JPS63308732A - Method for erasing optical recording - Google Patents

Method for erasing optical recording

Info

Publication number
JPS63308732A
JPS63308732A JP14407887A JP14407887A JPS63308732A JP S63308732 A JPS63308732 A JP S63308732A JP 14407887 A JP14407887 A JP 14407887A JP 14407887 A JP14407887 A JP 14407887A JP S63308732 A JPS63308732 A JP S63308732A
Authority
JP
Japan
Prior art keywords
recording
wavelength
light
erasing
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14407887A
Other languages
Japanese (ja)
Inventor
Yasushi Tomioka
富岡 安
Shuji Imazeki
周治 今関
Masahiro Oshima
尾島 正啓
Motoyasu Terao
元康 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14407887A priority Critical patent/JPS63308732A/en
Priority to EP87309341A priority patent/EP0265260B1/en
Priority to DE87309341T priority patent/DE3787244T2/en
Priority to US07/111,611 priority patent/US4855951A/en
Publication of JPS63308732A publication Critical patent/JPS63308732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To enable local erasing with a photochemical hole burning PHB memory for which a hole burning phenomenon is used by projecting continuous light of a required wavelength on the memory, thereby erasing the recording. CONSTITUTION:Laser light of a narrow beam width is wavelength-swept stepwise at wavelength intervals of about 5 times the beam width in the nonuniform absorption spectra of a material which allows PHB recording, by which holes are formed and the recording is executed. The hole formation is then executed uniformly and continuously over the entire part of the corresponding molecules when the continuous laser light of the wavelength range used for the recording is projected. The nonuniform spectra similar to the nonuniform spectra in the unrecorded state are thereby applied and the local erasing is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録密度が高い波長多重光記録に係り、特に
ホールバーニング現象を用いた光記録の消去方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to wavelength multiplexed optical recording with high recording density, and particularly to a method for erasing optical recording using hole burning phenomenon.

〔従来の技術〕[Conventional technology]

光を用いた情報の記録、再生方法における課題は、記録
密度の向上と書き換えの可能性、および入出力速度の向
上にある。上記諸課題に対して、近年、新しい光記録媒
体の探索および多層構造を利用した波長多重化等の研究
が活発に行われている。なかでも、将来の情報記録手段
として注目されているものに、ホールバーニング現象を
利用したPHBメモリ(Photo chemical
 hole burningmemory)がある。上
記のホールバーニング現象は学問的にも興味深く、高分
解能分光法の一つとして知られている。上記記録方法は
1978年にIBMより提案され(特開昭53−997
35号公報)、従来型の1000倍程度0大幅な記録密
度の向上が期待される波長多重光メモリーである。その
原理についてつぎに記載する。
The challenges in information recording and reproducing methods using light are to improve recording density, rewritability, and input/output speed. In order to address the above-mentioned problems, in recent years, research has been actively conducted to search for new optical recording media and to wavelength multiplexing using multilayer structures. Among these, one that is attracting attention as a future information storage means is PHB memory (Photo chemical
hole burning memory). The hole burning phenomenon described above is academically interesting and is known as one of high-resolution spectroscopy methods. The above recording method was proposed by IBM in 1978 (Japanese Patent Application Laid-Open No. 53-997
35), is a wavelength multiplexing optical memory that is expected to significantly improve recording density by about 1000 times that of conventional types. The principle will be described below.

