JPS63308215A - Control method for magnetic bearing - Google Patents

Control method for magnetic bearing

Info

Publication number
JPS63308215A
JPS63308215A JP14170387A JP14170387A JPS63308215A JP S63308215 A JPS63308215 A JP S63308215A JP 14170387 A JP14170387 A JP 14170387A JP 14170387 A JP14170387 A JP 14170387A JP S63308215 A JPS63308215 A JP S63308215A
Authority
JP
Japan
Prior art keywords
gravity
center
electromagnet
rotary shaft
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14170387A
Other languages
Japanese (ja)
Inventor
Satoru Fukada
深田 悟
Yoshinori Kamiya
神谷 嘉則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP14170387A priority Critical patent/JPS63308215A/en
Publication of JPS63308215A publication Critical patent/JPS63308215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control a magnetic bearing stably and still precisely by providing a means which controls inclination of a rotary shaft around the center of gravity to 0 and a means which controls position of the center of gravity of the rotary shaft to be supported to a fixed position. CONSTITUTION:A rotary shaft 1 is supported in non-contact by magnetic attracting forces of electromagnets 2A, 2B, 3A, 3B attached to both end portions of the rotary shaft 1. Together with setting a time constant of the first order lag of magnetic flux of one side of these electromagnets equal to a time constant of the first order lag of magnetic flux of the other side, magnetic attracting force of the electromagnet of this one side is made to be constant times as strong as magnetic attracting force of the electromagnet of the other side. Under this condition, magnetic attracting forces of electromagnets are corrected by compensators 6, 7 based on a set position of a displacement detecter 4 which detects displacement of the rotary shaft 1 and distances of set positions of respective electromagnets from the position of the center of gravity of the rotary shaft. On this occasion, a transfer function of a means controlling inclination of the rotary shaft 1 around the center of gravity to 0 exists as a function multiplied by fixed multiplier a transfer function of a means controlling the position of the center of gravity of the rotary shaft 1 to be supported to fixed position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気軸受の制御方式に関し、特に磁気吸引力
により非接触支持される回転軸が、軸方向に物理的に非
対称な場合に適用される制御方式〔従来の技術〕 高速回転する回転体の軸受や、摩擦を極度に低減する必
要がある回転体の軸受として、磁気軸受による支持方式
がある。この方式のうち、能動型磁気軸受と呼ばれてい
るものは、電磁石の吸引力を用いて回転軸を非接触支持
するものである。この能動型磁気軸受の制御は、回転軸
と電磁石のギャップを検出し、電磁石コイル電流に負帰
還させて、回転軸が電磁石に接触せずに所定のギャップ
を保持するようにフィードバック制御系を構成している
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control system for magnetic bearings, and is particularly applicable when a rotating shaft supported in a non-contact manner by magnetic attraction is physically asymmetric in the axial direction. [Prior Art] As a bearing for a rotating body that rotates at high speed or a bearing for a rotating body that requires extremely low friction, there is a support system using a magnetic bearing. Among these systems, the so-called active magnetic bearing uses the attractive force of an electromagnet to support the rotating shaft in a non-contact manner. Control of this active magnetic bearing consists of a feedback control system that detects the gap between the rotating shaft and the electromagnet and provides negative feedback to the electromagnet coil current to maintain a predetermined gap without the rotating shaft touching the electromagnet. are doing.

例えば、特開昭58−81217号公報においては、回
転体の重心の位置の変位(並進運動)と、重心回りの回
転軸の傾動(傾斜運動)とを制御するために、それぞれ
独立した制御系を設けている。
For example, in Japanese Patent Application Laid-Open No. 58-81217, in order to control the displacement (translational movement) of the center of gravity of a rotating body and the tilting movement (tilting movement) of the rotation axis around the center of gravity, independent control systems are used. has been established.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような従来の方法では、軸の剛体運動が
重心の並進運動と傾斜運動に分離できる場合、すなわち
、非接触支持される回転軸が軸方向に物理的に対称な場
合しか制御できないという問題があった。
However, with these conventional methods, control is possible only when the rigid body motion of the shaft can be separated into translational motion and tilting motion of the center of gravity, that is, when the rotating shaft supported without contact is physically symmetrical in the axial direction. There was a problem.

これに対し、特開昭61−211523号公報において
は、回転体の重心が2個のラジアル方向の電磁石及びセ
ンサの中央に位置しない非対称な場合における制御につ
いて提案がなされている。しかしながら、この方法は、
電磁石の位置とセンサの位置とが同一であるということ
を前提としており、電磁石とセンサの距離が回転体の重
心に対して異なる現実の磁気軸受構造に対して設計を行
う場合にはそのまま適用できないという問題があった。
On the other hand, Japanese Patent Laid-Open No. 61-211523 proposes control in an asymmetrical case in which the center of gravity of a rotating body is not located at the center of two radial electromagnets and sensors. However, this method
It is assumed that the position of the electromagnet and the position of the sensor are the same, so it cannot be applied as is when designing an actual magnetic bearing structure where the distance between the electromagnet and sensor is different from the center of gravity of the rotating body. There was a problem.

