JPS6331025B2 - - Google Patents

Info

Publication number
JPS6331025B2
JPS6331025B2 JP6033981A JP6033981A JPS6331025B2 JP S6331025 B2 JPS6331025 B2 JP S6331025B2 JP 6033981 A JP6033981 A JP 6033981A JP 6033981 A JP6033981 A JP 6033981A JP S6331025 B2 JPS6331025 B2 JP S6331025B2
Authority
JP
Japan
Prior art keywords
vehicle speed
signal
pulse
circuit
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6033981A
Other languages
Japanese (ja)
Other versions
JPS57177449A (en
Inventor
Shigemitsu Hamashima
Tomoaki Nishimura
Naoji Sakakibara
Shoji Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP6033981A priority Critical patent/JPS57177449A/en
Publication of JPS57177449A publication Critical patent/JPS57177449A/en
Publication of JPS6331025B2 publication Critical patent/JPS6331025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1232Bringing the control into a predefined state, e.g. giving priority to particular actuators or gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車の自動変速制御装置に関し、特
に、変速判定に参照する信号のピツクアツプライ
ン、処理回路等の異常を検出する異常検出手段を
備えて異常検出時には自動変速装置を所定の変速
段に安全設定する異常保護をおこなう自動変速制
御装置に関する。 通常の自動変速制御システムは、車速応答信号
とエンジンの出力トルク対応信号ないしスロツト
ル開度応答信号とを入力信号とし、これら両信号
を比較演算し変速機変速操作制御信号を出力する
制御回路を有する。この車速応答信号は例えばド
ライブシヤフト回転数を検出する公知のリードス
イツチ式車速センサーにより供給される。このリ
ードスイツチ式車速センサーは、ドライブシヤフ
トの回転に応じて回転するマグネツトMGにより
ON−OFF作動し、その両端子間に定電圧印加さ
れて定電圧パルスをドライブシヤフト回転数に応
じた周波数をもつて発する。この車速センサーは
ドライブシヤフト近く又はスピードメーター内に
配されることになり、制御回路に至る間の出力信
号線路の断線が生じうる。この場合、通例は車両
停止状態と同じ出力信号を発する。例えば一端を
ボデイアースされ、他の一端を+定電圧回路に接
続されたリードスイツチの場合定圧非パルス連続
信号を発し、これは車両停止時と同じ信号であ
る。このようなとき、自動変速制御システムの制
御回路は、車両が停つたと判断することになり、
低速時の変速シフト(例えば第速)位置への変
速機変速操作制御信号を発するが、万一車両が高
速走行中の場合、急激に1速へシフトダウンされ
ると、突然の急激なエンジンブレーキが作動し、
シヨツクが大で危険であり、またトランスミツシ
ヨン又はエンジンの故障のおそれも生ずる。 特開昭52−94975号公報には、車速パルスが第
1の可変時間を越えて欠落すると変速機を安全速
度段に強制ロツクし、それから第2の固定時間の
後に、車速パルスが再現すると車速に対応した速
度段に変速機を設定する制御回路が開示されてお
り、車速パルスが途断えると自動変速機が安全速
度段に設定される。急ブレーキ時の車輪ロツクな
どにより、車速パルス信号系が正常ではあるが特
殊な運転状態であるが故に車速パルス信号が途断
えたときには、車輪回転が回復したときに、異常
検出が解除されて、自動変速機はそのときの車速
に対応した速度段に設定される。 しかし、異常検出が車速パルス信号に基づいて
行なわれ、この車速パルス信号に基づいて変速制
御に参照される車速信号を生成する車速情報処理
回路の異常検出は行なわれない。したがつて、車
速パルス信号系が正常であつても、車速情報処理
回路が異常な場合には、誤つた速度情報に基づい
て誤つた速度段に設定するおそれがある。 本発明は、車速パルス信号系および車速情報信
号系の異常に応じて自動変速機を安全速度段にロ
ツクしかつ該信号系の正常復帰に応じて該ロツク
を自動解除することを目的とする。 上記目的を達成するために本発明の自動変速制
御装置は、車速に対応したパルス信号を発生する
車速検出手段;該パルス信号に基づいて車速情報
を生成する車速処理手段;前記車速情報の微分値
を得る微分手段、該微分値を設定値と比較して車
速情報の設定速度以上の低下を検出する比較手段
および該比較手段が設定速度以上の低下を検出す
ると異常検出情報を発生しこれを保持する保持手
段でなる異常検出手段;エンジン出力トルク対応
信号、スロツトル開度信号等のエンジンパワー指
標信号と、前記車速情報ならびに前記異常検出情
報に対応して自動変速機の速度段を定める変速制
御手段;および、前記パルス信号に応答して前記
保持手段の保持を解除するリセツト手段;を備え
る。 これにより、車速に対応したパルス信号を発生
する車速検出手段および該パルス信号に基づいて
車速情報を生成する車速処理手段、ならびにそれ
らの間の信号ライン等、に異常を生じたときに
は、車速情報が表わす車速が急激な低下を示し、
車速情報の微分値を得る微分手段がこれを検出し
て比較手段が異常検出情報を発生して保持手段が
これを保持し、変速制御手段がこの異常検出情報
に応答して自動変速機を安全速度段に強制ロツク
する。パルス信号がまた現われるようになると、
リセツト手段が保持手段をリセツトするので保持
手段の異常検出情報が消失し、走行状態に応じた
変速段設定がおこなわれる。急ブレーキなどによ
る車輪ロツクなどの極く特殊な運転状況で自動変
速機が安全速度段に強制ロツクされても、車輪回
転が回復すると自動的にロツクが解除される。 本発明では、車速情報の微分値を得る微分手
段、該微分値を設定値と比較して車速情報の設定
速度以上の低下を検出する比較手段および該比較
手段が設定速度以上の低下を検出すると異常検出
情報を発生しこれを保持する保持手段でなる異常
検出手段、を備えて、これらによりパルス信号そ
のものの異常ではなく該パルス信号に基づいて生
成される車速情報の急激な速度低下、を検出して
異常検出情報をセツトするので、車速に対応した
パルス信号を発生する車速検出手段およびそれに
接続された信号ラインの異常のみならず、変速判
定に用いられる車速情報を発生する車速処理手段
の異常も検出されるので、パルス信号そのものに
基づいて異常検出をする場合よりも、変速制御エ
ラー、特に、車速情報処理系の異常による変速制
御エラー、を防止する確率が高く、その分安全性
が高い。 本発明の他の目的および特徴は、図面を参照し
た以下の実施例の説明より明らかになろう。 第1図に本発明の一実施例を示す。これにおい
ては、車速応答信号発生手段である車速センサー
31、車速信号処理装置であるFV(周波数−電
圧)変換器32、スロツトル開度検出回路33、
異常検出回路40、リセツト回路41および変速
制御装置42で本発明の自動変速制御装置が構成
されており、これが自動変速機45の変速段を制
御する。 以下第1図図示各部を詳細に説明する。リード
スイツチ式車速センサー31のリードスイツチ
LSWはFV変換回路32の入力端子に+側を接続
