JPS63307358A - Method for recognizing position of plural fishes - Google Patents

Method for recognizing position of plural fishes

Info

Publication number
JPS63307358A
JPS63307358A JP14311987A JP14311987A JPS63307358A JP S63307358 A JPS63307358 A JP S63307358A JP 14311987 A JP14311987 A JP 14311987A JP 14311987 A JP14311987 A JP 14311987A JP S63307358 A JPS63307358 A JP S63307358A
Authority
JP
Japan
Prior art keywords
circuit
fish
image
fishes
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14311987A
Other languages
Japanese (ja)
Other versions
JPH07104335B2 (en
Inventor
Takashi Iida
飯田 高士
Takashi Katori
香取 隆
Naoki Hara
直樹 原
Mikio Yoda
幹雄 依田
Kenji Baba
研二 馬場
Toshio Yahagi
矢萩 捷夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP14311987A priority Critical patent/JPH07104335B2/en
Publication of JPS63307358A publication Critical patent/JPS63307358A/en
Publication of JPH07104335B2 publication Critical patent/JPH07104335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method for accurately detecting the behavior states of plural living bodies by labeling the living bodies as one of image processing methods and extracting an image of each living body solid body. CONSTITUTION:An image monitoring device 30 picks up an image of fishes in a water tank by an image pickup device 20 and a signal which is outputted at constant intervals is A/D-converted 32 and stored in a multilevel image memory 32M. A threshold determining circuit 34 determines a binary coding threshold value with a calculation result from a brightness frequency distribution calculating circuit 33 and a signal from a fish body area setting circuit 34S. The signal of the memory 32M and a circuit 34 is stored into a binarization memory 35M with a binarization circuit 35. Then binarization fish images are numbered according to the area and a gravity center calculating circuit 37 calculates the centers of gravity of the fishes according to the number of the binarization fish. An overlap counting circuit 38 calculates the number of overlaps of fishes from a specific expression and an overlap distributing circuit 39 distributes the found number of overlaps in the area increasing order. Here, an abnormal position judging circuit 40 judges abnormal water quality and sends out a warning signal when the number of fishes nearby the water surface is larger than a set value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浄水場や下水処理場の流入水中及び処理水中
で、飼育する複数の生物を画像監視する事に関し、水棲
動物の個体毎の行動を的確に把握する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to image monitoring of a plurality of organisms kept in inflow water and treated water of a water purification plant or sewage treatment plant. Concerning how to accurately understand behavior.

〔従来の技術〕[Conventional technology]

浄水場などでは原水中に毒物が混入したか否かを判定す
るために、原水や浄水の一部を水槽に導きこの水槽でフ
ナ、コイ、ウグイ、タナゴ、オイカワ及び金魚などの魚
類を飼育している。同様に。
At water treatment plants, in order to determine whether or not toxins have been mixed into the raw water, a portion of the raw water or purified water is introduced into an aquarium where fish such as crucian carp, carp, dace, tanago, oysterfish, and goldfish are raised. ing. Similarly.

下水処理場の処理水や放流水及び河川水並びに湖沼につ
いて水中の毒物の有無を監視するために、魚類を飼育す
る場合がある。水中に毒物が混入した場合には、前記魚
類が異常に行動したり死んだりするのでこれを目視で監
視している。しかし、目視に頼っており、人が監視して
いない時には検出できないので、自動監視が望まれてい
た。
Fish are sometimes kept in order to monitor the presence of toxic substances in treated water from sewage treatment plants, discharged water, river water, and lakes. If poisonous substances are mixed into the water, the fish may behave abnormally or die, so this is visually monitored. However, since it relies on visual inspection and cannot be detected unless a person is monitoring it, automatic monitoring has been desired.

魚の自動監視方法としては、水槽中の魚を水槽上部から
工業用テレビカメラで撮影し、画像処理する方法(文献
:第36目金国水道研究発表会。
An automatic method for monitoring fish is to photograph fish in an aquarium from the top of the tank using an industrial television camera and process the images (Reference: 36th Gold National Waterworks Research Presentation Association).