そこで本発明は、そのような場合においても、安定にか
つ精度よく磁気軸受を制御できる方式を提供することを
目的とする。
Therefore, an object of the present invention is to provide a method that can stably and accurately control a magnetic bearing even in such a case.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の磁気軸受の制御方式
は、回転軸の両端部にそれぞれ電磁石を設け、その電磁
石の磁気吸引力によって回転軸を非接触支持する能動型
磁気軸受において、前記回転軸の両側に該回転軸の変位
を検出する変位検出器を設置し、前記回転軸の重心位置
が所定位置に支持されるように制御する手段と、前記回
転軸の重心回りの傾斜角が0になるように制御する手段
とを設け、前記電磁石の一方の磁束の一次遅れ時定数と
他方の磁束の一次遅れ時定数とを等しく設定するととも
に、前記一方の電磁石の磁気吸引力を他方の電磁石の磁
気吸引力の定数倍とし、前記変位検出器設置位置及び前
記各電磁石設置位置の回転軸重心位置からの距離に基づ
いて前記電磁石の磁気吸引力を補正することを特徴とす
る。
In order to achieve this object, the magnetic bearing control method of the present invention is an active magnetic bearing in which electromagnets are provided at both ends of a rotating shaft, and the rotating shaft is supported in a non-contact manner by the magnetic attraction force of the electromagnets. Displacement detectors for detecting displacement of the rotating shaft are installed on both sides of the rotating shaft, means for controlling the center of gravity of the rotating shaft is supported at a predetermined position, and means for controlling the center of gravity of the rotating shaft so that the angle of inclination around the center of gravity of the rotating shaft is 0. a first-order lag time constant of one magnetic flux of the electromagnet and a first-order lag time constant of the other magnetic flux of the electromagnet are set equal, and the magnetic attraction force of the one electromagnet is controlled to be equal to the first-order lag time constant of the magnetic flux of the other electromagnet. The magnetic attraction force of the electromagnet is corrected based on the distance from the center of gravity of the rotation axis of the displacement detector installation position and each of the electromagnet installation positions.

前記の、傾斜角が0になるように制御する手段の伝達関
数を、前記回転軸の重心位置が所定位置に支持されるよ
うに制御する手段の伝達関数に所定の係数を乗じた関数
とすることにより、同一構成の制御回路を用いて制御装
置を実現することができる。
The transfer function of the means for controlling the tilt angle to be 0 is a function obtained by multiplying the transfer function of the means for controlling so that the center of gravity of the rotating shaft is supported at a predetermined position by a predetermined coefficient. Accordingly, a control device can be realized using control circuits having the same configuration.

〔実施例〕〔Example〕

以下、本発明の特徴を、図面に示す実施例に基づいて具
体的に説明する。
Hereinafter, features of the present invention will be specifically explained based on embodiments shown in the drawings.

第2図に、本発明が適用されるラジアル磁気軸受装置の
概略を示す。図中、1は回転軸である。
FIG. 2 schematically shows a radial magnetic bearing device to which the present invention is applied. In the figure, 1 is a rotation axis.

回転軸lは、二つの電磁石2A、 28.3A、 3B
 による軸受部でそれぞれ重力方向、水平方向に吸引支
持されている。回転軸1の変位は、変位検出器4及び5
によって検出され、その出力は、それぞれ補償器6及び
7に出力される。対の電磁石2^と2B及び3Aと3B
のコイルには、バイアス吸引力のため、バイアス電流が
流れており、軸変位に基づく制御信号が同じ大きさ、逆
符号でそれぞれのバイアス電流に加えられる。このとき
、対の電磁石の勅、静特性は等しいとする。バイアス電
流は、パワーアンプ8^、 8B、 9A、 9B に
より増幅され、それぞれ電磁石2A、 2B、 3^、
3B のコイルに流される。
The rotation axis l has two electromagnets 2A, 28.3A, 3B.
The bearings are supported by suction in the gravity direction and horizontal direction, respectively. The displacement of the rotating shaft 1 is detected by displacement detectors 4 and 5.
The outputs thereof are output to compensators 6 and 7, respectively. Pair of electromagnets 2^ and 2B and 3A and 3B
A bias current flows through the coils due to the bias attraction force, and a control signal based on the shaft displacement is added to each bias current with the same magnitude and opposite sign. At this time, it is assumed that the static characteristics of the pair of electromagnets are equal. The bias current is amplified by power amplifiers 8^, 8B, 9A, 9B, and electromagnets 2A, 2B, 3^, respectively.
It is passed through the 3B coil.

第3図に、回転軸lの重力方向の剛体運動の座標系を示
す。水平運動については、以下の結果において、重力加
速度gを0とすればよい。
FIG. 3 shows a coordinate system of rigid body motion in the direction of gravity of the rotation axis l. Regarding horizontal motion, the gravitational acceleration g may be set to 0 in the following results.