され、一端子は車両にボデイアースされている。
マグネツトMGはドライブシヤフトの回転に応じ
て回転し、リードスイツチLSWは車速に応答す
る周波数でON−OFFし、抵抗R1と直列接続し
た抵抗R2,R3,R4及び抵抗R2,R3,R
4に対応してリードスイツチLSWを並列接続し
た回路構成により定波高パルス信号がFV変換回
路32の端子Lに現われる。FV変換回路32は
知られたものであり、詳細な説明を省略するが、
トランジスタTr1〜Tr3、ダイオードD1〜D
4、抵抗R1〜R10、コンデンサC1〜C4か
ら成り、整形、微分、積分、バツフアー回路を順
次信号入力端子側から有し、その出力端子は制御
回路と共通の+側VS2端子に対し抵抗R10を介
して接続されたpnp型トランジスタTr3(バツフ
アー用、コレクター接地)のエミツター端子Aか
ら成る。なお、FV変換回路32の一側端子はボ
デイアースされている。車速センサー31のリー
ドスイツチの+端子(出力端子)はFV変換回路
32内のダイオードD1端子を入力端子として接
続されている。FV変換回路32の出力端子Aは、
比較回路43のコンパレータIC1の−入力端子
に接続されている。 スロツトル開度検出回路33は、スロツトル開
度の3段階に夫々対応した信号圧VB,VC,VD
を、夫々ダイオードD9,D8,D7を介して選
択的に比較回路43のコンパレータIC1へ供給
するためのOR回路D7〜D9をその出力端側に
有し、各信号圧VB,VC,VDは第2段定電圧VS2
とアース端子間を夫々2ケの抵抗R25とR2
6、R21とR22、R14とR15により分圧
したものである。但し、この各分圧端子は夫々抵
抗R17,R24,R28を介してコンパレータ
IC1の出力端子Gと接続されている(正帰環)
ので各分圧端子電圧VB,VC,VDは夫々三ケの抵
抗R25,R26,R28;R21,R22,R
24;R14,R15,R17により基本的に規
定されるVB<VC<VDの三段階の異つた信号圧を
生ずる。これら三ケのスロツトル開度応答圧出力
端子B,C,Dのうち、端子Bは抵抗R26を介
してアース接続されるに止まるが、端子C(スロ
ツトル開度第2段階)はトランジスタTR5から
成る閉時アース導通するスイツチ回路SW1を介
してアース接続され、スイツチ回路SW1のバイ
アス電圧入力端子C′はスロツトル開度検出スイツ
チVSW(例えば、エンジン吸気系の負圧検出用バ
キユームスイツチ)を介してアースされ、他方抵
抗R18を介して定電圧回路(以下+側という)
VS2に接続されている。端子Dは、端子Cと同様
にスイツチ回路SW2を介してアース接続され、
トランジスターTr4から成る、スイツチ回路SW
2のバイアス電圧入力端子D′は他のスロツトル
開度検出スイツチASW(例えばアクセル位置検出
スイツチ又はVSWと同種の作動点の異るスイツ
チ)を介してアース接続され、他方抵抗R11を
介して+側VS2に接続されている。出力トルク対
応信号E〓形成回路33の+側VS2にはツエナーダ
イオードDZ(逆方向)がコンデンサC5と並列に
アース接続されている。 スイツチ回路SW1はそのnpn型トランジスタ
Tr5がエミツター接地され、コレクターは分圧
端子Cに接続される。ベースはダイオードD6
(逆方向)、コンデンサC7及び抵抗R20を並列
としてアースされるとともに他方で抵抗R19を
介して端子C′を経てさらに抵抗R18を介して+
側VS2に接続されている。スイツチ回路SW2は
npn型トランジスタTr4で構成され、そのコレク
ターが分圧端子Dに接続され、ベースがR12を
介して端子D′、抵抗R11を介して+側VS2に接
続される一方、ダイオードD5、コンデンサC6
及び抵抗R13の並列接続を介してアースされて
いる。 オアゲートを構成するダイオードD7〜D9の
出力はスロツトル開度信号E〓として比較器43に
印加される。次の第1表にスイツチASW,VSW
の開閉とE〓の電圧レベルとの関係を示す。
The present invention relates to an automatic transmission control device for an automobile, and more particularly, the present invention is equipped with an abnormality detection means for detecting an abnormality in a signal pick-up line, a processing circuit, etc. used for determining a speed change. The present invention relates to an automatic transmission control device that performs set abnormality protection. A normal automatic gear shift control system has a control circuit that receives a vehicle speed response signal and a signal corresponding to engine output torque or a throttle opening response signal as input signals, compares and calculates these two signals, and outputs a transmission gear shift operation control signal. . This vehicle speed response signal is supplied, for example, by a known reed switch type vehicle speed sensor that detects the rotation speed of the drive shaft. This reed switch type vehicle speed sensor uses a magnet MG that rotates according to the rotation of the drive shaft.
It operates ON-OFF, and a constant voltage is applied between both terminals, emitting constant voltage pulses at a frequency that corresponds to the drive shaft rotation speed. This vehicle speed sensor is placed near the drive shaft or inside the speedometer, and the output signal line leading to the control circuit may be disconnected. In this case, the same output signal as when the vehicle is stopped is usually generated. For example, in the case of a reed switch with one end connected to the body ground and the other end connected to a constant voltage circuit, a constant voltage non-pulse continuous signal is generated, which is the same signal as when the vehicle is stopped. In such a case, the control circuit of the automatic transmission control system will determine that the vehicle has stopped.
