JPS6330927B2 - - Google Patents

Info

Publication number
JPS6330927B2
JPS6330927B2 JP56189166A JP18916681A JPS6330927B2 JP S6330927 B2 JPS6330927 B2 JP S6330927B2 JP 56189166 A JP56189166 A JP 56189166A JP 18916681 A JP18916681 A JP 18916681A JP S6330927 B2 JPS6330927 B2 JP S6330927B2
Authority
JP
Japan
Prior art keywords
acid
ester
polyether
block copolymer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56189166A
Other languages
Japanese (ja)
Other versions
JPS5891758A (en
Inventor
Yoko Furuta
Nagayoshi Naito
Chiaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18916681A priority Critical patent/JPS5891758A/en
Publication of JPS5891758A publication Critical patent/JPS5891758A/en
Publication of JPS6330927B2 publication Critical patent/JPS6330927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は耐熱劣化性および耐加氎分解性に優れ
た性胜を有するポリ゚ヌテル゚ステルブロツク共
重合䜓組成物に関する。 分子鎖䞭に亀互にポリ゚ヌテル郚分ずポリ゚ス
テル郚分を有するポリ゚ヌテル゚ステルブロツク
共重合䜓はゎム状匟性を有するポリマヌずしお知
られ、繊維、フむルム、成圢品ずしお有甚なもの
である。しかしポリ゚ヌテル゚ステルブロツク共
重合䜓は䞻鎖䞭に䞍安定なポリ゚ヌテルブロツク
を含有するため酞化劣化を受けやすく、重合床の
䜎䞋に䌎぀お機械的性質の䜎䞋、衚面の亀裂発
生、着色や甚しい時にはポリ゚ヌテルの分解揮散
ずいうような奜たしくない珟象を起こす。特にこ
の酞化劣化は熱によ぀お促進され、高枩雰囲気䞋
ではその䜿甚は制限を受けおいる。 このような性質を改良するために、熱劣化に察
しおは、それを防止する目的でヒンダヌドプノ
ヌル類、芳銙族アミン類、むオり化合物、リン化
合物などの酞化防止剀を添加するこずが怜蚎され
おいるが、酞化防止剀によるポリマヌの着色に問
題があるうえ、耐熱性向䞊効果も䞍十分である。 たた、ポリ゚ヌテル゚ステルブロツク共重合䜓
は、分子鎖䞭に゚ステル基を有するため、加氎分
解も受けやすく、氎、アルコヌル、酞性あるいは
アルカリ性溶液䞭などにおいおは重合床の䜎䞋に
ずもなう物性の䜎䞋をきたすため、この面におい
おも䜿甚に制限を生じおいる。 このような性質を改善するために反応性倚官胜
基を有する化合物をポリ゚ヌテル゚ステルブロツ
ク共重合䜓に加え共重合䜓の末端基を封鎖する方
法も提案されおいる。たずえば、特開昭49−
13298号公報にはポリ゚ヌテル゚ステルブロツク
共重合䜓に官胜性以䞊のポリ゚ポキシドず硬化
剀を加えるこずにより、耐摩耗性、加氎分解安定
性および高枩特性を改良する方法が蚘茉され、ポ
リ゚ポキシドの䟋ずしお゚ピクロロヒドリンずフ
゚ノヌル類あるいぱピクロロヒドリンずアルコ
ヌル類から誘導されるポリグリシゞル゚ヌテル化
合物が実斜䟋に蚘茉されおいる。ポリグリシゞル
゚ヌテル化合物でポリ゚ヌテル゚ステルブロツク
共重合䜓の末端を封鎖するこずにより確かに耐摩
耗性等は改善されるが、ポリグリシゞル゚ヌテル
化合物はそれ自䜓反応性に乏しく、そのためポリ
アミン等の硬化剀を必芁ずする。そしお硬化剀を
䜿甚せず、単にポリ゚ヌテル゚ステルブロツク共
重合䜓に配合するだけでは十分な改善効果は埗ら
れないこずがわか぀た。 そこで、本発明者らはポリ゚ヌテル゚ステルブ
ロツク共重合䜓に察しお反応性が高く、単に配合
するだけでポリ゚ヌテル゚ステルブロツク共重合
䜓の耐熱劣化性あるいは耐加氎分解性を確実に向
䞊させる化合物に぀いお鋭意怜蚎した結果、次の
ような本発明に至぀たのである。 すなわち、本発明はポリ゚ヌテル゚ステルブロ
ツク共重合䜓に察し、䞋蚘䞀般匏で瀺されるグリ
シゞル゚ステル化合物を0.01〜20重量配合せし
めたこずを特城ずするポリ゚ヌテル゚ステルブロ
ツク共重合䜓組成物を提䟛するものである。 匏䞭、は炭玠数〜30の䟡の有機カルボン
酞残基であり、は〜の敎数である。 本発明におけるポリ゚ヌテル゚ステルブロツク
共重合䜓ずは、ポリ゚ステルハヌドセグメントず
数平均分子量玄200〜6000のポリ゚ヌテル゜フト
セグメントからなる共重合䜓であり、ハヌドセグ
メントず゜フトセグメントの比率は15〜90重量
察85〜10重量のものである。ポリ゚ステルハヌ
ドセグメントを圢成するゞカルボン酞成分ずしお
は、テレフタル酞、む゜フタル酞、フタル酞、
―および―ナフタレンゞカルボン
酞、ビス―カルボキシプニルメタン、ア
ントラセンゞカルボン酞、4′―ゞプニル゚
ヌテルゞカルボン酞などの芳銙族ゞカルボン酞、
―シクロヘキサンゞカルボン酞、シクロペ
ンタンゞカルボン酞、4′―ゞシクロヘキシル
ゞカルボン酞などの脂環族ゞカルボン酞およびア
ゞピン酞、セバシン酞、アれラむン酞、ダむマ酞
などの脂肪族ゞカルボン酞などが挙げられるが、
機械的性質や耐熱性の点で少なくずも50モル以
䞊が芳銙族ゞカルボン酞の䜿甚が奜たしく、特に
テレフタル酞の䜿甚が掚奚される。 たたハヌドセグメントを構成するゞオヌル成分
ずしおは炭玠数〜12の脂肪族もしくは脂環族ゞ
オヌルすなわち゚チレングリコヌル、プロピレン
グリコヌル、―ブタンゞオヌル、ネオペン
チルグリコヌル、―ペンタンゞオヌル、
―ヘキサンゞオヌル、デカメチレングリコ
ヌル、シクロヘキサンゞメタノヌルや、ビス
―ヒドロキシゞプニル、ビス―ヒドロキ
シプニルメタン、ビス―ヒドロキシプ
ニルプロパンなどのビスプノヌルおよびそれ
らの混合物を甚いうるが、特に炭玠数〜の脂
肪族もしくは脂環族ゞオヌルが奜たしく甚いられ
る。 たたポリ゚ヌテル゜フトセグメントを構成する
ポリアルキレンオキシドグリコヌルずはポリ
゚チレングリコヌル、ポリ―および
―プロピレングリコヌル、ポリテトラメチレ
ンオキシドグリコヌル、ポリ゚チレングリコヌ
ルポリプロピレングリコヌルブロツク共重合䜓、
ポリ゚チレングリコヌル―ポリテトラメチレン
オキシドグリコヌルブロツク共重合䜓などであ
り、特にポリテトラメチレンオキシドグリコ
ヌルが奜たしく、もちろんこれらの䜵甚も可胜で
ある。これらのポリ゚ヌテルグリコヌルの平均分
子量は玄200〜6000の範囲である。 これらの成分からなるポリ゚ヌテル゚ステルブ
ロツク共重合䜓の補法は任意であるが、奜適な重
合方法の䞀䟋を瀺すずゞカルボン酞のゞメチル゚
ステルを過剰モル数すなわち酞に察し玄1.2〜2.0
倍モルの䜎分子量グリコヌル、およびポリアル
キレンオキシドグリコヌルずずもに通垞の゚ス
テル化觊媒の存圚䞋においお玄150〜260℃の枩床