第3図中、 X:軸の重心の変位 θ:軸の傾斜角 xl、x2=軸受部中心の軸変位 yl−3’2:変位検出点の軸変位 L1.Alx :軸受部中心と重心との距離L21+1
z2:変位検出点と重心との距離L31:外力作用点と
重心との距離 M:軸の質量 J:重心での軸の半径方向軸回りの慣性モーメント Fl、b :正方向変位側(下側)の電磁石吸引力F1
□、F22 :負方向変位側(下側)の電磁石吸引力d
:外力 重心の並進運動と、軸の回転によるジャイロ効果を無視
した傾斜運動は傾斜角が充分小さいとき、次式で与えら
れる。
In FIG. 3, X: displacement of the center of gravity of the shaft θ: inclination angle of the shaft xl, x2 = shaft displacement at the center of the bearing section yl-3'2: shaft displacement at the displacement detection point L1. Alx: Distance between bearing center and center of gravity L21+1
z2: Distance between the displacement detection point and the center of gravity L31: Distance between the point of external force application and the center of gravity M: Mass of the shaft J: Moment of inertia around the radial axis of the shaft at the center of gravity Fl, b: Positive direction displacement side (lower side ) electromagnet attraction force F1
□, F22: Electromagnetic attraction force d on the negative direction displacement side (lower side)
:The translational motion of the center of gravity due to external force and the tilting motion ignoring the gyroscopic effect due to the rotation of the axis are given by the following equation when the tilt angle is sufficiently small.

Af、’r−ΔF1+ΔF+ + Afg + d  
    (l l)θ”’−/IIΔF+ + 112
ΔL)−八+d              (2]こ
こで、 ΔFj= FlFar 、Δh= A Wl    (
3)外力が作用していないときの定常状顎では、上式か
ら、 上の運動方程式は、吸引力の変動分 11−ΔF1−ΔF、。、h−Δh−ΔF、。   (
5)を用いると次のように書かれる。
Af, 'r-ΔF1+ΔF+ + Afg + d
(l l)θ”'-/IIΔF+ + 112
ΔL)-8+d (2] Here, ΔFj= FlFar, Δh= A Wl (
3) For the jaw in steady state when no external force is acting, from the above equation, the equation of motion above is the variation of the suction force 11 - ΔF1 - ΔF. , h-Δh-ΔF,. (
5) can be written as follows.

Aハコ/1+/+ + d             
   (6)Jθ=   luA + /11/l−ム
、d            (7)一方、軸変位と電
磁石の磁束変化とが充分小さいとき、吸引力の変動分は
線形近似して次のように表される。ただし、定常状態で
は軸は軸受中心に支持されているとする。1=1.2に
ついて、f・−々ハq・              
            (8)11t(l+ q、−
a、sxt = b、cl(91ここで、 ・、・−麦c、、(l+(磐)1合   (12)b、
 = 4に、、(1千磐)      (13)上式に
おいて、 k、ム:下側電磁石の吸引力係数の二倍q1:磁束に等
価で、電流の単位をもつ変数T1.磁束の一次遅れ時定
数 aI3:電磁石鉄心と軸のすきまの変化による磁束(吸
引力)の変化度合いを示す定数 b1:制御入力端子による磁束(吸引力)増加の大きさ
を示す定数 CI:制御入力端子 F+o :下側電磁石のバイアス吸引力Bo :下側電
磁石のバイアスコイル電流KPI:吸引力定数 xIo:電磁石鉄心と回転軸の空隙長く軸受の半径隙間
) CMI:電磁石の形状から決まる係数(0<C,l<1
)1120 :上側電磁石コイルのバイアス電流1’@
l :パワーアンプ入力端子−出力コイル電流特性の勾
配 また、吸引力定数KF、は、次式で与えられる。
A box/1+/+ + d
(6) Jθ = luA + /11/l-m, d (7) On the other hand, when the axial displacement and the change in the electromagnet's magnetic flux are sufficiently small, the variation in the attractive force can be expressed by linear approximation as follows: . However, it is assumed that the shaft is supported at the center of the bearing in a steady state. For 1=1.2, f・−−haq・
(8) 11t(l+ q, -
a, sxt = b, cl (91 where, ・,・−mugi c,, (l + (Iwa) 1 go (12) b,
= 4, (1,000 Iwa) (13) In the above equation, k, mu: twice the attractive force coefficient of the lower electromagnet q1: variable T1, which is equivalent to magnetic flux and has the unit of current. First-order lag time constant of magnetic flux aI3: Constant that indicates the degree of change in magnetic flux (attractive force) due to changes in the gap between the electromagnet core and the shaft b1: Constant that indicates the magnitude of increase in magnetic flux (attractive force) due to the control input terminal CI: Control input Terminal F+o: Bias attraction force of the lower electromagnet Bo: Bias coil current of the lower electromagnet KPI: Attraction force constant xIo: Gap between the electromagnet core and rotating shaft, long radial gap of the bearing) CMI: Coefficient determined by the shape of the electromagnet (0<C,l<1
) 1120: Upper electromagnet coil bias current 1'@
l: Gradient of power amplifier input terminal-output coil current characteristics Also, the attractive force constant KF is given by the following equation.

