
バネ力に抗して後退速歯車11側へ摺動せしめて
該後退速歯車11と噛合させるように構成されて
いる。
Further, 26 is the reverse speed gear 1 of the first input shaft 2.
1, the reverse select gear 26 is formed so as to be able to mesh with the reverse speed gear 11, and the reverse select gear 26 is connected to the reverse select gear 26 via a rod 27. A reverse cylinder 28 constituting an actuator for the reverse speed gear is connected, and the rod 27
A spring 29 is connected to which urges the rod 27 in the opposite direction to the reverse speed gear 11, and the spring force of the spring 29 normally forces the rod 27.
is biased toward the opposite side of the reverse gear 11 to disengage the reverse select gear 26 and the reverse gear 11, while at the same time, when fluid pressure is supplied to the reverse cylinder 28, the reverse cylinder 28 is operated. This allows the reverse select gear 26 to slide toward the reverse speed gear 11 against the spring force of the spring 29 and mesh with the reverse speed gear 11.

さらに、30は揺動自在な操作レバー31を介
して上記第1クラツチ4に連結された流体式のク
ラツチアクチユエータを構成する第1クラツチシ
リンダであつて、該第1クラツチシリンダ30に
は第1クラツチ用管路32を介して第1クラツチ
バルブ電磁弁33が接続されているとともに、上
記操作レバー31には該操作レバー31を、第1
クラツチ4を断つ方向に付勢するスプリング34
が接続されており、上記第1クラツチバルブ33
により第1クラツチシリンダ30への流体圧の供
給を制御して、該第1クラツチバルブ33の非作
動時には第1クラツチシリンダ30への流体圧の
供給を停止し、上記スプリング34のバネ力によ
り操作レバー31を図中時計方向に回動させて第
1クラツチ4を断つ一方、第1クラツチバルブ3
3の作動時には流体圧を第1クラツチ用管路32
を介して第1クラツチシリンダ30に供給するこ
とにより、操作レバー31を上記スプリング34
のバネ力に抗して図中反時計方向に回動させて第
1クラツチを接続するように構成されている。
Furthermore, 30 is a first clutch cylinder constituting a hydraulic clutch actuator connected to the first clutch 4 via a swingable operating lever 31, and the first clutch cylinder 30 has a A first clutch valve solenoid valve 33 is connected via a first clutch conduit 32, and the operating lever 31 is connected to the first clutch valve solenoid valve 33.
A spring 34 that biases the clutch 4 in the direction of disengaging it.
is connected to the first clutch valve 33.
controls the supply of fluid pressure to the first clutch cylinder 30, and stops the supply of fluid pressure to the first clutch cylinder 30 when the first clutch valve 33 is not operated, and is operated by the spring force of the spring 34. While rotating the lever 31 clockwise in the figure to disconnect the first clutch 4, the first clutch valve 3
3 is activated, fluid pressure is applied to the first clutch conduit 32.
By supplying the operating lever 31 to the first clutch cylinder 30 via the spring 34
The first clutch is connected by rotating the first clutch counterclockwise in the figure against the spring force of the first clutch.

加えて、35は揺動自在な操作レバー36を介
して上記第1クラツチ4に連結された流体式のク
ラツチアクチユエータを構成する第2クラツチシ
リンダであつて、該第2クラツチシリンダ35に
は第2クラツチ用管路37を介して第2クラツチ
バルブ電磁弁38が接続されているとともに、上
記操作レバー36には該操作レバー36を、第2
クラツチ5を断つ方向に付勢するスプリング39
が接続されており、上記第2クラツチバルブ38
の作動により第2クラツチシリンダ35への流体
圧の供給を制御し、該第2クラツチバルブ38の
非作動時には第2クラツチシリンダ35への流体
圧の供給を停止し、上記スプリング39のバネ力
により操作レバー36を図中反時計方向に回動さ
せて第2クラツチ5を断つ一方、第2クラツチバ
ルブ38の作動時には流体圧を第2クラツチ用管
路37を介して第2クラツチシリンダ35に供給
することにより、操作レバー36を上記スプリン
グ39のバネ力に抗して図中時計方向に回動させ
て第2クラツチ5を接続するように構成されてい
る。
In addition, numeral 35 is a second clutch cylinder constituting a hydraulic clutch actuator connected to the first clutch 4 via a swingable operating lever 36, and the second clutch cylinder 35 includes: A second clutch valve solenoid valve 38 is connected via a second clutch conduit 37, and a second clutch valve 38 is connected to the operating lever 36.
A spring 39 that biases the clutch 5 in the direction of disengaging it.
is connected to the second clutch valve 38.
When the second clutch valve 38 is not operated, the supply of fluid pressure to the second clutch cylinder 35 is stopped, and the spring force of the spring 39 controls the supply of fluid pressure to the second clutch cylinder 35. The operating lever 36 is rotated counterclockwise in the figure to disconnect the second clutch 5, while fluid pressure is supplied to the second clutch cylinder 35 via the second clutch conduit 37 when the second clutch valve 38 is operated. By doing so, the operating lever 36 is rotated clockwise in the figure against the spring force of the spring 39 to connect the second clutch 5.