で垞圧䞋加熱反応しお、゚ステル亀換を行ないメ
タノヌルを留出させ、぀いでmmHg以䞋の枛圧
䞋に200〜270℃で加熱重瞮合させるこずによ぀お
補造するこずができる。必芁に応じポリ゚ヌテル
゚ステルブロツク共重合䜓に䞀郚化孊架橋可胜な
倚官胜性の共重合成分、たずえばポリカルボン
酞、ポリオヌル、ポリオキシカルボン酞などが甚
いられおいおもよい。 本発明の組成物においおポリ゚ヌテル゚ステル
ブロツク共重合䜓に配合されるグリシゞル゚ヌテ
ル化合物は、䞋蚘䞀般匏で瀺されるものである。 匏䞭、は炭玠数〜30の䟡の有機カルボン
酞残基であり、は〜の敎数である。 ここでは炭玠数〜30の䟡の有機カルボン
酞残基であり、炭玠数30以䞋の脂肪族基、シクロ
ヘキシレンなどの脂環族基、プニレン、ナフチ
レン、
The present invention relates to a polyetherester block copolymer composition having excellent heat deterioration resistance and hydrolysis resistance. Polyether ester block copolymers having alternating polyether and polyester parts in their molecular chains are known as polymers with rubber-like elasticity and are useful as fibers, films, and molded products. However, since polyether ester block copolymers contain unstable polyether blocks in their main chains, they are susceptible to oxidative deterioration, and as the degree of polymerization decreases, mechanical properties decrease, surface cracks occur, coloring and severe When this happens, undesirable phenomena such as decomposition and volatilization of polyether occur. In particular, this oxidative deterioration is accelerated by heat, and its use is restricted in high-temperature atmospheres. In order to improve these properties, the addition of antioxidants such as hindered phenols, aromatic amines, sulfur compounds, and phosphorus compounds has been considered to prevent thermal deterioration. However, there is a problem with coloring of the polymer due to antioxidants, and the effect of improving heat resistance is insufficient. In addition, since polyether ester block copolymers have ester groups in their molecular chains, they are susceptible to hydrolysis, and when placed in water, alcohol, acidic or alkaline solutions, their physical properties decrease as the degree of polymerization decreases. Therefore, there are restrictions on its use in this respect as well. In order to improve these properties, a method has also been proposed in which a compound having a reactive polyfunctional group is added to the polyether ester block copolymer to block the terminal groups of the copolymer. For example, JP-A-49-
Publication No. 13298 describes a method for improving abrasion resistance, hydrolytic stability, and high-temperature properties by adding a difunctional or higher-functionality polyepoxide and a curing agent to a polyether ester block copolymer. Polyglycidyl ether compounds derived from epichlorohydrin and phenols or epichlorohydrin and alcohols are described in the Examples. It is true that abrasion resistance etc. can be improved by blocking the terminals of a polyether ester block copolymer with a polyglycidyl ether compound, but the polyglycidyl ether compound itself has poor reactivity, so it is difficult to use curing agents such as polyamines. I need. It was also found that sufficient improvement effects could not be obtained simply by blending the curing agent into the polyether ester block copolymer without using a curing agent. Therefore, the present inventors have developed a compound that is highly reactive to polyether ester block copolymers and that can reliably improve the heat deterioration resistance or hydrolysis resistance of polyether ester block copolymers simply by