A transmission control signal is issued to shift the gear to the gear shift position (for example, 1st gear) at low speeds, but if the vehicle is traveling at high speed and is suddenly downshifted to 1st gear, sudden and rapid engine braking may occur. is activated,
The shock is large and dangerous, and there is a risk of transmission or engine failure. Japanese Patent Laid-Open No. 52-94975 discloses that when a vehicle speed pulse is missing for more than a first variable time period, the transmission is forcibly locked in a safe speed gear, and when the vehicle speed pulse reappears after a second fixed time period, the vehicle speed is changed. A control circuit is disclosed that sets the transmission to a speed gear corresponding to the automatic transmission, and when the vehicle speed pulse is interrupted, the automatic transmission is set to the safe speed gear. If the vehicle speed pulse signal system is normal but the vehicle speed pulse signal is interrupted due to a special driving condition due to wheels locking during sudden braking, etc., the abnormality detection will be canceled when the wheel rotation is restored. The automatic transmission is set to a speed gear corresponding to the vehicle speed at that time. However, abnormality detection is performed based on the vehicle speed pulse signal, and abnormality detection is not performed in the vehicle speed information processing circuit that generates the vehicle speed signal referred to in shift control based on the vehicle speed pulse signal. Therefore, even if the vehicle speed pulse signal system is normal, if the vehicle speed information processing circuit is abnormal, there is a risk that the wrong speed gear will be set based on the wrong speed information. SUMMARY OF THE INVENTION An object of the present invention is to lock an automatic transmission to a safe speed gear in response to an abnormality in a vehicle speed pulse signal system and a vehicle speed information signal system, and to automatically release the lock in response to the signal system returning to normal. In order to achieve the above object, the automatic transmission control device of the present invention includes: a vehicle speed detection means that generates a pulse signal corresponding to the vehicle speed; a vehicle speed processing means that generates vehicle speed information based on the pulse signal; and a differential value of the vehicle speed information. a differentiating means for obtaining the differential value, a comparing means for comparing the differential value with a set value to detect a decrease in the vehicle speed information by more than the set speed, and when the comparing means detects a decrease by more than the set speed, abnormality detection information is generated and retained. Abnormality detection means consisting of a holding means; a gear change control means that determines the speed stage of the automatic transmission in response to an engine power index signal such as an engine output torque corresponding signal and a throttle opening signal, the vehicle speed information and the abnormality detection information; and a reset means for releasing the holding of the holding means in response to the pulse signal. As a result, when an abnormality occurs in the vehicle speed detection means that generates a pulse signal corresponding to the vehicle speed, the vehicle speed processing means that generates vehicle speed information based on the pulse signal, and the signal line between them, the vehicle speed information is The displayed vehicle speed shows a sudden decrease,
The differentiating means for obtaining the differential value of the vehicle speed information detects this, the comparing means generates abnormality detection information, the holding means holds this, and the shift control means responds to this abnormality detection information to safely operate the automatic transmission. Forcibly locks into speed gear. When the pulse signal appears again,
Since the reset means resets the holding means, the abnormality detection information of the holding means disappears, and the gear stage is set according to the driving condition. Even if the automatic transmission is forcibly locked in a safe speed gear in extremely special driving situations such as wheels locking due to sudden braking, the lock is automatically released when wheel rotation is restored. The present invention provides a differentiating means for obtaining a differential value of vehicle speed information, a comparing means for comparing the differential value with a set value to detect a decrease in the vehicle speed information by more than the set speed, and when the comparing means detects a decrease in the vehicle speed by more than the set speed. Abnormality detection means consisting of a holding means that generates and holds abnormality detection information, and detects not an abnormality in the pulse signal itself but a sudden decrease in vehicle speed information generated based on the pulse signal. Since the abnormality detection information is set by using the system, it is possible to detect not only an abnormality in the vehicle speed detection means that generates a pulse signal corresponding to the vehicle speed and the signal line connected thereto, but also an abnormality in the vehicle speed processing means that generates the vehicle speed information used for determining the speed change. is also detected, so there is a higher probability of preventing shift control errors, especially shift control errors due to abnormalities in the vehicle speed information processing system, than when abnormalities are detected based on the pulse signal itself, and safety is correspondingly higher. . Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In this case, a vehicle speed sensor 31 is a vehicle speed response signal generating means, an FV (frequency-voltage) converter 32 is a vehicle speed signal processing device, a throttle opening detection circuit 33,
The abnormality detection circuit 40, the reset circuit 41, and the shift control device 42 constitute the automatic shift control device of the present invention, which controls the gear position of the automatic transmission 45. Each part shown in FIG. 1 will be explained in detail below. Reed switch of reed switch type vehicle speed sensor 31
The + side of the LSW is connected to the input terminal of the FV conversion circuit 32, and one terminal is grounded to the vehicle body.
The magnet MG rotates according to the rotation of the drive shaft, and the reed switch LSW turns ON and OFF at a frequency that responds to the vehicle speed.
A constant wave high pulse signal appears at the terminal L of the FV conversion circuit 32 due to the circuit configuration in which the reed switches LSW are connected in parallel corresponding to 4. The FV conversion circuit 32 is well known, and detailed explanation will be omitted.
Transistors Tr1 to Tr3, diodes D1 to D
4. Consisting of resistors R1 to R10 and capacitors C1 to C4, it has a shaping, differentiation, integration, and buffer circuit sequentially from the signal input terminal side, and its output terminal connects the resistor R10 to the + side V S2 terminal that is common to the control circuit. It consists of the emitter terminal A of a pnp type transistor Tr3 (for buffer, collector grounded) connected through. Note that one terminal of the FV conversion circuit 32 is grounded to the body. The + terminal (output terminal) of the reed switch of the vehicle speed sensor 31 is connected to the diode D1 terminal in the FV conversion circuit 32 as an input terminal. The output terminal A of the FV conversion circuit 32 is
It is connected to the − input terminal of the comparator IC1 of the comparison circuit 43. The throttle opening detection circuit 33 has signal pressures V B , V C , V D corresponding to three stages of throttle opening, respectively.
It has OR circuits D7 to D9 on its output end side for selectively supplying signal voltages V B , V C , and V to the comparator IC1 of the comparison circuit 43 via diodes D9, D8, and D7, respectively. D is the second stage constant voltage V S2
and the ground terminal with two resistors R25 and R2, respectively.
6. The pressure is divided by R21 and R22, R14 and R15. However, each voltage dividing terminal is connected to a comparator via resistors R17, R24, and R28, respectively.
Connected to output terminal G of IC1 (positive return ring)
Therefore, each divided voltage terminal voltage V B , V C , V D is determined by three resistors R25, R26, R28; R21, R22, R
24; Generates three different signal pressures of V B < V C < V D basically defined by R14, R15, and R17. Among these three throttle opening response pressure output terminals B, C, and D, terminal B is only connected to ground via resistor R26, but terminal C (throttle opening second stage) is composed of transistor TR5. The bias voltage input terminal C' of the switch circuit SW1 is connected to the ground via the switch circuit SW1 which conducts to ground when closed, and the bias voltage input terminal C' of the switch circuit SW1 is connected to the ground via the throttle opening detection switch VSW (for example, a vacuum switch for detecting negative pressure in the engine intake system). Grounded, and connected to the constant voltage circuit (hereinafter referred to as + side) via the other resistor R18
Connected to V S2 . Terminal D, like terminal C, is connected to ground via switch circuit SW2.
Switch circuit SW consisting of transistor Tr4
The bias voltage input terminal D' of No. 2 is connected to ground via another throttle opening detection switch ASW (for example, an accelerator position detection switch or a switch with a different operating point of the same type as VSW), and is connected to the + side via the other resistor R11. Connected to V S2 . A Zener diode DZ (reverse direction) is connected to the ground in parallel with the capacitor C5 to the + side V S2 of the output torque corresponding signal E〓 forming circuit 33. Switch circuit SW1 is the npn type transistor
The emitter of Tr5 is grounded, and the collector is connected to the voltage dividing terminal C. Base is diode D6
(in the opposite direction), the capacitor C7 and the resistor R20 are connected in parallel to ground, and the other hand is connected to the terminal C' via the resistor R19, and further via the resistor R18 to the +
Connected to side V S2 . The switch circuit SW2 is
It consists of an npn type transistor Tr4, whose collector is connected to the voltage dividing terminal D, and whose base is connected to the terminal D' via R12 and the + side V S2 via the resistor R11, while the diode D5 and capacitor C6
and a resistor R13 connected in parallel. The outputs of the diodes D7 to D9 constituting the OR gate are applied to the comparator 43 as the throttle opening signal E. Switch ASW, VSW is shown in Table 1 below.