また、40は上記エンジン駆動軸1aに駆動連
結された流体供給源としての液圧ポンプであつ
て、該液圧ポンプ40には吐出管路41を介して
本発明の重要部である流体弁を構成するシフトバ
ルブ42が接続され、該シフトバルブ42にはク
ラツチ用管路43を介して上記第1クラツチバル
ブ33および第2クラツチバルブ38が、また前
進用管路44を介して1−3シフトバルブ19お
よび2−4シフトバルブ25が、さらに後退用管
路45を介して後退シリンダ28がそれぞれ接続
されている。また、上記シフトバルブ42のスプ
ール42aには、P(駐車)、R(後退)、N(中
立)、D(第4速までの自動変速)、3(第3速まで
の自動変速)、2(第2速までの自動変速)各操作
位置を有する手動シフト操作レバーを構成するシ
フトレバー46が連結されており、該シフトレバ
ー46の操作に伴う該シフトバルブ42の摺動操
作により流体弁40のスプール42aを摺動させ
て油圧供給通路を切換えて、上記液圧ポンプ40
からの流体を、上記シフトレバー46がN以外の
各シフト位置にある時にはクラツチ用管路43を
開いて第1クラツチバルブ33および第2クラツ
チバルブ38に供給するとともに、上記シフトレ
バー46がD、3、2の前進走行位置にあるとき
には後退用管路45を閉じる同時に吐出管路41
と前進用管路44とを連通して、液圧ポンプ40
の流体を1−3シフトバルブ19および2−4シ
フトバルブ25に供給する一方、シフトレバー4
6がRの後退走行位置にあるときには前進用管路
44を閉じ、電磁弁(1−3シフトバルブ19お
よび2−4シフトバルブ25)と液圧ポンプ40
との連通を遮断する。これと同時に吐出管路41
と後退用管路45とを連通して、液圧ポンプ40
の流体を後退シリンダ28に供給するように構成
されている。さらに、上記後退用管路45には流
量制御弁47が介設されている。該流量制御弁4
7は、液圧ポンプ40からの流体が後退シリンダ
28に供給されている際、すなわち後退セレクト
歯車26を後退速歯車11に噛み合わせる方向へ
の流体供給時に該流体の流量を制限するオリフイ
ス47aを有しており、後退セレクト歯車26と
後退速歯車11とが噛合されるときには、この噛
合を緩かに行つて、1−3セレクト歯車14と第
1速歯車9あるいは第3連歯車10との噛合が先
に解除されるようにするとともに、後退セレクト
歯車26と後退速歯車11との噛合が解除される
ときには、これを速やかに行つて、先に1−3セ
レクト歯車14と第1速歯車9あるいは第3速歯
車10とが噛合されることがないようにして、該
後退速歯車11と第1速歯車9あるいは第3速歯
車10との同時噛合を防止するようにしている。
Reference numeral 40 denotes a hydraulic pump as a fluid supply source which is drivingly connected to the engine drive shaft 1a, and a fluid valve, which is an important part of the present invention, is connected to the hydraulic pump 40 via a discharge pipe 41. The first clutch valve 33 and the second clutch valve 38 are connected to the shift valve 42 via a clutch conduit 43, and the 1-3 shift valve is connected to the shift valve 42 via a forward conduit 44. The valve 19 and the 2-4 shift valve 25 are further connected to a retraction cylinder 28 via a retraction conduit 45. The spool 42a of the shift valve 42 also includes P (parking), R (reverse), N (neutral), D (automatic shifting up to 4th gear), 3 (automatic shifting up to 3rd gear), 2 (Automatic shifting up to 2nd speed) A shift lever 46 constituting a manual shift operation lever having various operation positions is connected, and the fluid valve 40 is moved by sliding operation of the shift valve 42 in conjunction with operation of the shift lever 46. The hydraulic pressure supply passage is switched by sliding the spool 42a of the hydraulic pump 40.
When the shift lever 46 is at any shift position other than N, the clutch conduit 43 is opened to supply fluid to the first clutch valve 33 and the second clutch valve 38, and when the shift lever 46 is at any shift position other than N, 3. When in the forward running position of 2, the retreating pipe 45 is closed and the discharge pipe 41 is closed at the same time.
The hydraulic pump 40
While supplying the fluid to the 1-3 shift valve 19 and the 2-4 shift valve 25, the shift lever 4
6 is in the R backward travel position, the forward conduit 44 is closed, and the solenoid valves (1-3 shift valve 19 and 2-4 shift valve 25) and hydraulic pump 40
Cut off communication with. At the same time, the discharge pipe 41
and the retreating conduit 45, and the hydraulic pump 40
is configured to supply fluid to the retraction cylinder 28. Furthermore, a flow rate control valve 47 is interposed in the retreating conduit 45. The flow control valve 4
7 includes an orifice 47a that limits the flow rate of fluid when the fluid from the hydraulic pump 40 is being supplied to the reverse cylinder 28, that is, when the fluid is being supplied in the direction of meshing the reverse select gear 26 with the reverse speed gear 11. When the reverse select gear 26 and the reverse speed gear 11 are meshed, this mesh is performed loosely so that the 1-3 select gear 14 and the first speed gear 9 or the third gear 10 are engaged with each other. The meshing is released first, and when the meshing between the reverse select gear 26 and the reverse speed gear 11 is released, this is done promptly and the 1-3 select gear 14 and the first speed gear are released first. 9 or the third speed gear 10, thereby preventing the reverse speed gear 11 from simultaneously meshing with the first speed gear 9 or the third speed gear 10.