溝演集p、464〜466が考案されている。この手法
は、水質異常によって死んだ魚が水面に腹部を上にして
77き上がる現象をカメラで、「ある大きさ以上の独立
した明点」として、aK 2し、水質異常の警報を発す
るものである。また、特開昭61−46294では水質
を監視するために、複数の生物の行動パターンを監視す
る方法が開示されている。開示技術では水質センサによ
り温度や水質を計測し、この計測値を参考にして行動パ
ターンの正常異常を判定することが記載されている。行
動パターンとしては、速度や位置も含むことが記載され
ている。しかし、単に行動パターンを画像技術を用いて
解析するといっても、そのような思想は従来公知のこと
であって、?j[数少物の速度と位置とを具体的にどの
ようにして検出あるいは評価するのかについては開示さ
れていないので実施困難である。
The Mizo Enshu p, 464-466 have been devised. This method uses a camera to capture the phenomenon of fish that have died due to abnormal water quality rising up onto the surface of the water with their bellies facing upwards, detecting them as ``independent bright spots of a certain size or larger'', and detecting them as aK2, which then issues a warning of abnormal water quality. It is. Further, Japanese Patent Laid-Open No. 61-46294 discloses a method of monitoring the behavior patterns of a plurality of living things in order to monitor water quality. The disclosed technique describes that a water quality sensor measures temperature and water quality, and the measured values are used as a reference to determine whether a behavioral pattern is normal or abnormal. It is stated that the behavior pattern includes speed and position. However, even if we simply analyze behavioral patterns using image technology, is this idea already known? j [It is difficult to implement because it does not disclose how to specifically detect or evaluate the speed and position of a few objects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち、死んだ魚を察知する手法は、第1
に魚が死んで浮きあがるまで、水質異常の検知不可であ
ること、第2に魚が水槽底部で死に、浮き上がらない場
合の対処がなされていないことの問題点があった。また
、特開61−46294では、異常水質の具体的検出手
法が開示されていないので、実施困難である。さらに、
供試魚が1尾では、その挙動状態から、病気・水質異常
の区別が困難である。
Among the above conventional techniques, the first method is to detect dead fish.
Second, there was a problem in that water quality abnormalities could not be detected until the fish died and floated to the surface.Secondly, there was a problem in that no measures were taken when the fish died at the bottom of the tank and did not float to the surface. Moreover, since JP-A No. 61-46294 does not disclose a specific method for detecting abnormal water quality, it is difficult to implement. moreover,
If only one fish is tested, it is difficult to distinguish between disease and water quality abnormalities based on its behavior.

本発明の目的は、複数の生物の行動状態を的確に検出で
きる手法を提供することにある。
An object of the present invention is to provide a method that can accurately detect the behavioral states of multiple living things.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複数の生物を画像処理手法の1つである、
ラベリングを行って、生物個体毎の画像を抽出し、生物
個体の水槽中の位置算出によって、達成される。
The above purpose is one of the image processing methods for multiple living things.
This is achieved by performing labeling, extracting images for each individual creature, and calculating the position of the individual creature in the aquarium.

〔作用〕[Effect]

魚は、異常水質時、鼻上げと呼ばれる、水面に口を出す
行動をする。魚の水槽中における位置を個体別に逐次検
出することによって、この異常行動を的確に把握でき、
魚の行動状況を効果的に評価できる。
When fish have abnormal water quality, they exhibit a behavior called nose raising, in which they stick their mouths out to the surface of the water. By sequentially detecting the position of each individual fish in the aquarium, we can accurately understand this abnormal behavior.
The behavioral status of fish can be evaluated effectively.

〔実施例〕〔Example〕

以下に図面を用いて、実施例を説明する。 Examples will be described below with reference to the drawings.