ここで、 CF:電磁石の形状によって決まる係数μ。・空気の透
磁率(−4πx 1O−7H/ m )A、電磁石鉄心
の断面積 N、コイル巻数 したがって、全体の動特性は次のように表される。
Here, CF: Coefficient μ determined by the shape of the electromagnet. - The magnetic permeability of air (-4πx 1O-7H/m) A, the cross-sectional area N of the electromagnet core, and the number of turns of the coil. Therefore, the overall dynamic characteristics are expressed as follows.

Ar1” ktlq汁kB(h+d        (
14)Jθ=−1,に7.qけ11□ktrQz lh
+d     (+51T1ql十q、−aI、xl=
b1e1(16)Tr(h+(h−(lnXr = b
rer       (+7+この運動方程式は、軸受
部の変位を用いて表すこともできる。すなわち、第3図
から得られる関係 を用いると、式(14)、 (15)  から次式が求
められる。
Ar1” ktlq juice kB (h+d (
14) Jθ=-1, and 7. qket11□ktrQz lh
+d (+51T1ql 10q, -aI, xl=
b1e1(16)Tr(h+(h-(lnXr = b
rer (+7+This equation of motion can also be expressed using the displacement of the bearing part. That is, by using the relationship obtained from FIG. 3, the following equation can be obtained from equations (14) and (15).

ここで、 上式は、a12≠0のとき、xlとz2との干渉系であ
るが、この二つの変数を非干渉化することは一般的にか
なり?J(雑である。また、二つの軸受部を非干渉化す
ることが実用上、必ずしも望ましいとは言えない。
Here, the above equation is an interference system between xl and z2 when a12≠0, but is it generally quite difficult to make these two variables non-interfering? J (This is complicated. In addition, it is not necessarily desirable in practice to make the two bearings non-interfering.

第3図の位置関係から、剛体運動に対して、軸受部中心
の変位と変位検出点の変位との間には次の関係がある。
From the positional relationship shown in FIG. 3, the following relationship exists between the displacement of the bearing center and the displacement of the displacement detection point with respect to rigid body motion.

軸変位の動特性を式(16)、 (17)、 (19)
〜(21)を用いて表すと、ブロック図は第4図のよう
になる。
The dynamic characteristics of the shaft displacement are expressed by equations (16), (17), (19)
When expressed using (21), the block diagram becomes as shown in FIG.

式(12>、  (13)において、バイアス電流の比
は吸引力の式(11)とバイアス吸引力の関係式(3)
、  (4)を用いて、次のように表される。
In equations (12>, (13)), the ratio of bias current is expressed by equation (11) of attraction force and relational equation (3) of bias attraction force.
, (4) is expressed as follows.

(偲)゛=会=1+イW著   (22)(偲)′=勿
=1+伽ヴq    (231次に、並進運動と傾斜運
動の分離について説明する。いま、二つの軸受部につい
て、磁束の遅れ時定数が等しく、吸引力係数の比を適当
に与えるとする。すなわち、 条件1 T会T、 = T2          (241条件
2 p、会!!−L= =亙pユ 々7,111,2、        (25)このとき
、運動方程式(14)〜(17)は、次のように並進運
動と傾斜運動とに分離される。
(231) Next, we will explain the separation of translational motion and tilting motion.Now, regarding the two bearings, the magnetic flux Assume that the delay time constants of are equal and the ratio of the attraction force coefficients is given appropriately.In other words, Condition 1 T meeting T, = T2 (241 Condition 2 p, meeting!!-L= =亙p Yu 7,111, 2. (25) At this time, the equations of motion (14) to (17) are separated into translational motion and tilting motion as follows.

ここで、 XR会−1,θ= (r+ r+)/ 2      
  (281式(25)の条件2は、式(10)、 (
12)、 (22)、 (23)  を用いると次のよ
うに表される。
Here, XR meeting-1, θ= (r+ r+)/2
(281Condition 2 of formula (25) is formula (10), (
12), (22), and (23), it can be expressed as follows.

h=β友+−L−(β−1)血!!!!L(31)Fl
、ll、4   ムF、。
h=βfriend+-L-(β-1)blood! ! ! ! L(31)Fl
,ll,4muF,.

ここで、 βニー− Cl12 1+* すなわち、条件2は電磁石のバイアス吸引力を電磁石の
形状、軸受すきま、重心の位置を考慮して、式(31)
を満たすように与えることである。電磁石の形状と軸受
すきまが等しい場合(βニ1)を考えると、この条件は
、二組の下側バイアス吸引力が作る軸重6回りのモーメ
ントが釣り合っていることを示す。
Here, β knee - Cl12 1+* In other words, condition 2 is the bias attraction force of the electromagnet, taking into account the shape of the electromagnet, the bearing clearance, and the position of the center of gravity, and formula (31)
It is to give so as to satisfy. Considering the case where the shape of the electromagnet and the bearing clearance are equal (β d1), this condition indicates that the moments around the axle load 6 created by the two sets of lower bias attraction forces are balanced.