さらに、48は上記シフトレバー46に接続さ
れ該シフトレバー46の操作に伴つて移動する可
動接点48aを備えたシフトスイツチであつて、
該シフトスイツチ48はシフトレバー46の操作
位置に対応する固定接点Ro、No、Do、3o、2o
を有しており、よつてシフトレバー46の操作に
伴う可動接点48aの移動によりシフトレバー4
6の操作位置を検出して、この操作位置を示すシ
フト位置信号を発生するように構成されている。
Furthermore, 48 is a shift switch equipped with a movable contact 48a that is connected to the shift lever 46 and moves as the shift lever 46 is operated.
The shift switch 48 has fixed contacts Ro, No, Do, 3o, 2o corresponding to the operating position of the shift lever 46.
Therefore, when the movable contact 48a moves with the operation of the shift lever 46, the shift lever 4
It is configured to detect the operating position of No. 6 and generate a shift position signal indicating this operating position.

さらにまた、49は制御回路であつて、該制御
回路49には上記シフトスイツチ48からのシフ
ト位置信号と、車速センサ50からの車速信号
と、エンジン負荷センサ(吸気管負圧あるいはア
クセル開度を検出するセンサ)51からのエンジ
ン負荷信号と、アクセル開度センサ52からのア
クセル開度信号とが入力されており、これら各信
号に基づいて発進時が検出された時には操作信号
Q1を発生し、該操作信号Q1を第1クラツチバ
ルブ33に入力して自動発進制御するものであ
り、また第1速から第2速への変速時(例えば15
Km/h走行時)には上記操作信号Q1の発生を停
止すると同時に操作信号Q4を発生して該操作信
号Q4を第2クラツチバルブ38に入力し、その
後、所定の変速時毎に操作信号Q1と操作信号Q
4とを交互に発生して、それぞれ第1クラツチバ
ルブ33および第2クラツチバルブ38に入力す
るとともに、第2速での走行途中における所定時
(例えば18Km/h走行時)には操作信号Q2を発
生して該操作信号Q2を1−3シフトバルブ19
に入力し、また、発進時から操作信号Q3を出力
して該操作信号Q3を2−4シフトバルブ25に
入力する一方、第3速での走行途中における所定
時(例えば32Km/h走行時)には操作信号Q3の
発生を停止し、よつて上記各バルブ33,38,
19,25を制御して停止制御および自動変速制
御するものである。
Furthermore, 49 is a control circuit, and the control circuit 49 receives a shift position signal from the shift switch 48, a vehicle speed signal from a vehicle speed sensor 50, and an engine load sensor (intake pipe negative pressure or accelerator opening). An engine load signal from a sensor (detecting sensor) 51 and an accelerator opening signal from an accelerator opening sensor 52 are input, and when the time of start is detected based on these signals, an operation signal Q1 is generated, The operation signal Q1 is input to the first clutch valve 33 to perform automatic start control, and is also used when shifting from the first gear to the second gear (for example, 15
Km/h), the generation of the operation signal Q1 is stopped and at the same time the operation signal Q4 is generated and the operation signal Q4 is inputted to the second clutch valve 38. After that, the operation signal Q1 is inputted at every predetermined speed change. and operation signal Q
4 alternately and input to the first clutch valve 33 and the second clutch valve 38, respectively, and at a predetermined time during driving in the second gear (for example, when driving at 18 km/h), an operation signal Q2 is generated. Generates the operation signal Q2 to the 1-3 shift valve 19
Also, from the time of starting, the operation signal Q3 is outputted and the operation signal Q3 is inputted to the 2-4 shift valve 25, while at a predetermined time while traveling in the third gear (for example, when traveling at 32 km/h). Then, the generation of the operation signal Q3 is stopped, and each of the above-mentioned valves 33, 38,
19 and 25 to perform stop control and automatic shift control.

尚、53は流体圧を一定に保持するレギユレー
タ、54ないし56はチエツクバルブ、57はニ
ユートラルスイツチである。
Note that 53 is a regulator for keeping the fluid pressure constant, 54 to 56 are check valves, and 57 is a neutral switch.