This shows the relationship between the opening and closing of and the voltage level of E〓.

【表】 比較器43のコンパレータIC1の−入力端子
にはFV変換回路32の出力すなわち車速信号VA
が、+入力端子にはスロツトル開度信号E〓が印加
される。コンパレータIC1の出力端子Gは+側
VS2に抵抗R30を介して接続され(以上第2段
+側VS2)、この第2段+側VS2は、さらに直列に
抵抗R31を介して第1段+側VS1に接続され、
他方でダイオードD12と抵抗R32とがソレノ
イドライバ44の直列抵抗R30,R31と並列
に+側(第1段)VS1に接続されている。なお、
従前の+側ないし定電圧回路VS2は、この抵抗R
31の出力端子Kに接続されている。またこの第
1段+側VS1はダイオードD16を介して+定電
圧電源に接続される。ダイオードD16の出力側
たる第1段+側には直列抵抗R33及びR34を
介してnpn型トランジスタTr6のコレクター端子
が接続され同エミツター端子はアースされ、ベー
ス端子はダイオードD13を介して、抵抗R32
とダイオードD12の間の端子に接続される。ト
ランジスタTr6のベース端子はまた抵抗R35
を介してアースされ、そのコレクター端子からは
抵抗R34を介してnpn型トランジスタTr7のベ
ース端子に接続される。トランジスタTr7のエ
ミツタ端子は第1段+側VS1に接続され、コレク
ター端子にはダイオードD17と自動変速機45
のシフトソレノイド弁SSVのコイルが並列に接
続されこれらの他端はアースされている。自動変
速機45は、公知のソレノイド制御タイプの2段
変速のものである。 次に異常検出回路40を説明する。異常検出回
路40においては、車速アナログ信号VAをコン
デンサC9が微分処理し微分信号をコンパレータ
IC2の−入力端に与える。一方、VS2がR36,
R37,R38の直列回路に印加され、R38の
分圧電圧(定電圧)がコンデンサC10に印加さ
れ、コンデンサC10の電圧がコンパレータIC
2の+入力端に印加される。コンパレータIC2
の−入力端には抵抗R39を介して抵抗R37と
R38の電圧降下の和が印加されるので、通常は
コンパレータIC2の−入力端の電圧が+入力端
の電圧よりも高く、コンパレータIC2の出力は
負レベルであり出力トランジスタTr8はオフで
ある。通常の加減速では車輛の速度変化率が小さ
いので車速信号VAの変化率は小さく、コンデン
サC9は実質上微分信号を生じない。しかしリー
ドスイツチLSWの断線又は短絡故障のとき、あ
るいは低摩擦路での急ブレーキによる車輪ロツク
時には走行応答パルスが途断えるので、車速信号
VAがFV変換回路32の抵抗R8,R9およびコ
ンデンサC3,C4の時定数で定まる最も速い速
度で低下し、このとき微分コンデンサC9のコン
パレータIC2側電極の電位が低下しコンパレー
タIC2の出力がプラスレベルとなりトランジス
タTr8が導通する。Tr8が導通すると抵抗R4
0およびダイオードD18を介してコンパレータ
IC2の−入力端が低電位に保持され、これによ
りコンパレータIC2の出力はプラスレベルのま
まに、トランジスタTr8はオンのままになる
(異常検出状態)。トランジスタTr8のコレクタ
がダイオードD19を介してソレノイドドライバ
44のトランジスタTr6のベースに接続されて
いるので、異常検出状態ではトランジスタTr6
はオフにロツクされる。 以上を要約すると、自動変速機45の変速段の
設定は次の第2表に示すものとなる。
[Table] The - input terminal of the comparator IC1 of the comparator 43 receives the output of the FV conversion circuit 32, that is, the vehicle speed signal V A
However, the throttle opening signal E is applied to the + input terminal. Output terminal G of comparator IC1 is + side
V S2 via a resistor R30 (hereinafter referred to as the second stage + side V S2 ), and this second stage + side V S2 is further connected in series to the first stage + side V S1 via a resistor R31.
On the other hand, a diode D12 and a resistor R32 are connected to the + side (first stage) V S1 in parallel with the series resistors R30 and R31 of the solenoid driver 44. In addition,
The conventional + side or constant voltage circuit V S2 is connected to this resistor R
It is connected to the output terminal K of 31. Further, this first stage + side V S1 is connected to a + constant voltage power supply via a diode D16. The collector terminal of an npn type transistor Tr6 is connected to the output side of the diode D16, which is the first stage + side, through series resistors R33 and R34, the emitter terminal is grounded, and the base terminal is connected to the resistor R32 through the diode D13.
and the diode D12. The base terminal of transistor Tr6 is also connected to resistor R35.
The collector terminal thereof is connected to the base terminal of an npn transistor Tr7 via a resistor R34. The emitter terminal of the transistor Tr7 is connected to the first stage + side V S1 , and the collector terminal is connected to the diode D17 and the automatic transmission 45.
The coils of the shift solenoid valve SSV are connected in parallel and the other ends of these are grounded. The automatic transmission 45 is a known solenoid-controlled two-speed transmission. Next, the abnormality detection circuit 40 will be explained. In the abnormality detection circuit 40, a capacitor C9 differentiates the vehicle speed analog signal V A , and the differential signal is sent to a comparator.
Give it to the - input terminal of IC2. On the other hand, V S2 is R36,
It is applied to the series circuit of R37 and R38, the divided voltage (constant voltage) of R38 is applied to the capacitor C10, and the voltage of the capacitor C10 is applied to the comparator IC.
It is applied to the + input terminal of 2. Comparator IC2
Since the sum of the voltage drops of resistors R37 and R38 is applied to the - input terminal of , via resistor R39, the voltage at the - input terminal of comparator IC2 is normally higher than the voltage at the + input terminal, and the output of comparator IC2 is at a negative level and the output transistor Tr8 is off. During normal acceleration/deceleration, the rate of change in vehicle speed is small, so the rate of change in vehicle speed signal V A is small, and capacitor C9 does not substantially generate a differential signal. However, when the reed switch LSW is disconnected or shorted, or when the wheels lock due to sudden braking on a low-friction road, the driving response pulse is interrupted, so the vehicle speed signal
V A decreases at the fastest speed determined by the time constants of resistors R8 and R9 and capacitors C3 and C4 of the FV conversion circuit 32, and at this time, the potential of the comparator IC2 side electrode of differential capacitor C9 decreases, and the output of comparator IC2 becomes positive. level, and the transistor Tr8 becomes conductive. When Tr8 becomes conductive, resistance R4
0 and the comparator through diode D18
The negative input terminal of IC2 is held at a low potential, so that the output of the comparator IC2 remains at a positive level and the transistor Tr8 remains on (abnormality detection state). Since the collector of the transistor Tr8 is connected to the base of the transistor Tr6 of the solenoid driver 44 via the diode D19, the transistor Tr6 is connected to the base of the transistor Tr6 of the solenoid driver 44 through the diode D19.
is locked off. To summarize the above, the gear settings of the automatic transmission 45 are shown in Table 2 below.