第1図を用いて実施例の構成を説明する。The configuration of the embodiment will be explained using FIG.

被検水は給水管11と給水ポンプ12によって水槽10
に供給される。水槽10内に導かれた水は排水管13に
よって排水される。水槽10内には金網や多孔板などの
仕切板18A及び18Bによって仕切られた飼育空間1
9がありここで魚14A、14B、14Cを飼育する1
本実施例では、魚が3尾の場合を説明するが、さらに多
数の場合にも同様の実施例となる。照明装置ill 5
A。
The water to be tested is transferred to a water tank 10 by a water supply pipe 11 and a water supply pump 12.
supplied to The water introduced into the water tank 10 is drained through a drain pipe 13. In the aquarium 10, a breeding space 1 is partitioned by partition plates 18A and 18B such as wire mesh or perforated plates.
There is 9, and here fish 14A, 14B, 14C are raised 1
In this embodiment, a case where there are three fish will be explained, but a similar embodiment can be applied to a case where there are more fish. lighting device ill 5
A.

15Bは水槽10内の魚14を照らす。照明装置15A
、15Bと水槽1oとの間にはスリガラスや紙などの半
透明物質を材質とする半透明板16を設ける。照明袋[
15A、15Bの光を受けて半透明板16は光を散乱さ
せて、半透明板16全体から発する光は水槽10を照ら
す。照明装置15A、15Bからみて水槽1oの反対側
に工業用テレビカメラ(ITV)などの撮像装置20を
配置する。すなわち、撮像装置20は照明装置15A、
15Bから発して半透明板16を通った光を撮像する。
15B illuminates the fish 14 in the aquarium 10. Lighting device 15A
, 15B and the aquarium 1o are provided with a semitransparent plate 16 made of a semitransparent substance such as ground glass or paper. Lighting bag [
The semi-transparent plate 16 receives the lights 15A and 15B and scatters the light, and the light emitted from the entire semi-transparent plate 16 illuminates the aquarium 10. An imaging device 20 such as an industrial television camera (ITV) is arranged on the opposite side of the water tank 1o when viewed from the lighting devices 15A and 15B. That is, the imaging device 20 includes the lighting device 15A,
The light emitted from 15B and passing through the semi-transparent plate 16 is imaged.

ここで、撮像装置20は飼育空間19を撮像する。また
、水中溶存酸素欠乏により、魚が、水面に来る事を防ぐ
ため、曝気装置17を水槽中に設ける。
Here, the imaging device 20 images the rearing space 19. Furthermore, an aeration device 17 is provided in the tank to prevent fish from coming to the water surface due to lack of dissolved oxygen in the water.

撮像装置20の信号は画像監視装置30に導かれる0画
像監視装置30の構成と動作の詳細な説明は後述する。
The signal from the imaging device 20 is guided to the image monitoring device 30. A detailed explanation of the configuration and operation of the image monitoring device 30 will be given later.

画像監視装置30の機能を簡単に説明すると1画像監視
装置30では、まず、予め設定された時fif1間隔り
毎に撮像画像を取り込んで魚体を画像認識し、魚体の重
心を計算する。時間間隔り毎に魚の重心が順次計算され
てこの結果がメモリに記憶される。このメモリ情報に基
づいて、予め設定した計測時間Tにおける魚の位置(重
心)の統計的なパターンを計算して魚14の行動を監視
し、この監視結果に基づいて異常の場合には警報を警報
装置70より発する。
To briefly explain the functions of the image monitoring device 30, the one-image monitoring device 30 first captures captured images at preset time intervals of 1, performs image recognition of the fish body, and calculates the center of gravity of the fish body. The center of gravity of the fish is calculated sequentially at each time interval and the results are stored in memory. Based on this memory information, the behavior of the fish 14 is monitored by calculating a statistical pattern of the fish's position (center of gravity) at a preset measurement time T, and an alarm is issued in the event of an abnormality based on the monitoring results. Emitted from the device 70.