次に、上記実施例の作動を第3および第4図に
より説明すると、操作レバー31の操作位置がシ
フトスイツチ48により検出され、それがNシフ
ト位置であるとき(停車時)には、シフトバルブ
42により吐出管路41とクラツチ用管路43と
の連通が断たれているため、液圧ポンプ40から
の流体は第1クラツチバルブ33および第2クラ
ツチバルブ38に供給されることがなく、その結
果、第1クラツチおよび第2クラツチ5はそれぞ
れスプリング34および39の付勢力によつて断
たれた状態にある。
Next, the operation of the above embodiment will be explained with reference to FIGS. 3 and 4. The operating position of the operating lever 31 is detected by the shift switch 48, and when it is at the N shift position (when stopped), the shift valve 42, the communication between the discharge pipe 41 and the clutch pipe 43 is cut off, so that the fluid from the hydraulic pump 40 is not supplied to the first clutch valve 33 and the second clutch valve 38. As a result, the first clutch and the second clutch 5 are in a disengaged state due to the biasing forces of springs 34 and 39, respectively.

そして、シフトレバー46を例えばDシフト位
置に操作すると、それに伴いシフトバルブ42が
摺動操作されて吐出管路41と後退用管路45と
の連通が断たれたまま、吐出管路41と前進用管
路44および吐出管路41とクラツチ用管路43
とが連通されて、液圧ポンプ40からの流体が該
前進用管路44を介して1−3シフトバルブ19
と2−4シフトバルブ25に供給されることにな
る。それと同時に、1−3シフトバルブ19の非
励磁により第1速歯車9の接続が指令されるとと
もに、制御回路49からの第3図に示す操作信号
Q3の出力による2−4シフトシリンダ25の励
磁作動により第2速歯車12の接続が指令され
て、上記1−3および2−4シフトバルブ19,
25に到達した流体はそれぞれ第1速用管路17
を介して1−3シフトシリンダ16に供給される
とともに、第2速用管路23を介して2−4シフ
トシリンダ22に供給され、その結果、1−3セ
レクト歯車14と第1速歯車9および2−4セレ
クト歯車20と第2速歯車12とが噛合する。そ
の際、吐出管路41と後退用管路45との連通は
断たれたままであるので、液圧ポンプ40の流体
が後退用管路45を介して後退シリンダ28に供
給されることがないため、第1速歯車9の噛合時
に後退速歯車11が同時に噛合されることはな
い。
When the shift lever 46 is operated, for example, to the D shift position, the shift valve 42 is slid accordingly, and while the communication between the discharge pipe 41 and the backward pipe 45 is cut off, the discharge pipe 41 and the backward pipe 45 are moved forward. service pipe 44, discharge pipe 41, and clutch pipe 43
The fluid from the hydraulic pump 40 is communicated with the 1-3 shift valve 19 via the advancement pipe 44.
and is supplied to the 2-4 shift valve 25. At the same time, the connection of the first speed gear 9 is commanded by de-energizing the 1-3 shift valve 19, and the 2-4 shift cylinder 25 is energized by the output of the operation signal Q3 shown in FIG. 3 from the control circuit 49. The operation commands the connection of the second speed gear 12, and the 1-3 and 2-4 shift valves 19,
Each of the fluids that have reached the first speed pipe 17
is supplied to the 1-3 shift cylinder 16 via the 1-3 shift cylinder 16, and is also supplied to the 2-4 shift cylinder 22 via the 2nd gear conduit 23. As a result, the 1-3 select gear 14 and the 1st gear gear 9 The 2-4 select gear 20 and the second speed gear 12 mesh with each other. At that time, the communication between the discharge pipe 41 and the retreating pipe 45 remains cut off, so the fluid of the hydraulic pump 40 is not supplied to the retreating cylinder 28 via the retreating pipe 45. , when the first gear 9 is engaged, the reverse gear 11 is not engaged at the same time.

しかる後、車速センサ50およびエンジン負荷
センサ51により車速およびエンジン負荷が計測
され、制御回路49により停車中か否かが判断さ
れたのち、アクセルペダルを踏込むと、該制御回
路49からの第3図に示す操作信号Q1の出力に
よる発進制御より第1クラツチ4が接続されて、
自動発進することになる。
Thereafter, the vehicle speed and engine load are measured by the vehicle speed sensor 50 and the engine load sensor 51, and the control circuit 49 determines whether or not the vehicle is stopped. When the accelerator pedal is depressed, the third signal from the control circuit 49 is determined. The first clutch 4 is connected by the start control based on the output of the operation signal Q1 shown in the figure.
It will start automatically.