blending them. As a result of intensive studies, we have arrived at the following invention. That is, the present invention provides a polyether ester block copolymer composition characterized in that 0.01 to 20% by weight of a glycidyl ester compound represented by the following general formula is blended with the polyether ester block copolymer. It is something. (In the formula, R is an n-valent organic carboxylic acid residue having 1 to 30 carbon atoms, and n is an integer of 1 to 4.) The polyether ester block copolymer in the present invention refers to a polyester hard segment. It is a copolymer consisting of polyether soft segments with a number average molecular weight of approximately 200 to 6000, and the ratio of hard segments to soft segments is 15 to 90% by weight.
85 to 10% by weight. Dicarboxylic acid components forming polyester hard segments include terephthalic acid, isophthalic acid, phthalic acid,
Aromatic dicarboxylic acids such as 2,6- and 1,5-naphthalene dicarboxylic acid, bis(p-carboxyphenyl)methane, anthracene dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid,
Examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and 4,4'-dicyclohexyldicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, and dimic acid. but,
From the viewpoint of mechanical properties and heat resistance, it is preferable to use aromatic dicarboxylic acid in an amount of at least 50 mol %, and use of terephthalic acid is particularly recommended. In addition, the diol components constituting the hard segment include aliphatic or alicyclic diols having 2 to 12 carbon atoms, such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol,
1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, bis(p
Bisphenols such as -hydroxy)diphenyl, bis(p-hydroxyphenyl)methane, bis(p-hydroxyphenyl)propane and mixtures thereof may be used, but especially aliphatic or alicyclic groups having 2 to 8 carbon atoms. Diols are preferably used. In addition, the poly(alkylene oxide) glycols constituting the polyether soft segment are polyethylene glycol, poly(1,3- and 1,
2-propylene glycol, poly(tetramethylene oxide) glycol, polyethylene glycol polypropylene glycol block copolymer,
These include polyethylene glycol-poly(tetramethylene oxide) glycol block copolymers, and poly(tetramethylene oxide) glycol is particularly preferred, although it is of course possible to use these in combination. The average molecular weight of these polyether glycols ranges from about 200 to 6000. The polyether ester block copolymer made of these components can be produced by any method, but one example of a suitable polymerization method is to add dimethyl ester of dicarboxylic acid to an excess of about 1.2 to 2.0 moles relative to the acid.
A heating reaction is carried out with twice the molar amount of low molecular weight glycol and poly(alkylene oxide) glycol at a temperature of about 150 to 260°C under normal pressure in the presence of a normal esterification catalyst to perform transesterification and distill off methanol. It can be produced by heating polycondensation at 200 to 270°C under reduced pressure of 5 mmHg or less. If necessary, a polyfunctional copolymer component that can be partially chemically crosslinked, such