モニターテレビ50は撮像した画像を表示する。A monitor television 50 displays the captured image.

画像モニター60は画像監視装置30の信号を受けて1
画像認識結果を表示する。
The image monitor 60 receives the signal from the image monitoring device 30 and
Display image recognition results.

次に1画像監視装置30の構成を詳細に説明する。タイ
マ31Sは初期設定された時間1’JJll?’lh毎
にA/D変換器32にトリガ信号を出力する。A/D変
換器32はこのトリガ信号に同期して撮像装置20から
出力された画像信号を受けて、これをアナログ値からデ
ジタル値に変換して多値画像メモリ32Mに記憶する。
Next, the configuration of the one-image monitoring device 30 will be explained in detail. The timer 31S has an initial setting time of 1'JJll? A trigger signal is output to the A/D converter 32 every 'lh. The A/D converter 32 receives the image signal output from the imaging device 20 in synchronization with this trigger signal, converts it from an analog value to a digital value, and stores it in the multivalued image memory 32M.

輝度頻度分布計算回路33は多値画像メモリ32Mの信
号を受けて多値画像の輝度頻度分布(ヒストグラム)を
計算する。
The brightness frequency distribution calculation circuit 33 receives the signal from the multivalued image memory 32M and calculates the brightness frequency distribution (histogram) of the multivalued image.

ここで、輝度頻度分布とは、多値画像の多値(輝度)の
頻度を表す。閾値決定回路34は輝度頻度分布の計算結
果を受ける一方で、魚体面積設定回路34Sの信号を受
け、両信号に基づいて2値化の閾値を決定する。2値化
回路35は多値画像メモリ32Mの信号と閾値決定回路
34の信号を受け、2値化メモリ35Mに記憶する。画
像番号術は回路36では、2値化した魚14A、14B
Here, the brightness frequency distribution represents the frequency of multivalues (brightness) of a multivalued image. The threshold value determination circuit 34 receives the calculation result of the brightness frequency distribution, and also receives the signal from the fish body area setting circuit 34S, and determines the threshold value for binarization based on both signals. The binarization circuit 35 receives the signal from the multilevel image memory 32M and the signal from the threshold value determination circuit 34, and stores them in the binarization memory 35M. In the image numbering circuit 36, the binarized fish 14A and 14B are
.

14Cの部分について、面積の大きな順に、番号付けを
行なう。重心計算回路37では、2値化した魚の部分に
ついて、番号順に重心を計算する。
The portions 14C are numbered in descending order of area. The center of gravity calculation circuit 37 calculates the center of gravity of the binarized parts of the fish in numerical order.

重なり数計算回路38では、点数設定回路38Sより、
魚の全体数Nの入力と、番号付けを行なった全体数mか
ら、魚どうしの重なり数Pを計算する。この値は、下式
で表わされる。
In the overlap number calculation circuit 38, from the point setting circuit 38S,
From the input of the total number of fish N and the numbered total number m, the number P of overlapping fish is calculated. This value is expressed by the following formula.

P=N−m               ・・・(1
)重なり分配回路39では、(1)式で求めた重なり数
Pを、面積の大きな魚の順に分配する。異常位置判断回
路40は、異常設定回路40Sと、魚の重心位置から、
魚の水面付近に居る数が、設定した魚の数より多い場合
異常水質と判断し、プ報信号を警報装置70に出力する
P=N-m...(1
) The overlap distribution circuit 39 distributes the number of overlaps P obtained by equation (1) in the order of the fish with the largest area. The abnormal position determination circuit 40 determines from the abnormal setting circuit 40S and the position of the center of gravity of the fish.
If the number of fish near the water surface is greater than the set number of fish, it is determined that the water quality is abnormal, and a warning signal is output to the alarm device 70.

次に画像監視装置30の動作を詳細に説明する。Next, the operation of the image monitoring device 30 will be explained in detail.