制御対象はそれぞれ3次の系に分離されたので、制御則
を独立に定めることができる。並進運動系式(26)に
ついて、フィードバック制御則U、(s) = −C(
s)X(s)       (321を与える。ここで
、C(S)は補償要素の伝達関数である。式(26)の
初期値0のラプラス変換に式(32)を用いて次式を得
る。
Since each controlled object is separated into a third-order system, control laws can be determined independently. Regarding the translational system equation (26), the feedback control law U, (s) = −C(
s) .

X(s) = −’−”−D(sl         
  (33ン2#(s) 11(s)= 4(Ts+l)s”+kt+ 〔bac
(s)4(7,]  (341同様にして、 (/2(sl = −CxCslXa(s)     
  (351を考えると、 X5(s)=血−””D(s)         (3
61271Ha’5) Jin(s) =2<F (Ts +1 +5’ + 
&/心+C5(S)  ’、’、’(1,sJ   (
371この出き、変位検出部の特性は、第3図での関係 を用いて、次のように表される。
X(s) = −'−”−D(sl
(33n2#(s) 11(s)=4(Ts+l)s”+kt+ [bac
(s)4(7,] (Similar to 341, (/2(sl = -CxCslXa(s)
(Considering 351, X5(s)=Blood-""D(s) (3
61271Ha'5) Jin(s) =2<F (Ts +1 +5' +
&/heart+C5(S) ',','(1,sJ (
371 The characteristics of this output and displacement detection section are expressed as follows using the relationship shown in FIG.

Y・(・)=÷(±十〜楡ル) X(Ts+11D(sl       (39a)Y・
(・)=圭(±−チ当) x(Ts+IID(sJ       (39b)次に
、制御系の構成について説明する。
Y・(・)=÷(±10~Yel) X(Ts+11D(sl (39a)Y・
(•)=Kei (±-Chitou) x(Ts+IID(sJ) (39b) Next, the configuration of the control system will be explained.

式(29)から、実際の制御人力は次のように表される
From equation (29), the actual control human power is expressed as follows.

したがって、式(32)、  (35)を用いて、また
、第3図から次の関係が得られる。
Therefore, using equations (32) and (35), and from FIG. 3, the following relationship can be obtained.

以上のことから、制御系の構成は第5図のようになる。From the above, the configuration of the control system is as shown in FIG.

上述のモード分離化は、式(40)の制御人力e2の形
、あるいは第5図のブロンク線図から推察されるように
、二つの制御人力の均一化によってなされていると考え
ることができる。式(19)、 (16)。
The mode separation described above can be considered to be achieved by equalizing the two control forces, as inferred from the form of the control force e2 in equation (40) or the Bronk diagram in FIG. Equations (19), (16).

(17)は、条件式(24)、  (25)を用いると
次のように書かれる。
(17) can be written as follows using conditional expressions (24) and (25).

ここで、 Qr = f)hQz、’ e: = 1!−!−”’
th       (44)b。
Here, Qr = f)hQz,' e: = 1! -! −”'
th (44)b.

上の運動方程式から、二つの軸受部が及ぼす影響が、か
なり良く揃えられていることがわかる。
From the equation of motion above, it can be seen that the influences exerted by the two bearings are fairly well aligned.

すなわち、二つのモード分離は、軸受系をソフト的に対
称形に近づけることによって達成されていると考えられ
る。
In other words, separation of the two modes is considered to be achieved by making the bearing system nearly symmetrical in terms of software.

ところで、上述の制御系の補償要素C(S)とCR(S
)は、それぞれ独立に定めることができた。一方、二つ
のモードはともに三次系であり、最適な特性として同じ
特性方程式をもつものを選ぶことができる。式(34)
と(37)がら、特性方程式H(S)−〇。
By the way, the compensation elements C(S) and CR(S) of the control system mentioned above
) could be determined independently. On the other hand, the two modes are both cubic systems, and one with the same characteristic equation can be selected as the optimal characteristic. Formula (34)
(37), the characteristic equation H(S)-〇.

HR(S)=Oが等しくなる条件として次の関係を得る
The following relationship is obtained as a condition for HR(S)=O to be equal.

Cm(s)= &C(s)+−!−PL−’1(1−に
薔)711 (ll、J = kC(s)−一−−a+*    (45)/+ 
b−111In ここで、 k:仏        (46) 上式で、C* (S)は軸受間の干渉の度合いa12(
式(19)、 (20)  を参照)に応じて、C(S
)の比例動作のゲインを加減した形になっている。
Cm(s)= &C(s)+-! -PL-'1 (rose on 1-)711 (ll, J = kC(s)-1--a+* (45)/+
b-111In Here, k: French (46) In the above formula, C* (S) is the degree of interference between bearings a12 (
(see equations (19), (20)), C(S
) is a form in which the gain of the proportional operation is adjusted or subtracted.