as polycarboxylic acid, polyol, polyoxycarboxylic acid, etc., may be used in the polyether ester block copolymer. The glycidyl ether compound blended into the polyether ester block copolymer in the composition of the present invention is represented by the following general formula. (In the formula, R is an n-valent organic carboxylic acid residue having 1 to 30 carbon atoms, and n is an integer of 1 to 4.) Here, R is an n-valent organic carboxylic acid residue having 1 to 30 carbon atoms. It is a residue, and includes aliphatic groups with 30 or less carbon atoms, alicyclic groups such as cyclohexylene, phenylene, naphthylene,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 などの芳銙族基を含有するものである。は〜
の敎数である。 ここで、グリシゞル゚ステル化合物の具䜓䟋ず
しおは、安息銙酞グリシゞル゚ステル、―トル
むル酞グリシゞル゚ステル、シクロヘキサンカル
ボン酞グリシゞル゚ステル、ペラルゎン酞グリシ
ゞル゚ステル、ステアリン酞グリシゞル゚ステ
ル、ラりリン酞グリシゞル゚ステル、パルミチン
酞グリシゞル゚ステル、ベヘン酞グリシゞル゚ス
テル、バヌサテむツク酞グリシゞル゚ステル、オ
レむン酞グリシゞル゚ステル、リノヌル酞グリシ
ゞル゚ステル、リノレン酞グリシゞル゚ステル、
ベヘノヌル酞グリシゞル゚ステル、ステアロヌル
酞グリシゞル゚ステル、テレフタレル酞ゞグリシ
ゞル゚ステル、む゜フタル酞ゞグリシゞル゚ステ
ル、フタル酞ゞグリシゞル゚ステル、ナフタレン
ゞカルボン酞ゞグリシゞル゚ステル、ビ安息銙酞
ゞグリシゞル゚ステル、メチルテレフタル酞ゞグ
リシゞル゚ステル、ヘキサヒドロフタル酞ゞグリ
シゞル゚ステル、テトラヒドロフタル酞ゞグリシ
ゞル゚ステル、シクロヘキサンゞカルボン酞ゞグ
リシゞル゚ステル、アゞピン酞ゞグリシゞル゚ス
テル、コハク酞ゞグリシゞル゚ステル、セバシン
酞ゞグリシゞル゚ステル、ドデカンゞオン酞ゞグ
リシゞル゚ステル、オクタデカンゞカルボン酞ゞ
グリシゞル゚ステル、トリメリツト酞トリグリシ
ゞル゚ステル、ピロメリツト酞テトラグリシゞル
゚ステルなどを挙げられ、これらは皮たたは
皮以䞊を甚いるこずができる。 グリシゞル゚ステル化合物の添加量は、ポリ゚
ヌテル゚ステルブロツク共重合䜓に察しお、0.01
〜20重量、奜たしくは0.05〜10重量の範囲が
適圓であり、0.01重量以䞋では十分な耐熱劣化
性および耐加氎分解性の改良効果が埗られなく、
たた、20重量を起えるず配合時や成圢時にポリ
マヌのゲル化が起こる傟向があり奜たしくない。 グリシゞル゚ステル化合物をポリ゚ヌテル゚ス
テルブロツク共重合䜓に添加する方法ずしおは、
重合終了盎埌に溶融混合する方法、あるいは重合
埌成圢前に溶融混合する方法が挙げられるが、
特に埌者が奜たしい態様である。 本発明組成物の耐熱劣化性は、耐熱安定性の添
加によ぀おさらに向䞊する。これらの安定剀ずし
おは、たずえば、4′―ビス―ゞ第
ブチルプノヌル、―トリメチル―
―トリス―ゞ第ブチル―
―ヒドロキシベンゞルベンれン、テトラキス
〔メチレン――ゞ第ブチル――ヒド
ロキシプニルプロピオネヌト〕メタン、ヘキ
サメチレングリコヌルビス〔β――ゞ第
ブチル――ヒドロキシプニルプロピオネ
ヌト〕、――ヒドロキシ――ゞ第
ブチルアニリノ――ビスオクチルチオ―
―トリアゞン、2′―チオゞ゚チル
―ビス〔―ゞ第ブチル――ヒドロ
キシプニルプロピオネヌト〕、オクタデシル
――ゞ第ブチル――ヒドロキシフ
゚ニルプロピオネヌト、N′―ヘキサメチ
レン―ビス―ゞ第ブチル――ヒドロ
キシヒドロ桂皮酞アミド、トリス―ゞ第
ブチル――ヒドロキシプニルむ゜シアヌ
レヌト、トリス〔β――ゞ第ブチル―
―ヒドロキシプニルプロピオニル―オキシ
゚チレン〕む゜シアヌレヌトなど各皮ヒンダヌド
プノヌル類、N′―ビスβ―ナフチル
――プニレンゞアミンや4′―ビス―
αα―ゞメチルベンゞルゞプニルアミンの
ごずき芳銙族アミン類、ゞラりリルチオゞプロピ
オネヌト、ゞステアリルチオゞプロピオネヌトの
ごずきチオ゚ヌテル化合物、トリプニルホスフ
アむト、トリノニルホスフアむト、トリクレゞル
ホスフアむトのごずきホスフアむト化合物、トリ
ノニルトリチオホスフアむト、トリラりリルトリ
チオホスフアむト、トリプニルトリチオホスフ
アむトのごずきチオホスフアむト化合物などを挙
げるこずができる。特にヒンダヌドプノヌル類
に、チオ゚ヌテル化合物あるいはチオホスフアむ
ト化合物の䞀方あるいは䞡者を䜵甚しお添加した
堎合に着色のない優れた耐熱劣化性が埗られる。 たた、本発明のポリ゚ヌテル゚ステルブロツク
共重合䜓組成物には眮換ベンゟプノン、ベンゟ
トリアゟヌル類やピペリゞン化合物などの耐光安
定剀や、着色剀願料、染料、垯電防止剀、導
電剀、結晶栞剀、滑剀、充填剀、補匷剀、接着助
剀、可塑剀、離型剀、難燃剀などの添加剀を任意
に配合しうる。 以䞋、実斜䟋によ぀お本発明を説明する。 なお、実斜䟋䞭「郚」たたは「」で衚瀺した
ものはすべお重量比率で衚わしたものである。た
た、本文䞭および䟋䞭に瀺す察数粘床はオルトク
ロロプノヌル䞭、30℃、0.5濃床の条件で枬
定した倀である。 実斜䟋 ポリマヌ ゞメチルテレフタレヌト90.8郚、ゞメチルむ゜
フタレヌト30.3郚、数平均分子量1000のポリテ
トラメチレンオキシドグリコヌル69.0郚および
―ブタンゞオヌル84.2郚をチタンテトラブ
トキシド觊媒0.10郚ずずもにヘリカルリボン型撹
拌翌を備えた反応容噚に仕蟌み、210℃で時間
加熱しお理論メタノヌル量の95のメタノヌルを
系倖に留去した。次いで、245℃に昇枩し、50分
をかけお系内の圧力を0.2mmHgの枛圧ずし、その
条件䞋で時間重合を行なわせた。埗られたポリ
゚ヌテル゚ステル(A)の融点は162℃、察数粘床
0.98であ぀た。 ポリマヌ ゞメチルテレフタレヌト194郚、数平均成子量
2000のポリテトラメチレンオキシドグリコヌ
ル300郚、―ブタンゞオヌル135郚およびチ
タンテトラブトキシ0.12郚からポリマヌず同様
の条件で重合し、融点208℃、察数粘床1.2のポリ
゚ヌテル゚ステル(B)を埗た。 ポリマヌ ゞメチルテレフタレヌト48.4郚、数平均分子量
2000のポリテトラメチレンオキシドグリコヌ
ル110郚、゚チレングリコヌル44.0郚、酢酞亜鉛
0.080郚および二酞化ゲルマニりム0.048郚から、
ポリマヌず同様の条件で重合し、融点210℃、
察数粘床1.3のポリ゚ヌテル゚ステル(C)を埗た。 実斜䟋〜および比范䟋〜 ポリ゚ヌテル゚ステル(A)に察し、衚に掲げた
グリシゞル゚ヌテル化合物あるいは比范ずしおグ