その後、車速センサ50およびエンジン負荷セ
ンサ51により車速およびエンジン負荷が経時的
に計測され、制御回路49により第4図に示すよ
うな車速とエンジン負荷とによつて複数の変速点
を予め設定した車速表に従つて走行ゾーンが判定
されると、変速点例えば15Km/h走行時には該制
御回路49から操作信号Q1が出力停止されると
同時に第3図に示す操作信号Q4が出力されて第
1クラツチ4と第2クラツチ5との切換えが行わ
れ、第2速への変速が行われる。また、上記クラ
ツチ4,5の接続の同時期の切換操作域外で予め
設定されたギヤ掛け換え点、例えば18Km/h走行
時には制御回路49からの第3図に示す操作信号
Q2の出力により予め第3速歯車10への切換え
が行われ、次いで、25Km/h走行時には制御回路
49からの操作信号Q1と操作信号Q4との出力
切換えにより第3速への自動変速が行われる。そ
して32Km/h走行時には制御回路49から操作信
号Q3が出力停止されることにより予め第4速歯
車13への切換えが行われ、40Km/hに達すると
再び制御回路49からの操作信号Q1とQ4との
出力切換により第4速の自動変速が行われるよう
になる。その際、液圧ポンプ40と後退シリンダ
28との連通はシフトバルブ42により常に断た
れているので、第3速歯車10を噛合した状態で
の走行時に後退セレクトギヤ26と後退速歯車1
1とが噛合することはなく、該後退速歯車11と
第3速歯車10との同時噛合を確実に防止するこ
とができる。
Thereafter, the vehicle speed and engine load are measured over time by the vehicle speed sensor 50 and the engine load sensor 51, and the control circuit 49 sets a plurality of shift points in advance according to the vehicle speed and engine load as shown in FIG. When the driving zone is determined according to the table, the control circuit 49 stops outputting the operation signal Q1 at a speed change point, for example, when traveling at 15 km/h, and at the same time outputs the operation signal Q4 shown in FIG. 4 and the second clutch 5, and a shift to the second speed is performed. In addition, at a preset gear change point outside the switching operation range at the same time when the clutches 4 and 5 are connected, for example, when driving at 18 km/h, the control circuit 49 outputs the operation signal Q2 shown in FIG. A shift to the third speed gear 10 is performed, and then, when the vehicle is traveling at 25 km/h, an automatic shift to the third speed is performed by output switching between the operation signal Q1 and the operation signal Q4 from the control circuit 49. When traveling at 32 km/h, the control circuit 49 stops outputting the operation signal Q3, thereby switching to the fourth gear 13 in advance, and when the speed reaches 40 km/h, the operation signals Q1 and Q4 from the control circuit 49 are output again. By switching the output between the two, an automatic shift to the fourth speed is performed. At this time, communication between the hydraulic pump 40 and the reverse cylinder 28 is always cut off by the shift valve 42, so that when driving with the third speed gear 10 engaged, the reverse select gear 26 and the reverse speed gear 1
1 do not mesh with each other, and simultaneous meshing of the reverse speed gear 11 and the third speed gear 10 can be reliably prevented.

一方、シフトレバー46をRシフト位置に操作
したときには、それに伴うシフトバルブ42の摺
動操作により吐出管路41と前進用管路44との
連通が断たれると同時に吐出管路41とクラツチ
用管路43および吐出管路41と後退用管路45
とが連通して、液圧ポンプ40からの流体が後退
用管路45を介して後退シリンダ28に供給され
て、後退セレクト歯車26と後退速歯車11とが
噛合することになる。そして、この状態でアクセ
ルペダルが踏込まれると、制御回路49からの操
作信号Q1の出力により発進制御されて第1クラ
ツチ4が接続され、自動的に後退することにな
る。その際、吐出管路41と前進用管路44との
連通はシフトバルブ42により断たれているの
で、流体は1−3シフトシリンダ16に供給され
ることはなく、1−3セレクト歯車14はスプリ
ング14a,14bの付勢力により中立に保持さ
れた状態にある。よつて、後退速歯車11と第1
速歯車9あるいは第3速歯車10とが同時噛合す
ることはない。しかも、シフトレバー46を例え
ばDシフト位置から直ちにRシフト位置に操作し
たとしても、後退シリンダ28への流体の供給は
流量制御弁47によりその速度が遅くなるので、
後退速歯車11の噛合は除々に行われることにな
り、よつて後退速歯車11と第1速歯車9あるい
は第3速歯車10との同時噛合をより確実に防止
することができる。また、逆に、シフトレバー4
6をRシフト位置から直ちにDシフト位置にシフ
トしたとしても、後退シリンダ28からの流体の
排出は流量制御弁47により直ちに行われるの
で、後退速歯車11の噛合は直ちに解除され、先
に1−3セレクト歯車14と第1速歯車9あるい
は第3速歯車10とが噛合することがない。
On the other hand, when the shift lever 46 is operated to the R shift position, the corresponding sliding operation of the shift valve 42 cuts off the communication between the discharge pipe 41 and the forward movement pipe 44, and at the same time, the communication between the discharge pipe 41 and the forward movement pipe 44 is cut off. Pipe line 43, discharge pipe line 41, and retreat pipe line 45
The fluid from the hydraulic pump 40 is supplied to the reverse cylinder 28 via the reverse conduit 45, and the reverse select gear 26 and reverse speed gear 11 are brought into mesh with each other. When the accelerator pedal is depressed in this state, the start is controlled by the output of the operation signal Q1 from the control circuit 49, the first clutch 4 is connected, and the vehicle is automatically moved backward. At that time, communication between the discharge pipe 41 and the forward pipe 44 is cut off by the shift valve 42, so fluid is not supplied to the 1-3 shift cylinder 16, and the 1-3 select gear 14 is It is held neutrally by the urging force of springs 14a and 14b. Therefore, the reverse speed gear 11 and the first
The speed gear 9 or the third speed gear 10 will not mesh at the same time. Moreover, even if the shift lever 46 is immediately operated from, for example, the D shift position to the R shift position, the speed of fluid supply to the reverse cylinder 28 is slowed down by the flow rate control valve 47.
The meshing of the reverse speed gear 11 is performed gradually, and therefore simultaneous meshing of the reverse speed gear 11 and the first speed gear 9 or the third speed gear 10 can be more reliably prevented. Also, conversely, shift lever 4
Even if 6 is immediately shifted from the R shift position to the D shift position, the fluid is immediately discharged from the reverse cylinder 28 by the flow control valve 47, so the mesh of the reverse speed gear 11 is immediately released, and the 1- The 3 select gear 14 and the first speed gear 9 or the third speed gear 10 do not mesh with each other.