一方、制御系の簡略化という点で、二つの補償要素の形
を合わせることが考えられる。すなわち、Cp(s)=
 kC(s)         (47)これは、同形
の補償要素で二つのモードを補償することになるので、
C(S)を定めるには両モードを考える必要がある。そ
れには、両者の中立な妥協点をとった次の特性方程式が
妥当であると考えられる。
On the other hand, in terms of simplifying the control system, it is conceivable to match the shapes of the two compensation elements. That is, Cp(s)=
kC(s) (47) This means that two modes are compensated with the same compensation element, so
To determine C(S), it is necessary to consider both modes. For this purpose, the following characteristic equation, which is a neutral compromise between the two, is considered appropriate.

#o(s ) =2 (Ts+ 1 )S’ + kl
+X〔b、C(s)−Fσ、(−#+−F%’)]  
(、+slこのとき、両モードの特性式は次のように書
かれる。
#o(s) =2 (Ts+1)S'+kl
+X[b, C(s)-Fσ, (-#+-F%')]
(, +sl At this time, the characteristic expressions for both modes are written as follows.

tt(s) = tlo(s)−h、ao      
  (+19+Ib(s) = &[/Io(s)+ 
kt+ao)       (50)ここで、 ・・=〒席(1−÷チ)=L紛・・・・・  (51)
補償要素C(S)は特性式(48)に対して充分な安定
余裕をもつように定めればよい。そのためには、軸受間
の干渉度合いに関係する項a。に対して比例動作ゲイン
を充分大きく設定すればよい。
tt(s) = tlo(s)-h, ao
(+19+Ib(s) = &[/Io(s)+
kt + ao) (50) Here, ... = 〒 seat (1 - ÷) = L loss... (51)
The compensation element C(S) may be determined so as to have a sufficient stability margin with respect to characteristic equation (48). For this purpose, a term a related to the degree of interference between bearings is required. What is necessary is to set the proportional operation gain to a sufficiently large value.

補償要素を式(47)で与えるとき、式(42)を用い
て制御人力式(41)は次のように表される。
When the compensation element is given by equation (47), the control human power equation (41) is expressed as follows using equation (42).

E+(s) = −CCs)(pn y+(5)十pl
ff )’+(s) )      (52a)ここで
、 このとき、制御系の構成は第1図のように表される。第
5図と比較すると、第1図の構成は著しく簡素化されて
いる。これが、本発明の特徴である。
E+(s) = -CCs)(pn y+(5) 10pl
ff )'+(s) ) (52a) Here, at this time, the configuration of the control system is expressed as shown in FIG. Compared to FIG. 5, the configuration of FIG. 1 is significantly simplified. This is a feature of the present invention.

次に、周波数特性の計算について説明する。Next, calculation of frequency characteristics will be explained.

系に作用する外乱として、実際の場合を考えて、軸に直
接働く外力を考える。しかしながら、周波数応答を実験
する場合には、正弦波形の外力を直接軸に加えることは
一般に困難である。そのため、代わりにパワーアンプへ
の制御入力信号に正弦波人力を加えて、コイル電流に変
動を与え、吸引力を変動させることを考える。
As a disturbance acting on the system, consider an actual case and consider an external force that acts directly on the axis. However, when experimenting with frequency responses, it is generally difficult to apply a sinusoidal external force directly to the shaft. Therefore, instead, consider adding a sine wave human power to the control input signal to the power amplifier to vary the coil current and thereby vary the attraction force.

入力信号をγ1(t)、γ2(t)とし、パワーアンプ
の人力信号を次のように与える。
The input signals are γ1(t) and γ2(t), and the human power signal of the power amplifier is given as follows.

上式を式(29)において、eI+ ”2の代わりに用
いると、 1、−1.− テ、U I (S)、 I/ 2 (S
) Lt、式(29)すナワチ式(32)。
When the above equation is used in place of eI+''2 in equation (29), 1, -1.- te, U I (S), I/ 2 (S
) Lt, equation (29) and Sunawachi equation (32).

(35)で与えられる。It is given by (35).

式(55)を式(26)、  (27)の”In u2
に用いると、次式式(33)、  (36)と上式とを
比較して分かるように、直接外力に比べてパワーアンプ
人口での人力は磁束遅れ分だけ遅れる。
Expression (55) is converted into “In u2” of expressions (26) and (27)
As can be seen by comparing the following equations (33) and (36) with the above equation, the human power in the power amplifier population is delayed by the magnetic flux delay compared to the direct external force.

実験で二つのモードをそれぞれ独立に取り扱うためには
、R,、R2は、式(56)で他方が0になるように与
える必要がある。応答を合わせて示すと次のようになる
In order to treat the two modes independently in experiments, R,, R2 must be given so that the other becomes 0 in equation (56). The responses are shown below.