【表】 リセツト回路41は、FV変換回路32のトラ
ンジスタTr1のコレクタと、異常検出回路40
のコンパレータIC2の−入力端の間に直列接続
されたコンデンサC11およびダイオードD19
と、コンパレータIC2の−入力端の電圧を+入
力端の電圧よりも上昇させるためのバイアス用の
ダイオードD20,D21、およびコンデンサC
11のチヤージ放電用のダイオードD22で構成
されている。トランジスタTr1のコレクタに現
われる車速応答パルス(これはL端に印加される
パルスを反転波形したもの)が常時コンデンサC
11に印加され、コンデンサC11を介して、ま
たダイオードD19およびD20,D21を介し
てコンパレータIC2の−入力端および+入力端
に印加されるが、−入力端では1個のダイオード
D19の電圧降下分電圧低下を生ずるが、+入力
端では2個のダイオードD20,D21の電圧降
下分の電圧低下を生ずるので、−入力端に+入力
端よりも高い電圧が印加されるので車速応答パル
スの高レベル「1」の間コンパレータIC2の出
力がマイナスレベルとなりトランジスタTr8が
オフとなる。したがつて異常セツト状態でトラン
ジスタTr8がオンであつたときには、車速応答
パルスが現われるとトランジスタTr8がオフと
なり抵抗R40およびダイオードD18のループ
がプラスレベルとなり、これによりコンパレータ
IC2の−入力端がプラスレベルとなり、コンパ
レータIC2の出力がマイナスに維持される。つ
まり異常状態がリセツトされる。車速応答パルス
の低レベル区間でも、コンパレータIC2の+入
力端がダイオードD22を介してまた回路32の
トランジスタTr1を介してアースされるのでコ
ンパレータIC2の出力がやはりマイナスとなり、
トランジスタTr8がオフとされる。したがつて、
コンパレータIC2には、車速応答パルスが現わ
れる毎にリセツト電圧が印加されることになる。
異常時には車速応答パルスが消滅するため、ダイ
オードD22のアノードがR38の電圧になり、
回路41はR38の電圧よりダイオードD22お
よびD19の電圧降下を差し引いた低い電圧をコ
ンパレータIC2に印加する。しかしIC2の−入
力端には抵抗R36,R39でそれより高い電圧
が印加されているので、車速応答パルスが消滅し
ても、VAの電圧が所定速度以上で降下してコン
デンサC9の電位が低下しなければコンパレータ
IC2の−入力端の電位は、その出力をプラスに
する程に低下しない。したがつて、VAが急速に
低下したときにコンパレータIC2の出力がプラ
スとなつてトランジスタTr8がオンし、これに
よりトランジスタTr8−ダイオードD18−抵
抗R40−コンパレータIC2の異常検出ラツチ
ループが異常検出レベル(アース)となり異常検
出状態となるが、車速応答パルスが現われてこの
ループに反転レベル(プラス)の電圧(リセツト
電圧)が印加されると、異常検出ラツチループは
正常時のレベル(プラス)に戻る。なお、このリ
セツト電圧はコンパレータIC−トランジスタTr
8を含む異常検出ラツチループのいずれの箇所に
印加してもよい。但し、コンパレータIC−トラ
ンジスタTr8間に印加するときにはリセツト電
圧極性を逆にする。 第2表に示すように、異常検出時に変速段を第
2速に設定するのは、高速走行(第2速)におい
て仮にセンサー31より端子Lの間に断線やシヨ
ートを生じた場合に第1速にすると、車輛速度変
化が大きくてドライバに危険であり、しかもクラ
ツチ系、エンジン系や車輌駆動系に大きな衝撃を
与える虞があるからである。故障時や急ブレーキ
時に仮に第1速から第2速になつたとしても、エ
ンジン負荷が大となるためクラツチ制御系におい
て結合比が低下され、大きなシヨツクを生じな
い。 第2図に本発明のもう1つの実施例を示す。こ
れにおいては、車速応答信号発生手段として電磁
誘導タイプの車速センサー31を用い、車速信号
処理装置としてパルス整形回路32a、カウン
タ・ラツチ回路32bおよびタイマー回路32c
でなるデジタル速度変換回路を用い、しかも変速
制御装置42をマイクロプロセツサ(1チツプマ
イクロコンピユータ)46とソレノイドドライバ
44で構成し、マイクロプロセツサ46を異常検
出手段およびリセツト手段に共用している。 車速センサー31においては、ドライブシヤフ
トの回転に応じて回転するマグネツトMGに対向
してセンサコイルを巻回した磁性体コアが配置さ
れており、このマグネツトMGと磁性体コアおよ
びセンサコイルが車速センサ31を構成してい
る。マグネツトMGが回転するとセンサコイルに
交番電圧が誘起され、それがパルス整形回路32
aに印加される。回路32aにおいては、第1の
演算増幅器OP1が入力交番電圧を反転増幅し、
第2の演算増幅器OP2が反転増幅およびレベル
シフト調整し、第1および第2のトランジスタ
Tr1a,Tr2aが2値化および反転増幅する。これに
より、マグネツトMGの回転速度に応じた周波数
およびパルス幅の車速応答パルスがモノマルチバ
イブレータMM1に印加される。モノマルチバイ
ブレータMM1は、速度検出パルスの立上りでト
リガーされて一定短幅の高レベル「1」のパルス
を出力する。これにより、モノマルチバイブレー
タMM1の出力が、車輛速度に比例した周波数
の、一定パルス幅の、車速検出パルスを生ずる。
車速検出パルスは、ナンドゲートNA1を介し
て、カウンタ・ラツチ回路32bに印加される。
カウンタ・ラツチ回路32bは、4ビツトカウン
タCO1,CO2、ラツチLA1およびオアゲート
OR1で構成されており、車速検出パルスをカウ
ンタCO1がカウントし、カウンタCO1のキヤリ
ーパルスをカウンタCO2がカウントする。すな
わち、カウンタCO1とCO2で8ビツトカウンタ
を構成している。カウンタCO1,CO2のカウン
トコードは所定周期でラツチLA1に更新メモリ
され、この更新メモリ毎にカウンタCO1,CO2
がクリアされる。したがつてラツチLAのメモリ
データは所定周期の間の車速検出パルス数、すな
わち車輛速度を示す。ラツチLA1のメモリ更新
およびカウンタCO1,CO2のクリアはタイマー
回路32cが制御する。タイマー回路32cにお
いては、パルス発振器OSCの発振パルスをカウ
ンタCO4ならびにナンドゲートNA2,NA3で
分周して、ラツチ指示パルスおよびカウンタクリ
ア指示パルスを形成し、カウンタクリア指示パル
スはモノマルチバイブレータMM2で短幅パルス
として、ラツチLA1をラツチ付勢(メモリ更新)
し次いでカウンタCO1,CO2を一瞬クリアする
ようにしている。カウンタCO1,CO2をクリア
するパルスはタイミングパルスAとしてコンピユ
ータ46に車速応答パルスBと共に印加され、ま
た、ラツチLA1のラツチコードが車速指示コー
ドVCOとしてコンピユータ46に印加される。 マイクロコンピユータ46の入力ポートには、
スロツトル開度検出用のスイツチASWおよび
VSWが接続されている。マイクロコンピユータ
46のROMには、前述の第1図に示す実施例
の、スロツトル開度検出回路33、比較器43お
よび異常検出回路40およびリセツト回路41等
の動作と同様な動作をおこなうプログラムデータ
およびその実行において参照する定数データが予
め格納されている。第3図に該プログラムデータ
に基づいたマイクロコンピユータ46の制御動作
を示す。 第3図を参照してマイクロコンピユータ(以下
マイコンと称する)46の制御動作を説明する
と、マイコン46は、タイミングパルスAが到来
すると速度データVCOを読み、これを前回タイミ
ングパルスAが到来したときに読んで速度レジス
タにメモリしているデータVCO1と比較し、VCO1
VCO≧a、つまりタイミングパルスAの1周期の
間に速度信号レベルが異常に低下した場合は、信
号ラインの故障(急ブレーキ時の車輪ロツクも含
まれる)と見なして、ソレノイドドライバ44へ
の出力ポートに低レベル「0」をセツトしてトラ
ンジスタTr6,Tr7をオフとして自動変速機4
5を第2速に設定し、異常フラグをセツトし、速
度レジスタに今読んだ車速データVCOを更新メモ
リする(以上が異常検出と、異常検出状態のセツ
ト)。そしてメインンルーチンに戻り、パルスA
の到来タイミングで第3図のフローの先頭に戻
りタイミングパルスAの到来を待つ。そしてパル
スAが到来すると、異常フラグがセツトされてい
るので(異常フラグあり?=YES)、車速応答パ
ルスBの到来を待ち、その間t1時限のカウントを
おこなう(タイマーt1)。t1の間に車速応答パル
スが到来すると車速応答パルスBが正常であると
して異常フラグをリセツトし、VCOを速度レジス
タにメモリしてメインルーチンに戻り、パルスA
の到来タイミングでフローの先頭に戻りタイミ
ングパルスAの到来を待つ。正常な場合には、
VCO−VCO≧a?=NOであり、異常フラグあり?