また、後退シリンダ28を制御するための電磁
弁がないので、その分電磁弁の使用数が少なくな
り、制御回路49の制御対象が減じるとともに、
前進動作とは異質の後退動作の信号処理が不要で
あるので、制御回路49での信号処理が複雑にな
ることがない。
Further, since there is no solenoid valve for controlling the retraction cylinder 28, the number of solenoid valves used is reduced accordingly, and the objects to be controlled by the control circuit 49 are reduced.
Since signal processing for the backward motion, which is different from the forward motion, is not necessary, the signal processing in the control circuit 49 does not become complicated.

尚、上記実施例においては、制御回路49にア
クセル開度信号を入力して自動変速の適正制御を
行うようにしたが、これは必ずしも入力する必要
はなく、車速信号、エンジン負荷信号およびシフ
ト位置信号のみで自動変速制御を行うことが可能
である。しかし、これを入力すればキツクダウン
等を行うことができ、自動変速の適正制御の点で
より好ましい。
In the above embodiment, the accelerator opening signal is input to the control circuit 49 to properly control automatic gear shifting, but it is not necessary to input the accelerator opening signal to the control circuit 49. It is possible to perform automatic gear shift control using only signals. However, if this is input, it is possible to perform a kickdown, etc., which is more preferable from the point of view of appropriate control of automatic gear shifting.

以上説明したように、本発明によれば、流体供
給源と前進用アクチユエータ制御用の電磁弁との
連通と、該流体供給源と後退用アクチユエータと
の連通とを切換える流体弁を設けたことにより、
同一入力軸上に設けられた後退速歯車と前進速歯
車との同時噛合を防止することができるので、電
磁弁の使用数が少なくなる結果、電磁弁を制御す
る制御回路での信号処理や流体経路が複雑化する
のを防止して、装置の簡易化を図ることができ
る。
As explained above, according to the present invention, by providing a fluid valve that switches communication between a fluid supply source and a solenoid valve for controlling a forward actuator, and communication between the fluid supply source and a backward actuator. ,
Since it is possible to prevent simultaneous meshing of the reverse speed gear and the forward speed gear provided on the same input shaft, the number of solenoid valves used is reduced, resulting in less signal processing and fluid flow in the control circuit that controls the solenoid valves. The route can be prevented from becoming complicated and the device can be simplified.

しかも、本発明によれば、後退速歯車用アクチ
ユエータを、後退速歯車を噛み合わせる方向への
流体供給時に該流体の流量を制御する流量制御弁
を介して流体弁に接続したので、後退速歯車と前
進速歯車との同時噛合をより確実に防いで、ギヤ
ロツクの防止により自動変速の信頼性の向上を図
ることができるものである。
Moreover, according to the present invention, the actuator for the reverse speed gear is connected to the fluid valve via the flow control valve that controls the flow rate of the fluid when the fluid is supplied in the direction of meshing the reverse speed gear. By more reliably preventing simultaneous meshing between the gear and the forward speed gear, and preventing gear lock, it is possible to improve the reliability of automatic gear shifting.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体概
略構成図、第2図は要部構成図、第3図は作動説
明図、第4図はフローチヤート図である。 1a……エンジン駆動軸、2……第1入力軸、
3……第2入力軸、4……第1クラツチ、5……
第2クラツチ、6……出力軸、9……第1速歯
車、10……第3速歯車、11……後退速歯車、
12……第2速歯車、13……第4速歯車、16
……1−3シフトシリンダ、19……1−3シフ
トバルブ、22……2−4シフトシリンダ、25
……2−4シフトバルブ、28……後退シリン
ダ、30……第1クラツチシリンダ、33……第
1クラツチバルブ、35……第2クラツチシリン
ダ、38……第2クラツチバルブ、40……液圧
ポンプ(流体供給源)、42……シフトバルブ
(流体弁)、46……シフトレバー、47……流量
制御弁、47a……オリフイス、48……シフト
スイツチ、49……制御回路。
The drawings show an embodiment of the present invention, and FIG. 1 is a general schematic diagram, FIG. 2 is a diagram of the main part, FIG. 3 is an explanatory diagram of operation, and FIG. 4 is a flowchart. 1a...Engine drive shaft, 2...First input shaft,
3...Second input shaft, 4...First clutch, 5...
2nd clutch, 6... Output shaft, 9... First speed gear, 10... Third speed gear, 11... Reverse speed gear,
12...Second speed gear, 13...Fourth speed gear, 16
...1-3 shift cylinder, 19...1-3 shift valve, 22...2-4 shift cylinder, 25
2-4 shift valve, 28... Reverse cylinder, 30... First clutch cylinder, 33... First clutch valve, 35... Second clutch cylinder, 38... Second clutch valve, 40... Fluid Pressure pump (fluid supply source), 42...shift valve (fluid valve), 46...shift lever, 47...flow control valve, 47a...orifice, 48...shift switch, 49...control circuit.