並進モード: /?1(s)= 血” /?+(s) ’Ht)−be          (58)/Y(5
) = ” ”” /?+(sl      (59)
/121f(s) 傾斜モード: )Us) = ”” /?+(s)        (
61)IIR< s ) 一方、式(56)、  (57)と第3図での関係b+
     −by 3+1 = x +πx* 、 y* −x−5xa 
  (62+から、人力#、(s)、 R2(s)と出
力y、(s)、 )’2(S)との関係は、次のように
与えられる。
Translation mode: /? 1(s)=Blood” /?+(s) 'Ht)-be (58)/Y(5
) = ” ”” /?+(sl (59)
/121f(s) Tilt mode: )Us) = “” /? +(s) (
61) IIR<s) On the other hand, the relationship b+ between equations (56), (57) and Fig. 3
−by 3+1 = x +πx*, y* −x−5xa
(From 62+, the relationship between the human power #, (s), R2 (s) and the output y, (s), )'2 (S) is given as follows.

Y+(S)= 者kl+lB (舟+隔剥当)””+ 
’、kBbx (盟−wヶ当)R”5)(63a3”’
= 2””(//L) ’l: 硼響(sl)””上式
は、第5図のブロック線図あるいは式(43)。
Y+(S)= person kl+lB (fun+separate stripping)””+
', kBbx (mei-wkato) R"5) (63a3"'
= 2"" (//L) 'l: 硼平(sl)""The above equation is the block diagram of FIG. 5 or equation (43).

(41)、 (54)、 (62)からも得られるが、
計算がかなり煩雑である。特に、特性多項式が並進・傾
斜の二つのモードに因数分解出来ることを示すには、か
なりの計算を要する。このことは、対称な軸受系では、
任意の対称な制御則に対して特性多項式が二つのモード
に直ちに因数分解されるということに比べて、非対称型
軸受系の取扱の複雑さを示している。
It can also be obtained from (41), (54), and (62), but
The calculation is quite complicated. In particular, it requires a considerable amount of calculation to show that the characteristic polynomial can be factorized into two modes: translation and tilt. This means that for a symmetrical bearing system,
This illustrates the complexity of handling asymmetric bearing systems, compared to the fact that for any symmetrical control law the characteristic polynomial immediately factorizes into two modes.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、並進運動と
傾斜運動の制御を行う制御手段の構成として、共通の伝
達関数をもつ制御器を使用するようにしている。このた
め、磁気軸受設置位置と変位検出器の設置位置が回転軸
の重心に対してずれている現実の機器においても、精度
の高い制御を容易に実現することができる。
As explained above, in the present invention, a controller having a common transfer function is used as a configuration of the control means for controlling translational motion and tilting motion. Therefore, even in actual equipment in which the magnetic bearing installation position and the displacement detector installation position are shifted from the center of gravity of the rotating shaft, highly accurate control can be easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御系の構成を示すブロック図、
第2図は能動形磁気軸受制御装置の構成を示す図、第3
図は回転軸の剛体運動座標系の説明図、第4図は磁気軸
受系制御対象のブロック図、第5図はモード分離による
制御系の構成を示すブロック図である。 に回転軸     2A、 2B、 3A、 38:電
磁石4.5:変位検出器 6,7:補償器 8A、 8B、 9A、 9B:パワーアンプ特許出願
人  株式会社 安用電機製作所代  理  人   
小  堀   益 (ばか2名)第  1  図 第2図
FIG. 1 is a block diagram showing the configuration of a control system according to the present invention,
Figure 2 shows the configuration of the active magnetic bearing control device, Figure 3 shows the configuration of the active magnetic bearing control device.
The figure is an explanatory diagram of the rigid body motion coordinate system of the rotating shaft, FIG. 4 is a block diagram of the object to be controlled by the magnetic bearing system, and FIG. 5 is a block diagram showing the configuration of the control system using mode separation. Rotating shaft 2A, 2B, 3A, 38: Electromagnet 4.5: Displacement detector 6, 7: Compensator 8A, 8B, 9A, 9B: Power amplifier Patent applicant Anyo Electric Manufacturing Co., Ltd. Agent
Masu Kobori (2 idiots) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、回転軸の両端部にそれぞれ電磁石を設け、その電磁
石の磁気吸引力によって回転軸を非接触支持する能動型
磁気軸受において、前記回転軸の両側に該回転軸の変位
を検出する変位検出器を設置し、前記回転軸の重心位置
が所定位置に支持されるように制御する手段と、前記回
転軸の重心回りの傾斜角が0になるように制御する手段
とを設け、前記電磁石の一方の磁束の一次遅れ時定数と
他方の磁束の一次遅れ時定数とを等しく設定するととも
に、前記一方の電磁石の磁気吸引力を他方の電磁石の磁
気吸引力の定数倍とし、前記変位検出器設置位置及び前
記各電磁石設置位置の回転軸重心位置からの距離に基づ
いて前記電磁石の磁気吸引力を補正することを特徴とす
る磁気軸受の制御方式。 2、傾斜角が0になるように制御する手段の伝達関数を
、前記回転軸の重心位置が所定位置に支持されるように
制御する手段の伝達関数に所定の係数を乗じた関数とす
ることを特徴とする特許請求の範囲第1項記載の磁気軸
受の制御方式。
[Claims] 1. In an active magnetic bearing in which electromagnets are provided at both ends of the rotating shaft and the rotating shaft is supported in a non-contact manner by the magnetic attraction of the electromagnets, displacement of the rotating shaft is provided on both sides of the rotating shaft. means for controlling the position of the center of gravity of the rotating shaft to be supported at a predetermined position; and means for controlling the angle of inclination of the rotating shaft around the center of gravity to be 0. and setting the first-order lag time constant of one magnetic flux of the electromagnet to be equal to the first-order lag time constant of the other magnetic flux, and setting the magnetic attraction force of the one electromagnet to be a constant times the magnetic attraction force of the other electromagnet, A control method for a magnetic bearing, characterized in that the magnetic attraction force of the electromagnet is corrected based on the distance of the displacement detector installation position and each of the electromagnet installation positions from the center of gravity of the rotation axis. 2. The transfer function of the means for controlling the tilt angle to be 0 is a function obtained by multiplying the transfer function of the means for controlling so that the center of gravity of the rotating shaft is supported at a predetermined position by a predetermined coefficient. A control method for a magnetic bearing according to claim 1, characterized in that:
JP14170387A 1987-06-06 1987-06-06 Control method for magnetic bearing Pending JPS63308215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14170387A JPS63308215A (en) 1987-06-06 1987-06-06 Control method for magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14170387A JPS63308215A (en) 1987-06-06 1987-06-06 Control method for magnetic bearing