光化学的に活性な分子が低温の固体マトリックス中に置
かれたとき、その吸収スペクトルは分子が置かれている
環境の微妙な違いを反映し、第2図(a)に示すような
不均一なスペクトル幅を示す、上記スペクトル内の特定
の波長λ、において、線幅が狭い高強度のレーザ光を照
射することにより、上記波長λ、に共鳴する分子だけが
光を吸収し、励起状態を経由して初めの基底状態とは異
なる準安定状態へと移る。上記準安定状態としては、i
)光吸収による分子内のプロトン移動、 ii)光吸収
によるマトリックス中の分子の配向変化、■)光吸収に
よる分子の光解離、などが考えられている。上記準安定
状態を保持すると、第2図(b)に示すように光照射し
た波長λ1においてだけ吸収強度の減少が見られ、吸収
スペクトル上に鋭いスペクトル幅を示すホールとしてa
mできる。さらに、第2図(0)に示すように光照射す
る波長を順次λ3.λ、・・・・・・と変えてホールを
形成すれば、波長多重光メモリが形成できる。
When a photochemically active molecule is placed in a cold solid matrix, its absorption spectrum reflects subtle differences in the environment in which the molecule is placed, resulting in a non-uniform structure as shown in Figure 2(a). By irradiating a high-intensity laser beam with a narrow linewidth at a specific wavelength λ within the spectrum, which indicates the spectral width, only molecules that resonate with the wavelength λ absorb the light and pass through the excited state. Then, it moves to a metastable state different from the initial ground state. The above metastable state is i
) Proton movement within a molecule due to light absorption, ii) Change in the orientation of molecules in a matrix due to light absorption, and ■) Photodissociation of molecules due to light absorption. When the above metastable state is maintained, a decrease in the absorption intensity is observed only at the wavelength λ1 of light irradiation, as shown in Figure 2(b), and a hole with a sharp spectral width appears on the absorption spectrum.
I can m. Furthermore, as shown in FIG. 2(0), the wavelength of light irradiation is sequentially changed to λ3. By changing λ, . . . and forming holes, a wavelength multiplexed optical memory can be formed.

上記のようにPHBメモリは、光誘起による微妙な状態
の変化を基本原理にしているため、記録。
As mentioned above, PHB memory is based on the basic principle of subtle state changes induced by light, so it is difficult to record data.

すなわち吸収スペクトル上におけるホールの安定性に十
分注意を払う必要があり、実際に、記録媒質の温度が2
0〜30Kに上昇すると、光記録したホールを安定に保
持できず、上記ホールが消失してしまうことが知られて
いる。そのため、P HBメモリに用いる記録媒質全体
は、分子の熱的ゆらぎが少ない液体ヘリウム温度4.2
にの極低温状態に保存されているのが現状である。
In other words, it is necessary to pay sufficient attention to the stability of holes in the absorption spectrum, and in fact, when the temperature of the recording medium is 2.
It is known that when the temperature rises to 0 to 30K, optically recorded holes cannot be stably held and the holes disappear. Therefore, the entire recording medium used in PHB memory is liquid helium, which has a temperature of 4.2
Currently, it is stored at extremely low temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、PHBメモリの研究は厳しい条件の下で
、記録メカニズムや記録媒質探索の研究が行われている
。しかしながら、記録の消去方法に関しては、記録媒体
全体を高温状態にして一括消去してしまうことはできて
も、記録媒体の一部を局所的に消去することについては
、現在までほとんど解決されていない状況にある。
As mentioned above, research on PHB memory is being conducted under strict conditions to investigate recording mechanisms and recording media. However, as for methods of erasing records, although it is possible to erase the entire recording medium at a high temperature by heating it all at once, until now there has been almost no solution to locally erasing a part of the recording medium. situation.

本発明の目的は、極低温条件下でPHBメモリの記録消
去を、局所的に可能にする方法を得ることである。
The object of the present invention is to obtain a method that allows locally erasing records in a PHB memory under cryogenic conditions.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、PHBメモリの記録部分に、記録に用いた
波長範囲の白色光を照射するか、またはレーザ光で消去
したい波長範囲を波長掃引しながら連続的に照射するこ
とによって達成される。
The above object is achieved by irradiating the recorded portion of the PHB memory with white light in the wavelength range used for recording, or by continuously irradiating the wavelength range to be erased with laser light while sweeping the wavelength.