Claims (1)

【特許請求の範囲】 1 少なくとも2つの入力軸と、前記入力軸の
各々をエンジン駆動軸に連結するための前記入力
軸と同数のクラツチと、前記入力軸の各々を出力
軸に駆動関係に連結するために各入力軸に組合わ
された1組以上の変速歯車と後退速歯車とからな
り、同一入力軸上の各組の変速歯車は変速段にお
いて互いに隣り合つていない変速歯車により構成
され、各入力軸と組合わされた変速歯車を選択し
てトルク伝達経路の切換を行う変速歯車用アクチ
ユエータと、後退速歯車を選択してトルク伝達経
路の切換を行う後退速歯車用アクチユエータと、
前記クラツチの各々の断続操作を行う複数の流体
式クラツチアクチユエータと、変速歯車用および
クラツチ用の各アクチユエータへの流体の供給を
制御する電磁弁群と、手動シフト操作レバーによ
り少なくとも前進位置及び後退位置に摺動操作さ
れ、上記電磁弁群と流体供給源との間の連通を断
続する流体弁と、前記シフト操作レバーの操作位
置を検出し、この操作位置を示すシフト位置信号
を発生するシフトスイツチと、上記シフト位置信
号、車速信号およびエンジン負荷信号が入力さ
れ、発進段の変速歯車が設けられた入力軸側のク
ラツチを入・切操作する自動発進、停止制御を実
行する一方、車速とエンジン負荷とにより予め設
定された変速点に従つて両クラツチの接続を同時
期に徐々に切換操作するとともに、この切換操作
域以外に予め設定されたギヤ掛け換え点に従つて
上記変速歯車の掛け換えを操作する変速制御を実
行するよう上記電磁弁群を作動させる操作信号を
発する制御回路とを備えた複合クラツチ式多段歯
車変速機であつて、 上記流体弁は、その後退位置においては上記変
速歯車用を制御する各電磁弁と上記流体供給源と
の連通を遮断する構成とされ、 上記後退速歯車用アクチユエータは、上記流体
供給源との間の連通が上記流体弁のみにより断続
される構成とするとともに、上記後退速歯車用ア
クチユエータおよび流体弁の間に後退速歯車を噛
み合わせる方向への流体供給時に該流体の流量を
制限する流量制御弁が設けられていることを特徴
とする複合クラツチ式多段歯車変速機。
Claims: 1 at least two input shafts, as many clutches as there are clutches for coupling each of said input shafts to an engine drive shaft, and coupling each of said input shafts in driving relation to an output shaft; In order to achieve this, each input shaft includes one or more sets of speed change gears and reverse speed gears, and each set of speed change gears on the same input shaft is comprised of speed change gears that are not adjacent to each other in the gear stage, a speed change gear actuator that selects a speed change gear associated with each input shaft to switch a torque transmission path; a reverse speed gear actuator that selects a reverse speed gear and switches a torque transmission path;
A plurality of hydraulic clutch actuators for engaging and disengaging each of the clutches, a group of solenoid valves for controlling the supply of fluid to each actuator for the transmission gear and the clutch, and a manual shift operation lever are used to shift at least the forward position and the clutch. A fluid valve that is slid to a backward position and connects and disconnects communication between the electromagnetic valve group and the fluid supply source, and detects the operating position of the shift operation lever, and generates a shift position signal indicating this operating position. The shift switch, the above-mentioned shift position signal, vehicle speed signal and engine load signal are input, and automatic start and stop control is executed by turning on and off the clutch on the input shaft side where the speed change gear for the start gear is provided. The connection of both clutches is gradually switched at the same time according to a preset shift point based on the speed and engine load, and the above-mentioned shift gear and a control circuit for issuing an operation signal for operating the electromagnetic valve group to perform gear change control for operating transfer, wherein the fluid valve is configured to operate as described above in its retracted position. The actuator for the reverse speed gear is configured to cut off communication between each electromagnetic valve that controls the speed change gear and the fluid supply source, and the communication between the reverse speed gear actuator and the fluid supply source is interrupted only by the fluid valve. and a flow control valve is provided between the actuator for the reverse speed gear and the fluid valve to limit the flow rate of the fluid when the fluid is supplied in the direction of meshing the reverse speed gear. Clutch type multi-gear transmission.
JP56200734A 1981-12-11 1981-12-11 Composite clutch type multistage change gear Granted JPS58102851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200734A JPS58102851A (en) 1981-12-11 1981-12-11 Composite clutch type multistage change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200734A JPS58102851A (en) 1981-12-11 1981-12-11 Composite clutch type multistage change gear