タイマ31Tは、時間間隔り毎にA/D変換器32にA
/D変換のトリガ信号を出力する。このhは、0.1 
秒ないし2秒程度であり、この時間間隔で以下の画像処
理を実行する。
The timer 31T outputs A to the A/D converter 32 at each time interval.
/D conversion trigger signal is output. This h is 0.1
The time interval is about 1 to 2 seconds, and the following image processing is executed at this time interval.

A/D変換器32はタイマ31Tから出力されたトリガ
信号に同期して撮像装置20からの多値画像信号をアナ
ログ値からデジタル値に変換し。
The A/D converter 32 converts the multivalued image signal from the imaging device 20 from analog values to digital values in synchronization with the trigger signal output from the timer 31T.

デジタルの多値画像信号を多値画像メモリ32Mに記憶
する。多値画像メモリ32Mには縦が256個、横が2
56個の記憶場所があり、各々の記憶場所に対応する画
素の輝度信号がデジタル値で格納される。この記憶場所
のi行j列(i=1〜256、j=1〜256)目の信
号(輝度)をG(i、j)と表すものとする。A/D変
換器32がアナログ値を7ビツトのデジタル値に変換す
るものであればa (1t j)は128段階のデジタ
ル値をもつ。多値画像メモリ32Mに格納された多値画
像の例を第3図に示す。第3図は多値の輝度をもつ画像
を表す。輝度頻度分布計算回路33は多値画像の輝度頻
度分布を計算する。第3図の輝度頻度分布を第4図に示
す。閾値決定回路34は輝度頻度分布の計算結果を受け
て閾値■を決定する。次に、閾値工の設定法について説
明する。
The digital multi-value image signal is stored in the multi-value image memory 32M. The multivalued image memory 32M has 256 images in the vertical direction and 2 images in the horizontal direction.
There are 56 memory locations, and the luminance signal of the pixel corresponding to each memory location is stored as a digital value. The signal (luminance) at the i-th row and j-th column (i=1 to 256, j=1 to 256) of this storage location is expressed as G(i, j). If the A/D converter 32 converts analog values into 7-bit digital values, a (1t j) has 128 levels of digital values. FIG. 3 shows an example of a multivalued image stored in the multivalued image memory 32M. FIG. 3 represents an image with multilevel luminance. The brightness frequency distribution calculation circuit 33 calculates the brightness frequency distribution of the multivalued image. The brightness frequency distribution of FIG. 3 is shown in FIG. The threshold value determination circuit 34 determines the threshold value ■ upon receiving the calculation result of the brightness frequency distribution. Next, a method for setting the threshold value will be explained.

第4図は輝度頻度分布を表す。本発明の照明法では魚群
14は必ず暗い物体として撮像できるので、第4図に示
すように輝度が低いところから魚群14の面積(ハツチ
ングで示し、この面積をfとする)だけいったところに
第1の閾値Ilを設定する。面積fは状態によって異な
るので、最小の面積を設定する。この閾値段定法は水が
濁った時に特に有効である。しかし、水が濁っていない
場合には第2の閾値工2を使用するほうがよい。
FIG. 4 represents the brightness frequency distribution. With the illumination method of the present invention, the fish school 14 can always be imaged as a dark object, so as shown in FIG. A first threshold value Il is set. Since the area f varies depending on the state, the minimum area is set. This threshold value determination method is particularly effective when the water is cloudy. However, if the water is not cloudy, it is better to use the second threshold 2.