=NOであるので、スロツトル開度検出用のスイ
ツチASW,VSWの開閉状態を読み、第1図の回
路33と同様に、それらの開閉状態に対応付けた
定数データVB,VC,VDをROMより読んでVCO
比較し、両者の大小関係より、ソレノイドドライ
バ44への出力ポートに高レベル「1」:第1速
指定信号又は低レベル「0」:第2速指示信号を
セツトし、速度レジスタにVCOをメモリしてメイ
ンルーチンに戻り、またパルスAが現われるタイ
ミングで第3図のフローの先頭に復帰してタイミ
ングパルスAの到来を待つ(以上が参照信号の比
較と変速段の設定)。 この実施例では、以上の通り自動制御装置の主
要部がマイコン46とされ、異常検出手段もマイ
コン46とされ、またリセツト手段もマイコン4
6とされている。 以上2つの実施例を例示し説明したが、本発明
はこれらの実施例にのみ限定することなくその他
の態様でも実施しうる。たとえばポテンシヨメー
タタイプ又はアブソリユートエンコーダタイプの
スロツトル開度センサをASW,VSWにかえて用
いてもよく、更にはスロツトル開度信号のみなら
ずインテークマニホールド負圧信号、燃量噴射量
信号およびその他のエンジン出力トルク対応信号
などのエンジンパワー指標信号を用いてもよい。
また自動変速機は2段変速のものであるが3段以
上のものであつてもよく、更には、変速段の判定
も、たとえばスロツトル開度と車輛速度でROM
をアクセスして変速段指示データを読むなど、そ
の他のロジツクを実行するものとしてもよい。 以上のように本発明の自動変速制御装置は、車
速情報の微分値を得る微分手段、該微分値を設定
値と比較して車速情報の設定速度以上の低下を検
出する比較手段および該比較手段が設定速度以上
の低下を検出すると異常検出情報を発生しこれを
保持する保持手段でなる異常検出手段、を備え
て、これらによりパルス信号そのものの異常では
なく該パルス信号に基づいて生成される車速情報
の急激な速度低下、を検出して異常検出情報をセ
ツトするので、車速に対応したパルス信号を発生
する車速検出手段およびそれに接続された信号ラ
インの異常のみならず、変速判定に用いられる車
速情報を発生する車速処理手段およびそれに接続
された信号ラインの異常のみならず、変速判定に
用いられる車速情報を発生する車速処理手段の異
常も検出されるので、パルス信号そのものに基づ
いて異常検出をする場合よりも、変速制御エラ
ー、特に、車速情報処理系の異常による変速制御
エラー、を防止する確率が高く、その分安全性が
高い。
[Table] The reset circuit 41 connects the collector of the transistor Tr1 of the FV conversion circuit 32 and the abnormality detection circuit 40.
A capacitor C11 and a diode D19 are connected in series between the negative input terminal of the comparator IC2.
, bias diodes D20 and D21, and capacitor C to raise the voltage at the negative input terminal of comparator IC2 higher than the voltage at the positive input terminal.
It is composed of eleven charge discharge diodes D22. The vehicle speed response pulse (this is an inverted waveform of the pulse applied to the L terminal) appearing at the collector of transistor Tr1 is always connected to capacitor C.
11, and is applied to the - input terminal and the + input terminal of the comparator IC2 via the capacitor C11 and the diodes D19, D20, and D21, but at the - input terminal, the voltage drop of one diode D19 is applied. However, at the + input terminal, a voltage drop equivalent to the voltage drop of the two diodes D20 and D21 occurs, so a higher voltage is applied to the - input terminal than the + input terminal, so the high level of the vehicle speed response pulse While the signal is "1", the output of the comparator IC2 becomes a negative level and the transistor Tr8 is turned off. Therefore, when the transistor Tr8 is on in the abnormal set state, when the vehicle speed response pulse appears, the transistor Tr8 is turned off and the loop of the resistor R40 and the diode D18 becomes a positive level, which causes the comparator to
The - input terminal of IC2 becomes a positive level, and the output of the comparator IC2 is maintained at a negative level. In other words, the abnormal state is reset. Even in the low level section of the vehicle speed response pulse, the + input terminal of the comparator IC2 is grounded via the diode D22 and the transistor Tr1 of the circuit 32, so the output of the comparator IC2 becomes negative as well.
Transistor Tr8 is turned off. Therefore,
A reset voltage is applied to the comparator IC2 every time a vehicle speed response pulse appears.
In the event of an abnormality, the vehicle speed response pulse disappears, so the anode of diode D22 becomes the voltage of R38,
Circuit 41 applies a voltage lower than the voltage across R38 minus the voltage drops across diodes D22 and D19 to comparator IC2. However, since a higher voltage is applied to the negative input terminal of IC2 through resistors R36 and R39, even if the vehicle speed response pulse disappears, the voltage at V A will drop at a predetermined speed or higher, and the potential at capacitor C9 will rise. If it does not drop, the comparator
The potential at the negative input terminal of IC2 does not drop enough to make its output positive. Therefore, when V A rapidly decreases, the output of comparator IC2 becomes positive, turning on transistor Tr8, which causes the abnormality detection latch loop of transistor Tr8 - diode D18 - resistor R40 - comparator IC2 to reach the abnormality detection level ( However, when a vehicle speed response pulse appears and a voltage (reset voltage) at an inverted level (positive) is applied to this loop, the abnormality detection latch loop returns to the normal level (positive). Note that this reset voltage is the comparator IC - transistor Tr.