Publications (2)

Publication Number Publication Date
JPS58102851A JPS58102851A (en) 1983-06-18
JPS6331029B2 true JPS6331029B2 (en) 1988-06-22

Family

ID=16429284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200734A Granted JPS58102851A (en) 1981-12-11 1981-12-11 Composite clutch type multistage change gear

Country Status (1)

Country Link
JP (1) JPS58102851A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167752A (en) * 1985-08-20 1986-07-29 Toyota Motor Corp Controller for transmission
DE10243282A1 (en) * 2002-09-18 2004-04-01 Volkswagen Ag Hydraulic control device of a dual-clutch transmission
US8475336B2 (en) 2009-07-30 2013-07-02 GM Global Technology Operations LLC Hydraulic control system for a dual clutch transmission
US8225687B2 (en) 2009-09-09 2012-07-24 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8429994B2 (en) 2009-09-09 2013-04-30 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8403792B2 (en) 2009-10-21 2013-03-26 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8413437B2 (en) 2009-12-08 2013-04-09 GM Global Technology Operations LLC Transmission hydraulic control system having independently controlled stator cooling flow
US8192176B2 (en) 2009-12-10 2012-06-05 GM Global Technology Operations LLC Hydraulic fluid supply system having active regulator
US8443687B2 (en) 2009-12-14 2013-05-21 GM Global Technology Operations LLC Electro-hydraulic control system for a dual clutch transmission
US8402855B2 (en) 2010-01-11 2013-03-26 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8435148B2 (en) 2010-01-11 2013-05-07 GM Global Technology Operations LLC Hydraulic control system for an automatic transmission having electronic transmission range selection with failure mode control
US8567580B2 (en) 2010-01-22 2013-10-29 GM Global Technology Operations LLC Electro-hydraulic control system for a dual clutch transmission
US8403793B2 (en) 2010-02-17 2013-03-26 GM Global Technology Operations LLC Hydraulic control system for an automatic transmission having a lubrication regulation valve
US8413777B2 (en) 2010-02-17 2013-04-09 GM Global Technology Operations LLC High efficiency hydraulic transmission control system
US8839928B2 (en) 2010-12-02 2014-09-23 Gm Global Technology Operations, Llc Electro-hydraulic control system for a dual clutch transmission
US8733521B2 (en) 2010-12-06 2014-05-27 Gm Global Technology Operations Apparatus for and method of controlling a dual clutch transmission
US8740748B2 (en) 2010-12-08 2014-06-03 Gm Global Technology Operations, Llc Control system and method for a dual clutch transmission
US8738257B2 (en) 2010-12-08 2014-05-27 Gm Global Technology Operations, Llc Electro-hydraulic control system and method for a dual clutch transmission
US8500600B2 (en) 2011-01-10 2013-08-06 GM Global Technology Operations LLC Hydraulic control system for an automatic transmission having a manual valve with a two gear default strategy
US8915076B2 (en) 2011-01-12 2014-12-23 Gm Global Technology Operations, Llc Transmission hydraulic control system having flow augmentation
US8702548B2 (en) 2011-11-03 2014-04-22 Gm Global Technology Operations Hydraulic control system for an automatic transmission
US9080666B2 (en) 2012-05-29 2015-07-14 Gm Global Technology Operations, Inc. Discrete mechanism for electronic transmission range selection
US10167948B2 (en) 2016-03-17 2019-01-01 GM Global Technology Operations LLC Hydraulic control system for an automatic transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838577A (en) * 1971-09-20 1973-06-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838577A (en) * 1971-09-20 1973-06-06

Also Published As

Publication number Publication date
JPS58102851A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
JPS6331029B2 (en)
CZ377092A3 (en) Method and system for the control of a car self-changing gear
US4488457A (en) Malfunction prevention device of automotive hydraulic transmission
US5875680A (en) Automatic forward/reverse gear change system having a main clutch disengaged and main vehicle brake engaged during a shuttle shift
US3274858A (en) Transmission
JPH034791B2 (en)
JPS59219551A (en) Shift controller for transmission
JP3711476B2 (en) Transmission and transmission control valve assembly
US3709068A (en) Power transmission
JP2806462B2 (en) Work vehicle traveling speed change structure
JP2001208190A (en) Controller for automatic transmission for vehicle
JP2009097648A (en) Dual clutch type transmission
US4645051A (en) Brake and speed responsive controlled transmission
JP2658717B2 (en) Shift control device for shift-by-wire automatic transmission
US6712725B2 (en) Hydraulic control apparatus of an automatic transmission
JP2001330137A (en) Control device for vehicular automatic transmission
US6371888B1 (en) Control apparatus for vehicular automatic transmission
US8311713B2 (en) Multi ratio transmission
JPH034057A (en) Transmission for industrial vehicle
JPS627422B2 (en)
JP3735904B2 (en) Hydraulic control device for automatic transmission
US5445578A (en) Hydraulic control for a power transmission with a manual override
JPH04300451A (en) Counter measure for gear slipping off automatic transmission
JPS6331031B2 (en)
JPS627424B2 (en)