第4図においてピークPfは魚体を、ピークpbは背景
を、Peで表す部分は魚のえらと輪郭を表す。魚体のみ
を抽出するにはPfとPeとの境界に第2の閾値工2を
設定する。第4図に示すように、あらかじめ閾値を少な
くとも輝度■1としておき、輝度が高くなる方向に各頻
度を検索しながらさらにPfとPeとの境界(最小値)
があればこの輝度に工2を選ぶ。
In FIG. 4, the peak Pf represents the fish body, the peak pb represents the background, and the portion represented by Pe represents the gills and outline of the fish. In order to extract only the fish body, a second threshold value 2 is set at the boundary between Pf and Pe. As shown in Fig. 4, the threshold value is set to at least luminance ■1 in advance, and while searching each frequency in the direction of increasing luminance, the boundary (minimum value) between Pf and Pe is set.
If there is, select 2 for this brightness.

次に、2値化回路35は多値画像メモリ32Mの信号と
閾値決定回路34の信号I (IfまたI2)を受け、
多値画像を2値化して2値メモリ35Mに記憶する。次
に、2値化回路35の具体的動作について説明する。2
値化回路35では多値画像メモリ32Mの輝度G(IT
J)を受けて。
Next, the binarization circuit 35 receives the signal from the multivalued image memory 32M and the signal I (If or I2) from the threshold value determination circuit 34,
The multivalued image is binarized and stored in the binary memory 35M. Next, the specific operation of the binarization circuit 35 will be explained. 2
In the value converting circuit 35, the luminance G (IT
J) received.

閾値よりも明るい画素を全て1′0”レベルとし、逆に
閾値よりも暗い画素を全てIt 1 ++レベルとして
、2値化メモリ35Mに格納する。この2値化された信
号の集合をB(jyj)とすると2値化の計算は次式で
表される。
All pixels brighter than the threshold are set to 1'0" level, and conversely, all pixels darker than the threshold are set to It 1 ++ level and stored in the binarization memory 35M. This set of binarized signals is stored as B( jyj), the binarization calculation is expressed by the following equation.

G (x r J)≧■ならば、B(i、j)=O・・
・(2)G(i、j)<Iならば、B(i、j)=1・
・・(3)(2) (3)式を各画素について全て計算
することによって、背景を“O″レベル魚群14を“1
”レベルとすることができる。第3図を2値化した結果
を第5図に示す。t4111の部分をハツチングで示す
If G (x r J)≧■, then B(i, j)=O...
・(2) If G(i, j)<I, then B(i, j)=1・
...(3)(2) By calculating equation (3) for each pixel, the background is set to "O" level, and the fish school 14 is set to "1".
The result of binarizing FIG. 3 is shown in FIG. 5. The portion t4111 is shown by hatching.

画像番号材は回路36は、2値化メモリ35Mの信号を
受けて1面積の大きい順に、番号付けを行なう。第5図
の画像は、第6図のように面積が大きい順に番号付けら
れて、認識される。尚、画像番号材は回路36は、1画
面中最大256個の独立する物体に対して、1〜256
の番号付けが行える。続いて、重心計算回路37は、番
号付は順に、2値化画像の重心計算を行なって1gL*
g2の重心をそれぞれ求める。重なり数計算回路38で
は、負数設定回路38Sで設定した飼育魚数Nから番号
付けした全体数mを引算して、画像中で重なり合った数
Pを計算する。重なり数分配回路39では、面積の大き
い順に、重なり合った数Pを、面積数の重みによって分
配する。第6図では−gt * gzの重心座標を示す
物体は、各々1つずつであるが、重なり合った数Pは、
面積(Sz>St)より、glに割り付けされ、glの
重心を示す物体は、2つと認識される。
The image numbering circuit 36 receives the signal from the binarization memory 35M and numbers the images in descending order of area. The images in FIG. 5 are recognized by being numbered in descending order of area as shown in FIG. 6. In addition, the image numbering material circuit 36 is 1 to 256 for a maximum of 256 independent objects in one screen.
can be numbered. Subsequently, the center of gravity calculation circuit 37 calculates the center of gravity of the binarized images in the order of numbering to obtain 1gL*.
Find the center of gravity of g2. The overlap number calculation circuit 38 calculates the number P of overlaps in the image by subtracting the total number m of numbered fish from the number N of reared fish set by the negative number setting circuit 38S. The overlap number distribution circuit 39 distributes the overlap number P in descending order of area based on the weight of the area number. In Figure 6, there is one object each with barycentric coordinates of -gt * gz, but the number of overlapping objects P is
From the area (Sz>St), it is recognized that there are two objects assigned to gl and indicating the center of gravity of gl.