The voltage may be applied to any part of the abnormality detection latch loop including 8. However, when applying between the comparator IC and the transistor Tr8, the reset voltage polarity is reversed. As shown in Table 2, the reason why the gear stage is set to 2nd speed when an abnormality is detected is that if a wire breakage or short occurs between the terminal L and the sensor 31 during high-speed driving (2nd speed), This is because if the speed is increased, the vehicle speed changes greatly, which is dangerous to the driver, and may also cause a large impact to the clutch system, engine system, and vehicle drive system. Even if the gear shifts from the first gear to the second gear in the event of a failure or sudden braking, the engine load will increase, so the coupling ratio will be lowered in the clutch control system to prevent a large shock from occurring. FIG. 2 shows another embodiment of the invention. In this case, an electromagnetic induction type vehicle speed sensor 31 is used as a vehicle speed response signal generating means, and a pulse shaping circuit 32a, a counter/latch circuit 32b, and a timer circuit 32c are used as vehicle speed signal processing devices.
In addition, the speed change control device 42 is composed of a microprocessor (1-chip microcomputer) 46 and a solenoid driver 44, and the microprocessor 46 is commonly used as abnormality detection means and reset means. In the vehicle speed sensor 31, a magnetic core around which a sensor coil is wound is arranged opposite to a magnet MG that rotates in accordance with the rotation of the drive shaft. It consists of When the magnet MG rotates, an alternating voltage is induced in the sensor coil, which is transmitted to the pulse shaping circuit 32.
applied to a. In the circuit 32a, the first operational amplifier OP1 inverts and amplifies the input alternating voltage,
The second operational amplifier OP2 performs inverting amplification and level shift adjustment, and the first and second transistors
T r1a and T r2a perform binarization and inversion amplification. As a result, a vehicle speed response pulse having a frequency and a pulse width corresponding to the rotational speed of the magnet MG is applied to the mono-multivibrator MM1. The mono-multivibrator MM1 is triggered by the rising edge of the speed detection pulse and outputs a high-level "1" pulse with a constant short width. As a result, the output of the mono-multivibrator MM1 produces a vehicle speed detection pulse having a constant pulse width and a frequency proportional to the vehicle speed.
The vehicle speed detection pulse is applied to the counter latch circuit 32b via the NAND gate NA1.
The counter/latch circuit 32b includes 4-bit counters CO1, CO2, latch LA1, and an OR gate.
The counter CO1 counts the vehicle speed detection pulses, and the counter CO2 counts the carry pulses of the counter CO1. That is, counters CO1 and CO2 constitute an 8-bit counter. The count codes of counters CO1 and CO2 are updated and stored in latch LA1 at a predetermined period, and the counters CO1 and CO2 are
is cleared. Therefore, the memory data of latch LA indicates the number of vehicle speed detection pulses during a predetermined period, that is, the vehicle speed. A timer circuit 32c controls updating of the memory of latch LA1 and clearing of counters CO1 and CO2. In the timer circuit 32c, the oscillation pulse of the pulse oscillator OSC is divided by a counter CO4 and NAND gates NA2 and NA3 to form a latch instruction pulse and a counter clear instruction pulse, and the counter clear instruction pulse is short-widthed by a monomultivibrator MM2. Latch LA1 is activated as a pulse (memory update)
Then, counters CO1 and CO2 are cleared momentarily. The pulse that clears the counters CO1 and CO2 is applied as a timing pulse A to the computer 46 together with the vehicle speed response pulse B, and the latch code of latch LA1 is applied to the computer 46 as the vehicle speed instruction code VCO . The input port of the microcomputer 46 is
Switch ASW for throttle opening detection and
VSW is connected. The ROM of the microcomputer 46 contains program data and programs that perform operations similar to those of the throttle opening detection circuit 33, comparator 43, abnormality detection circuit 40, reset circuit 41, etc. in the embodiment shown in FIG. Constant data to be referenced in the execution is stored in advance. FIG. 3 shows the control operation of the microcomputer 46 based on the program data. The control operation of the microcomputer (hereinafter referred to as microcomputer) 46 will be explained with reference to FIG. 3. When the timing pulse A arrives, the microcomputer 46 reads the speed data V CO Read the data to V CO1 and compare it with the data stored in the speed register, V CO1
If V CO ≧a, that is, if the speed signal level drops abnormally during one cycle of timing pulse A, it is assumed that the signal line is malfunctioning (including wheels locking during sudden braking), and the solenoid driver 44 is Automatic transmission 4 is set by setting low level "0" to the output port and turning off transistors Tr6 and Tr7.
5 to the second speed, set the abnormality flag, and update the speed register with the vehicle speed data V CO that has just been read (the above is abnormality detection and setting of the abnormality detection state). Then return to the main routine and pulse A.
When the timing pulse A arrives, the process returns to the beginning of the flow shown in FIG. 3 and waits for the arrival of the timing pulse A. When pulse A arrives, since the abnormality flag has been set (abnormality flag present?=YES), the system waits for the arrival of vehicle speed response pulse B, during which time t1 is counted (timer t1 ). When the vehicle speed response pulse arrives during t1 , the vehicle speed response pulse B is determined to be normal and the abnormality flag is reset, V CO is stored in the speed register, the process returns to the main routine, and the pulse A is returned.
When the timing pulse A arrives, the process returns to the beginning of the flow and waits for the arrival of the timing pulse A. In normal cases,
V CO −V CO ≧a? = NO, is there an abnormality flag?
= NO, read the open/close states of the switches ASW and VSW for detecting the throttle opening, and generate constant data V B , V C , V D corresponding to those open/close states, similar to circuit 33 in Fig. 1. is read from the ROM and compared with V CO , and based on the magnitude relationship between the two, a high level "1": 1st speed designation signal or low level "0": 2nd speed designation signal is set at the output port to the solenoid driver 44. Then, it memorizes V CO in the speed register and returns to the main routine. At the timing when pulse A appears, it returns to the beginning of the flow in Figure 3 and waits for the arrival of timing pulse A. step settings). In this embodiment, as described above, the main part of the automatic control device is the microcomputer 46, the abnormality detection means is also the microcomputer 46, and the reset means is also the microcomputer 46.
It is said to be 6. Although the above two embodiments have been illustrated and described, the present invention is not limited only to these embodiments and may be implemented in other embodiments. For example, a potentiometer type or absolute encoder type throttle opening sensor may be used instead of ASW or VSW, and furthermore, it can be used not only for throttle opening signals but also for intake manifold negative pressure signals, fuel injection amount signals, and other signals. An engine power indicator signal such as a signal corresponding to engine output torque may also be used.