〔作用〕[Effect]

PHB記録可能な物質の不均一な吸収スペクトル中に、
線幅が狭いレーザ光を上記線幅の5倍程度の波長間隔で
段階的に波長掃引し、記@(ホール形成)を行う、つぎ
に、上記PHB記録された同じレーザスポットに対し、
記録に用いた波長範囲の白色光を照射する。または、レ
ーザ光で消去したい波長範囲を連続的に波長掃引しなが
ら照射する。上記操作により、消去のために光照射した
波長範囲に吸収が対応する分子(または記録媒質)全体
に、均一かつ連続的にホール形成が行われ、すなわち、
媒体中の分子の微妙な環境が再編成され、未記録状態と
同様の不均一なスペクトルを与え、PHB記録が消去さ
れる。
In the non-uniform absorption spectrum of PHB recordable substances,
A laser beam with a narrow line width is wavelength-swept stepwise at a wavelength interval of about 5 times the line width to perform recording (hole formation).Next, for the same laser spot recorded in the PHB above,
Irradiate white light in the wavelength range used for recording. Alternatively, the wavelength range to be erased is irradiated with a laser beam while continuously sweeping the wavelength. Through the above operation, holes are uniformly and continuously formed throughout the molecules (or recording medium) whose absorption corresponds to the wavelength range irradiated with light for erasing, that is,
The delicate environment of molecules in the medium is rearranged, giving a non-uniform spectrum similar to the unrecorded state, and the PHB recording is erased.

上記現象は消去用の光を照射したスポット内だけで生じ
る局所的なものであって、それ以外の周囲の記録部分に
は何ら影響を与えることがない。
The above phenomenon occurs locally only within the spot irradiated with the erasing light, and does not affect the surrounding recorded areas in any way.

また、上記方法によって消去された部分に対して再度記
録することも可能である。したがって、記録媒体の一部
分(任意のレーザスポット)における記録の消去および
書き換えが可能である。また、消去用レーザ光の掃引波
長範囲を任意に選べば、一つのレーザスポット内の波長
軸上の記録の部分消去および書き換えが可能である。
It is also possible to re-record the portion erased by the above method. Therefore, it is possible to erase and rewrite records on a portion of the recording medium (any laser spot). Further, by arbitrarily selecting the sweep wavelength range of the erasing laser beam, it is possible to partially erase and rewrite records on the wavelength axis within one laser spot.

また、本発明の消去方法は、光誘起の分子配向変化や記
録媒質の微妙な構造変化を、ホールの形成機構としてい
る場合はど容易に実行できる。また、ポルフィリンやキ
ニザリンなどの有機分子を主体にした有機材料だけでな
く、半導体レーザとの適合上有望視されているアルカリ
ハライド結晶のカラーセンタなどの無機材料にも広く適
用可能である。
Furthermore, the erasing method of the present invention can be easily carried out when the hole formation mechanism is a photo-induced molecular orientation change or a subtle structural change in the recording medium. Furthermore, it can be widely applied not only to organic materials mainly composed of organic molecules such as porphyrin and quinizarin, but also to inorganic materials such as color centers of alkali halide crystals, which are considered promising for compatibility with semiconductor lasers.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による光記録消去方法の一実施例を示す
図であり、(a)は記録媒体を構成する色素分子の化学
式、(b’)は記録媒体の吸収スペクトル、(c)は記
録後(消去前)のPHBメモリを示す吸収スペクトル、
(d)は消去操作後のPHBメモリを示す吸収スペクト
ルをそれぞれ示した図である。第1図(a)に化学式を
示す1,4−ジヒドロキシアントラキノン(通称キニザ
リン、DAQ)をポリビニルアルコール(PVA)中に
約lXl0−’Mの濃度でほぼ均一に分散させて記録媒
体を作製し、4.2Kに保存した。上記記録媒体の吸収
スペクトルは第1図(b)に示すとおりで、DAQによ
る吸収を示している。まず最初に、波長可変色素レーザ
を用いて、上記DAQの不均一幅である400〜550
n mの吸収帯にホールを形成し、第1図(c)に示し
たバイナリ−コードからなるPHBメモリの光記録を行
った。
FIG. 1 is a diagram showing an embodiment of the optical recording erasing method according to the present invention, in which (a) is the chemical formula of the dye molecule constituting the recording medium, (b') is the absorption spectrum of the recording medium, and (c) is the diagram. Absorption spectrum showing PHB memory after recording (before erasing),
(d) is a diagram showing absorption spectra showing the PHB memory after the erase operation. A recording medium was prepared by dispersing 1,4-dihydroxyanthraquinone (commonly known as quinizarine, DAQ), whose chemical formula is shown in FIG. Saved at 4.2K. The absorption spectrum of the recording medium is as shown in FIG. 1(b), indicating absorption due to DAQ. First, using a wavelength tunable dye laser, we
A hole was formed in the nm absorption band, and optical recording of a PHB memory consisting of the binary code shown in FIG. 1(c) was performed.