リシゞル゚ヌテル化合物たたはポリカルボゞむミ
ド化合物を1.0もしくは2.0配合し、240℃に
加熱された30mmφの抌出機で溶融混緎したのちペ
レツト化した。このペレツトを真空也燥したのち
240℃で加圧しお厚さ0.9〜1.1mmのプレスシヌト
ずしJIS ―6301の号ダンベル圢詊隓片に打抜
いた。詊隓片を140℃の熱颚オヌブン䞭で゚ヌゞ
ングし、耐熱寿呜を求めた。耐熱寿呜は砎断䌞床
の保持率が50になる時間ずした。たた詊隓片を
氎ずずもにステンレス補耐圧ボンベに入れ100℃
に加熱しお、耐加氎分解寿呜を求めた。耐加氎分
解寿呜も耐熱寿呜ず同様に、砎断䌞床保持率が50
になる時間ずした。
It contains an aromatic group such as [Formula]. n is 1~
It is an integer of 4. Here, specific examples of the glycidyl ester compounds include glycidyl benzoate, p-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester, palmitic acid glycidyl ester, Behenic acid glycidyl ester, versatile acid glycidyl ester, oleic acid glycidyl ester, linoleic acid glycidyl ester, linolenic acid glycidyl ester,
Behenolic acid glycidyl ester, stearic acid glycidyl ester, terephthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, phthalic acid diglycidyl ester, naphthalene dicarboxylic acid diglycidyl ester, bibenzoic acid diglycidyl ester, methyl terephthalic acid diglycidyl ester, Hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecanedioic acid diglycidyl ester, octadecanedicarboxylic acid Examples include diglycidyl ester, trimellitic acid triglycidyl ester, pyromellitic acid tetraglycidyl ester, etc., and these may be used singly or in combination.
More than one species can be used. The amount of glycidyl ester compound added is 0.01 to the polyether ester block copolymer.
A range of ~20% by weight, preferably 0.05 to 10% by weight is appropriate, and if it is less than 0.01% by weight, a sufficient effect of improving heat deterioration resistance and hydrolysis resistance cannot be obtained.
Moreover, if the content is 20% by weight, gelation of the polymer tends to occur during compounding or molding, which is not preferable. The method for adding a glycidyl ester compound to a polyether ester block copolymer is as follows:
Examples include a method of melt-mixing immediately after polymerization, or a method of melt-mixing after polymerization (before molding).
The latter is particularly preferred. The heat deterioration resistance of the composition of the present invention is further improved by adding heat-resistant stability. Examples of these stabilizers include 4,4'-bis(2,6-di-tertiary
butylphenol), 1,3,5-trimethyl-
2,4,6-tris(3,5-di-tert-butyl-4
-hydroxybenzyl)benzene, tetrakis[methylene-3(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]methane, hexamethylene glycol bis[β-(3,5-di-tert-butyl-4-) hydroxyphenyl)propionate], 6-(4-hydroxy-3,5-di-tertiary)
butylanilino)-2,4-bisoctylthio-
1,3,5-triazine, 2,2'-thiodiethyl-bis[3(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3(3,5-di-tert-butyl- 4-hydroxyphenyl) propionate, N,N'-hexamethylene-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamide, tris(3,5-di-tert-butyl-4-hydroxyphenyl) enyl) isocyanurate, tris[β-(3,5-di-tert-butyl-
Various hindered phenols such as 4-hydroxyphenyl) propionyl-oxyethylene] isocyanurate, N,N'-bis(β-naphthyl)
-p-phenylenediamine and 4,4'-bis(4-