Publications (1)

Publication Number Publication Date
JPS63308215A true JPS63308215A (en) 1988-12-15

Family

ID=15298236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14170387A Pending JPS63308215A (en) 1987-06-06 1987-06-06 Control method for magnetic bearing

Country Status (1)

Country Link
JP (1) JPS63308215A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002663A1 (en) * 1989-08-24 1991-03-07 Kabushiki Kaisha Yaskawa Denki Seisakusho Method of control of moving element of magnetic levitation carrier apparatus
US6734650B2 (en) * 2002-01-30 2004-05-11 Honeywell International, Inc. System and method for controlling an active magnetic bearing using continuous variable compensation
WO2017098541A1 (en) * 2015-12-10 2017-06-15 ダイキン工業株式会社 Magnetic bearing device and compressor
US11137026B2 (en) 2017-07-04 2021-10-05 Hitachi, Ltd. Control device for magnetic bearing and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002663A1 (en) * 1989-08-24 1991-03-07 Kabushiki Kaisha Yaskawa Denki Seisakusho Method of control of moving element of magnetic levitation carrier apparatus
US5359490A (en) * 1989-08-24 1994-10-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Method of controlling moving element of magnetic levitation and transport system
US6734650B2 (en) * 2002-01-30 2004-05-11 Honeywell International, Inc. System and method for controlling an active magnetic bearing using continuous variable compensation
WO2017098541A1 (en) * 2015-12-10 2017-06-15 ダイキン工業株式会社 Magnetic bearing device and compressor
CN108368881A (en) * 2015-12-10 2018-08-03 大金工业株式会社 Magnetic bearing device and compressor
CN108368881B (en) * 2015-12-10 2019-12-27 大金工业株式会社 Magnetic bearing device and compressor
US11137026B2 (en) 2017-07-04 2021-10-05 Hitachi, Ltd. Control device for magnetic bearing and control method

Similar Documents

Publication Publication Date Title
JP3068834B2 (en) Radial and axial bearings for rotors with large radii
US5543673A (en) High performance magnetic bearing
JPS61224015A (en) Active vibration isolator
EP0789160A2 (en) Magnetically levitated vibration damping apparatus
JPS63308215A (en) Control method for magnetic bearing
JPH04258546A (en) Hydraulic type damping coupler and damping device employing said coupler
Mizuno et al. Development of a three-axis active vibration isolation system using zero-power magnetic suspension
US20150145363A1 (en) Magnetic wheel bearing
US5376871A (en) Method of controlling position of rotary shaft in magnetic bearing
Berkelman et al. Analysis and testing of a four coil magnetic levitation configuration
EP0378678B1 (en) Electromagnetic bearings
JPH0555728B2 (en)
Whitlow Modeling and control of non-laminated active magnetic thrust bearings
JP4344601B2 (en) Magnetic bearing low disturbance control device
JPH07305723A (en) Passive magnetic bearing device
JPH02219455A (en) Linear motor supporting mechanism
JPH0686576A (en) Electromagnetic actuator
RU2156441C2 (en) Gear for suspension of ferromagnetic spherical rotor
Xie et al. Adaptive model following control method for actively controlled magnetic bearing momentum wheel
JPH04258524A (en) Radial magnetic bearing device
JPH0534336Y2 (en)
Costic et al. Autobalancing DCAL controller for a rotating unbalanced disk
Başaran The design and adaptive control of a novel hybrid magnetic bearing system
Selmy et al. A new novel six-degree of freedom two-link manipulator using active magnetic bearing: Design, kinematics, and control
JPH05122892A (en) Linear dynamic magnetic bearing device