つぎに、レーザスポット1−の記録部分に、記録消去の
ために、記録に用いたのと同じ波長可変色系レーザで、
510〜515nmの波長範囲を連続的に波長掃引しな
がら照射した。その結果、DAQの吸収帯に形成したP
HBメモリのホールが第1図(d)に示すようにほぼ完
全に消失し、PHBメモリの消去が達成できた。なお、
上記消去領域への再記録も可能であった。
Next, in order to erase the record, the same wavelength variable color laser used for recording was applied to the recorded part of laser spot 1-.
Irradiation was performed while continuously sweeping the wavelength in the wavelength range of 510 to 515 nm. As a result, P formed in the absorption band of DAQ
As shown in FIG. 1(d), the holes in the HB memory disappeared almost completely, and erasure of the PHB memory was achieved. In addition,
It was also possible to re-record to the erased area.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による光記録消去方法は、光照射に
よるホールバーニング可能な物質からなる光記録媒体の
、上記ホールバーニングに基づく記録に、該記録に用い
た波長範囲の連続波長の光を照射して、上記記録を消去
することにより、上記記録媒体の温度調節をすることな
く、PHBメモリの所定部分だけを選択的に消去するこ
とができ、かつ、消去後に再び記録を行うことが可能で
ある。
As described above, the optical recording erasing method according to the present invention irradiates the recording based on the hole burning of an optical recording medium made of a material capable of hole burning by light irradiation with light having a continuous wavelength within the wavelength range used for the recording. By erasing the recording, it is possible to selectively erase only a predetermined portion of the PHB memory without adjusting the temperature of the recording medium, and it is possible to perform recording again after erasing. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光記録消去方法の一実施例を示す
図であり、(a)は記録媒体を構成する色素分子の化学
式、(b)は記録媒体の吸収スペクトル、(C)は記録
後(消去前)のPHBメモリを示す吸収スペクトル、(
d)は消去操作後のPHBメモリを示す吸収スペクトル
をそれぞれ示す図、第2図は従来のPHBメモリの基本
原理を説明する図で、(a)は光化学的に活性な分子の
吸収スペクトル、(b)はレーザ光照射によるホールバ
ーニングを示す吸収スペクトル、(C)は光照射波長を
変えてホールを形成した波長多重光光メモリをそれぞれ
示す図である。 代理人弁理士  中 村 純之助 1P1  図 液長 員?FL)
FIG. 1 is a diagram showing an embodiment of the optical record erasing method according to the present invention, in which (a) is the chemical formula of the dye molecules constituting the recording medium, (b) is the absorption spectrum of the recording medium, and (C) is the recording Absorption spectrum showing the PHB memory after (before erasing), (
d) is a diagram showing the absorption spectrum of the PHB memory after erasing operation, and Figure 2 is a diagram explaining the basic principle of the conventional PHB memory. (a) is the absorption spectrum of a photochemically active molecule; (b) is an absorption spectrum showing hole burning due to laser light irradiation, and (C) is a diagram showing a wavelength multiplexed optical memory in which holes are formed by changing the light irradiation wavelength. Representative Patent Attorney Junnosuke Nakamura 1P1 Zouzu Chief Member? FL)