Aromatic amines such as α,α-dimethylbenzyl)diphenylamine, thioether compounds such as dilaurylthiodipropionate and distearylthiodipropionate, triphenylphosphite, trinonylphosphite, and tricresylphosphite. Examples include phosphite compounds, thiophosphite compounds such as trinonyltrithiophosphite, trilauryltrithiophosphite, and triphenyltrithiophosphite. In particular, when one or both of a thioether compound or a thiophosphite compound is added to hindered phenols, excellent heat deterioration resistance without coloring can be obtained. In addition, the polyether ester block copolymer composition of the present invention may contain light stabilizers such as substituted benzophenones, benzotriazoles, and piperidine compounds, colorants (application materials, dyes), antistatic agents, conductive agents, crystal nuclei, etc. Additives such as agents, lubricants, fillers, reinforcing agents, adhesion aids, plasticizers, mold release agents, and flame retardants may be optionally blended. The present invention will be explained below with reference to Examples. In the examples, all "parts" or "%" are expressed as weight ratios. Further, the logarithmic viscosity shown in the text and examples is a value measured in orthochlorophenol at 30°C and at a concentration of 0.5%. Example Polymer A 90.8 parts of dimethyl terephthalate, 30.3 parts of dimethyl isophthalate, 69.0 parts of poly(tetramethylene oxide) glycol having a number average molecular weight of 1000, and 84.2 parts of 1,4-butanediol were stirred in a helical ribbon type with 0.10 part of titanium tetrabutoxide catalyst. The mixture was charged into a reaction vessel equipped with blades and heated at 210°C for 2 hours to distill off 95% of the theoretical amount of methanol from the system. Next, the temperature was raised to 245°C, and the pressure inside the system was reduced to 0.2 mmHg over 50 minutes, and polymerization was carried out under these conditions for 2 hours. The resulting polyether ester (A) has a melting point of 162℃ and a logarithmic viscosity.
It was 0.98. Polymer B: 194 parts of dimethyl terephthalate, number average molecular weight
Polyether ester (B ) was obtained. Polymer C: 48.4 parts of dimethyl terephthalate, number average molecular weight
2000 poly(tetramethylene oxide) glycol 110 parts, ethylene glycol 44.0 parts, zinc acetate
From 0.080 parts and germanium dioxide 0.048 parts,
Polymerized under the same conditions as Polymer A, melting point 210℃,
A polyether ester (C) with a logarithmic viscosity of 1.3 was obtained. Examples 1 to 5 and Comparative Examples 1 to 5 1.0% or 2.0% of the glycidyl ether compounds listed in Table 1 or a comparative glycidyl ether compound or polycarbodiimide compound was blended with polyether ester (A), and the mixture was heated to 240°C. The mixture was melt-kneaded in a heated 30 mmφ extruder and then pelletized. After vacuum drying the pellets,
It was pressurized at 240°C to form a press sheet with a thickness of 0.9 to 1.1 mm and punched into JIS K-6301 No. 3 dumbbell-shaped test pieces. The test piece was aged in a hot air oven at 140°C to determine its heat resistance life. The heat-resistant life was defined as the time when the retention rate of elongation at break reached 50%. In addition, the test piece was placed in a stainless steel pressure cylinder with water at 100°C.
The hydrolysis life was determined by heating. The hydrolysis life is similar to the heat life, and the elongation retention rate at break is 50.
%.