Furthermore, although the automatic transmission has two speeds, it may have three or more speeds, and furthermore, the gear position can be determined using ROM based on the throttle opening and vehicle speed, for example.
It may also perform other logic, such as accessing and reading gear instruction data. As described above, the automatic transmission control device of the present invention includes a differentiating means for obtaining a differential value of vehicle speed information, a comparing means for comparing the differential value with a set value to detect a decrease in the vehicle speed information by more than the set speed, and the comparing means the vehicle speed generated based on the pulse signal rather than the abnormality of the pulse signal itself. Abnormality detection information is set by detecting a sudden drop in speed, so not only is there an abnormality in the vehicle speed detection means that generates a pulse signal corresponding to the vehicle speed and the signal line connected to it, but also the vehicle speed used for determining the speed change is detected. Abnormalities can be detected not only in the vehicle speed processing means that generates information and the signal line connected to it, but also in the vehicle speed processing means that generates the vehicle speed information used for shifting judgment, so abnormalities can be detected based on the pulse signal itself. The probability of preventing a shift control error, especially a shift control error due to an abnormality in the vehicle speed information processing system, is higher than that in the case where the vehicle speed information processing system is not operated, and the safety is correspondingly higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図は本発明の他の1つの実施例を示すブロツク
図、第3図は第2図に示すマイクロコンピユータ
46の制御動作を示すフローチヤートである。 SW1,SW2:スイツチング回路、ASW,
VSW:スロツトル開度検出スイツチ、IC1:コ
ンパレータ、31:車速センサー(車速検出手
段)、32,32a〜32c:(車速処理手段)、
C9:コンデンサ(微分手段)、IC2:コンパレ
ータ(比較手段)、(Tr8,D18,R40:保持手
段)、40:異常検出回路(異常検出手段)、4
2:変速制御装置(変速制御手段)、41:リセ
ツト回路(リセツト手段)、46:マイクロコン
ピユータ(異常検出手段、リセツト手段)。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a block diagram showing another embodiment of the present invention, and FIG. 3 is a flowchart showing the control operation of the microcomputer 46 shown in FIG. SW1, SW2: Switching circuit, ASW,
VSW: Throttle opening detection switch, IC1: Comparator, 31: Vehicle speed sensor (vehicle speed detection means), 32, 32a to 32c: (vehicle speed processing means),
C9: Capacitor (differentiation means), IC2: Comparator (comparison means), (Tr 8 , D 18 , R40: holding means), 40: Abnormality detection circuit (abnormality detection means), 4
2: Speed change control device (speed change control means), 41: Reset circuit (reset means), 46: Microcomputer (abnormality detection means, reset means).

Claims (1)

【特許請求の範囲】 1 車速に対応したパルス信号を発生する車速検
出手段; 該パルス信号に基づいて車速情報を生成する車
速処理手段; 前記車速情報の微分値を得る微分手段、該微分
値を設定値と比較して車速情報の設定速度以上の
低下を検出する比較手段および該比較手段が設定
速度以上の低下を検出すると異常検出情報を発生
しこれを保持する保持手段でなる異常検出手段; エンジン出力トルク対応信号、スロツトル開度
信号等のエンジンパワー指標信号と、前記車速情
報ならびに前記異常検出情報に対応して自動変速
機の速度段を定める変速制御手段;および、 前記パルス信号に応答して前記保持手段の保持
を解除するリセツト手段; を備える自動変速制御装置。
[Scope of Claims] 1. Vehicle speed detection means that generates a pulse signal corresponding to the vehicle speed; Vehicle speed processing means that generates vehicle speed information based on the pulse signal; Differentiation means that obtains a differential value of the vehicle speed information; Abnormality detection means comprising a comparison means for detecting a decrease in vehicle speed information of more than a set speed by comparing it with a set value, and a holding means for generating and holding abnormality detection information when the comparison means detects a decrease of more than the set speed; A shift control means that determines the speed stage of the automatic transmission in response to an engine power index signal such as an engine output torque corresponding signal and a throttle opening signal, the vehicle speed information, and the abnormality detection information; and a shift control means that responds to the pulse signal. an automatic transmission control device, comprising: a reset means for releasing the holding of the holding means;
JP6033981A 1981-04-21 1981-04-21 Automatic speed-change control device Granted JPS57177449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6033981A JPS57177449A (en) 1981-04-21 1981-04-21 Automatic speed-change control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6033981A JPS57177449A (en) 1981-04-21 1981-04-21 Automatic speed-change control device

Publications (2)

Publication Number Publication Date
JPS57177449A JPS57177449A (en) 1982-11-01
JPS6331025B2 true JPS6331025B2 (en) 1988-06-22

Family

ID=13139300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6033981A Granted JPS57177449A (en) 1981-04-21 1981-04-21 Automatic speed-change control device

Country Status (1)

Country Link
JP (1) JPS57177449A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137454A (en) * 1985-12-11 1987-06-20 Toyota Motor Corp Abnormality judgement device for vehicle speed sensor
JPS62137453A (en) * 1985-12-11 1987-06-20 Toyota Motor Corp Abnormality judgement device for revolution speed sensor
JP2595248B2 (en) * 1987-06-20 1997-04-02 富士通株式会社 Electronic control unit for automobile transmission

Also Published As

Publication number Publication date
JPS57177449A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
US4499542A (en) Automatic transmission control system with reset
US5844411A (en) Diagnostic detection for hall effect digital gear tooth sensors and related method
US5170769A (en) System for controlling an internal combustion engine in a motor vehicle
US5312169A (en) Circuit configuration for an automotive vehicle with anti-lock control and/or traction slip control
US4363973A (en) Safety circuit of automatic transmission control system
US5329238A (en) Arrangement for fault monitoring an electric consumer in a motor vehicle to detect short circuits and interruptions in the region of the consumer
US5896083A (en) System and method for detecting vehicle speed sensor tampering
JPS63312259A (en) Circuit constitution used for brake system for car
US4860210A (en) Method of determining and using a filtered speed error in an integrated acceleration based electronic speed control system for vehicles
US4890231A (en) Method of disabling a resume switch in an electronic speed control system for vehicles
US4849892A (en) Method of determining and using an acceleration correction in an integrated acceleration based electronic speed control system for vehicles
JPH0694902B2 (en) Automatic transmission control device
JPH04506785A (en) Anti-skid control device or drive slip control device
JPS6331025B2 (en)
US4896267A (en) Electronic speed control system for vehicles, a method of determining the condition of a manual transmission clutch and of a park/neutral gear in an automatic transmission
US4947325A (en) Diagnostic system for rotational speed sensors in drive train of four wheels drive vehicle having central differential device
US4747056A (en) Automatic transmission control apparatus
JPS6331024B2 (en)
US4793308A (en) Emergency control device for a diesel internal combustion engine with electronically controlled fuel proportioning
US4972095A (en) Binary digitizer circuit for voltages developed across induction coil
JPH06191389A (en) Driving slip controller
JPH04504833A (en) How to control wheel slippage in a vehicle
JPH0475428B2 (en)
JPS6346301B2 (en)
JPH055499Y2 (en)