Claims (1)

【特許請求の範囲】 1、光照射によるホールバーニング可能な物質からなる
光記録媒体の、上記ホールバーニングに基づく記録に、
該記録に用いた波長範囲の連続波長の光を照射して、上
記記録を消去する光記録消去方法。 2、上記連続波長の光は、白色光であることを特徴とす
る特許請求の範囲第1項に記載した光記録消去方法。 3、上記連続波長の光は、レーザ光であって、上記レー
ザ光を、消去したい波長範囲を波長掃引しながら連続的
に照射することを特徴とする特許請求の範囲第1項に記
載した光記録消去方法。
[Claims] 1. For recording based on the hole burning described above on an optical recording medium made of a substance capable of hole burning by light irradiation,
An optical record erasing method in which the record is erased by irradiating light with a continuous wavelength within the wavelength range used for the record. 2. The optical record erasing method as set forth in claim 1, wherein the continuous wavelength light is white light. 3. The light of claim 1, wherein the continuous wavelength light is a laser light, and the laser light is continuously irradiated while sweeping the wavelength range to be erased. How to delete records.
JP14407887A 1986-10-24 1987-06-11 Method for erasing optical recording Pending JPS63308732A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14407887A JPS63308732A (en) 1987-06-11 1987-06-11 Method for erasing optical recording
EP87309341A EP0265260B1 (en) 1986-10-24 1987-10-22 Method for erasing a recording in a memory using a photochemical hole burning material
DE87309341T DE3787244T2 (en) 1986-10-24 1987-10-22 Method for deleting a record in a data storage medium from photochemical hole burning material.
US07/111,611 US4855951A (en) 1986-10-24 1987-10-23 Method for erasing recording in a PHB memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14407887A JPS63308732A (en) 1987-06-11 1987-06-11 Method for erasing optical recording

Publications (1)

Publication Number Publication Date
JPS63308732A true JPS63308732A (en) 1988-12-16

Family

ID=15353757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14407887A Pending JPS63308732A (en) 1986-10-24 1987-06-11 Method for erasing optical recording

Country Status (1)

Country Link
JP (1) JPS63308732A (en)

Similar Documents

Publication Publication Date Title
US4101976A (en) Frequency selective optical data storage system
Gutierrez et al. Multiple photochemical hole burning in organic glasses and polymers: spectroscopy and storage aspects
EP1090391A4 (en) Multi-layered photochromic optical data disk
JPS5851356B2 (en) optical data storage
Qiu et al. Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser
JPH0246538A (en) Optical memory element
Dvornikov et al. Materials and systems for two photon 3-D ROM devices
EP0265260B1 (en) Method for erasing a recording in a memory using a photochemical hole burning material
JPS63308732A (en) Method for erasing optical recording
JPS63138529A (en) Optical recording/erasing method
JPS63106941A (en) Optical recording and erasing method
JP4368622B2 (en) Memory element
JP2718496B2 (en) Optical memory device
JP3532743B2 (en) Optical recording method
JP2910069B2 (en) WDM recording media
JP2979571B2 (en) WDM recording media
JP2653034B2 (en) Information erasing method for WDM recording media
JPH03100545A (en) Light gate type photochemical hole burning memory
JPH05334880A (en) Method for storing information and device therefor
Dvornikov et al. Studies of new nondestructive read-out media for two-photon 3D high-density storage
JP3472186B2 (en) Optical recording medium and optical recording device
JP2000315321A (en) Non-destructive reproducing method of information on optical recording medium as well as optical reproducing device and optical recording/reproducing device
JP4542002B2 (en) Memory element
JPH07129963A (en) Reproducing method for light wavelength multi-recording
JP3429521B2 (en) Optical recording medium and optical recording method