【衚】 実斜䟋および比范䟋から明らかなように、グリ
シゞル゚ステル化合物を添加した堎合にのみ優れ
た耐熱劣化性ず耐加氎分解性が埗られ、グリシゞ
ル゚ヌテル化合物やポリカルボゞむミド化合物の
添加によ぀おは、わずかな改善効果しかみられな
い。 実斜䟋〜、比范䟋〜 ポリ゚ヌテル゚ステル(B)あるいはポリ゚ヌテル
゚ステル(C)に察し衚に掲げるグリシゞル゚ステ
ル化合物ず耐熱安定剀を配合し、240℃に加熱さ
れた射出成圢機からJIS K7113の号ダンベル圢
詊隓片を成圢した。この詊隓片を140℃の熱颚オ
ヌブン䞭で゚ヌゞングし、耐熱寿呜ず黄倉の有無
を調べた。たた、比范ずしおグリシゞル゚ステル
化合物以倖の化合物ず耐熱安定剀を配合し、実斜
䟋ず同様にしお詊隓片に成圢した埌、耐熱劣化性
を調べた。
[Table] As is clear from the examples and comparative examples, excellent heat deterioration resistance and hydrolysis resistance can be obtained only when a glycidyl ester compound is added, and excellent resistance to heat deterioration and hydrolysis can be obtained by adding a glycidyl ether compound or a polycarbodiimide compound. , only a slight improvement effect was observed. Examples 6 to 7, Comparative Examples 6 to 9 An injection molding machine in which the glycidyl ester compound and heat stabilizer listed in Table 2 were blended with polyether ester (B) or polyether ester (C) and heated to 240°C. A JIS K7113 No. 2 dumbbell-shaped test piece was molded from the sample. This test piece was aged in a hot air oven at 140°C, and the heat resistance life and presence or absence of yellowing were examined. In addition, as a comparison, a compound other than the glycidyl ester compound and a heat-resistant stabilizer were blended, and after molding into a test piece in the same manner as in the example, the heat deterioration resistance was examined.

【衚】【table】

【衚】 実斜䟋および比范䟋から明らかなように、本発
明におけるグリシゞル゚ステル化合物ず耐熱安定
剀ずを添加した堎合は黄倉のない耐熱劣化性が良
奜な組成物が埗られるのに察し、グリシゞル゚ス
テル化合物を添加しないで耐熱安定剀のみを添加
した堎合、あるいはグリシゞル゚ヌテル化合物や
ポリカルボゞむミド化合物ず耐熱安定剀ずを添加
した堎合は黄倉し、耐熱劣化性も本発明組成物よ
りかなり劣぀たものしか埗られない。
[Table] As is clear from the Examples and Comparative Examples, when the glycidyl ester compound of the present invention and a heat-resistant stabilizer are added, a composition with good heat deterioration resistance without yellowing can be obtained. When only a heat stabilizer was added without adding an ester compound, or when a glycidyl ether compound or a polycarbodiimide compound and a heat stabilizer were added, yellowing occurred and the heat deterioration resistance was considerably inferior to that of the composition of the present invention. I can only get it.

Claims (1)

【特蚱請求の範囲】  ポリ゚ヌテル゚ステルブロツク共重合䜓に察
し、䞋蚘䞀般匏で瀺されるグリシゞル゚ステル化
合物を0.01〜20重量配合せしめたこずを特城ず
するポリ゚ヌテル゚ステルブロツク共重合䜓組成
物。 匏䞭は炭玠数〜30の䟡の有機カルボン酞
残基であり、は〜の敎数である。
[Scope of Claims] 1. A polyether ester block copolymer composition comprising 0.01 to 20% by weight of a glycidyl ester compound represented by the following general formula based on the polyether ester block copolymer. (In the formula, R is an n-valent organic carboxylic acid residue having 1 to 30 carbon atoms, and n is an integer of 1 to 4.)
JP18916681A 1981-11-27 1981-11-27 Polyether-ester block copolymer composition Granted JPS5891758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18916681A JPS5891758A (en) 1981-11-27 1981-11-27 Polyether-ester block copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18916681A JPS5891758A (en) 1981-11-27 1981-11-27 Polyether-ester block copolymer composition

Publications (2)

Publication Number Publication Date
JPS5891758A JPS5891758A (en) 1983-05-31
JPS6330927B2 true JPS6330927B2 (en) 1988-06-21

Family

ID=16236565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18916681A Granted JPS5891758A (en) 1981-11-27 1981-11-27 Polyether-ester block copolymer composition

Country Status (1)

Country Link
JP (1) JPS5891758A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218437A (en) * 1986-03-19 1987-09-25 Mitsubishi Rayon Co Ltd Polyester resin composition
KR950008565A (en) * 1993-09-10 1995-04-19 박홍Ʞ Method for producing polyether ester elastomer
TW585880B (en) * 1999-08-05 2004-05-01 Daicel Chem Process for producing polyester block copolymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100495A (en) * 1972-02-28 1973-12-18
JPS5384046A (en) * 1976-12-30 1978-07-25 Sumitomo Chem Co Ltd Polyarylate composition
JPS53104654A (en) * 1977-02-23 1978-09-12 Unitika Ltd Aromatic polyester copolymer composition
JPS5460350A (en) * 1977-10-20 1979-05-15 Toray Ind Inc Thermopastic resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100495A (en) * 1972-02-28 1973-12-18
JPS5384046A (en) * 1976-12-30 1978-07-25 Sumitomo Chem Co Ltd Polyarylate composition
JPS53104654A (en) * 1977-02-23 1978-09-12 Unitika Ltd Aromatic polyester copolymer composition
JPS5460350A (en) * 1977-10-20 1979-05-15 Toray Ind Inc Thermopastic resin composition

Also Published As

Publication number Publication date
JPS5891758A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
US4355155A (en) Thermoplastic copolyester elastomer
JP4678898B2 (en) Copolyester elastomer
US6974846B2 (en) Hydrolysis resistant polyester compositions and related articles and methods
US4562232A (en) Copolyetherester-dimer ester-block copolymers
JP3939255B2 (en) Polyester thermoplastic resin composition and molded article
US4250280A (en) Thermoplastic blockcopolyetherester composition having improved thermal stability
JPS6330926B2 (en)
JP3459711B2 (en) Thermoplastic resin composition
US4520149A (en) Elastomer compositions
US4520150A (en) Stabilized elastomer compositions
US4520148A (en) Thermoplastic elastomer compositions
JPS6330927B2 (en)
JP2003528158A (en) Thermoplastic copolyester compositions modified with epoxide compounds
JPS6154336B2 (en)
JPH05287067A (en) Production of modified polyester
JP2000072960A (en) Polyester copolymer composition for housing
JPS6214179B2 (en)
JP3382121B2 (en) Polyester resin and its molded product
JPH02173059A (en) Block polyetherester copolymer composition
JP3345493B2 (en) Method for producing polyester copolymer
JP3270185B2 (en) Soft polyester resin
US4797437A (en) Thermoplastic elastomer
US4766164A (en) Stabilized thermoplastic elastomer
JP2000072959A (en) Polyester resin composition for housing
JP2000159985A (en) Thermoplastic polyester elastomer composition