異常位置判断回路40は、異常水質時、魚が居ると予想
される鉛直方向座標りと、その位置に居る魚体数を、異
常設定回路408から受けて、計算した重心、魚体数と
の比較を行ない、設定した魚の数より多くの魚が、座標
し付近に居ると異常であると判断し、警報装置70に信
号を出力する。
The abnormal position judgment circuit 40 receives the vertical coordinates where fish are expected to be located and the number of fish at that position from the abnormality setting circuit 408 when the water quality is abnormal, and compares them with the calculated center of gravity and the number of fish. If there are more fish than the set number of fish near the coordinates, it is determined that there is an abnormality and a signal is output to the alarm device 70.

異常設定回路408で設定する異常水質時の魚が居る位
置とは、異常水質によって魚が起こす鼻上げ行動によっ
て定める。鼻上げ行動は、水槽水面付近で行われるので
、水面付近の値を異常水質時・の魚の位置とする。
The position where fish exist when the water quality is abnormal, which is set by the abnormality setting circuit 408, is determined by the nose-up behavior caused by the fish due to the abnormal water quality. Since the nose-raising behavior occurs near the water surface of the aquarium, the value near the water surface is taken as the position of the fish when the water quality is abnormal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数の生物群の水槽中の位置を計算で
き、設定した範囲内の個体数の把握可能であるため、飼
育生物の種類や大小に関わらず、水質異常時に示す鼻上
げ行動を表す魚類の、飼育全体数に占める割合から、よ
り高度で適確な水質監視を行うことのできる効果がある
According to the present invention, the positions of multiple groups of organisms in the aquarium can be calculated, and the number of individuals within a set range can be ascertained. It is effective to conduct more advanced and accurate water quality monitoring based on the proportion of fish representing the total number of fish kept6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は実施例におけ
る画像処理装置の詳細説明図、第3図は複数匹の魚群を
撮像した多値画像図、第4図は輝度頻度分布図、第5図
は2値画像図、第6図は2値画像に関して番号付けを表
す図である。 10・・・水槽、14・・・魚、20・・・撮像装置、
32・・・A/D変換器、35・・・2値化回路、36
・・・画像番号材は回路、38・・・重なり数計算回路
、40・・・異常位置判断回路、5o・・・モニタテレ
ビ、60・・・画第3図 ・茅仝図
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is a detailed explanatory diagram of an image processing device in an embodiment, Fig. 3 is a multilevel image diagram of a school of multiple fish, and Fig. 4 is a brightness frequency distribution. 5 is a binary image diagram, and FIG. 6 is a diagram showing numbering regarding the binary image. 10...Aquarium, 14...Fish, 20...Imaging device,
32... A/D converter, 35... Binarization circuit, 36
...Image number material is circuit, 38...Overlap number calculation circuit, 40...Abnormal position judgment circuit, 5o...Monitor TV, 60...Picture 3/Mao diagram

Claims (1)

【特許請求の範囲】[Claims] 1、水中の毒物流入検知のための複数匹の水棲生物を飼
育する水槽と、該生物の画像情報を一定の時間間隔で電
気信号に変換する撮像装置と、前記生物を照明する照明
装置と、前記撮像装置で撮像した多値画像から前記生物
を2値画像として抽出する生物2値化手段と、前記生物
の位置を個体別に認識する手段と、前記生物の位置を計
算する手段を具備した、画像監視装置において、前記生
物の位置により水質異常を検出することを特徴とした複
数魚の位置認識法。
1. An aquarium in which a plurality of aquatic creatures are kept for detecting the inflow of toxic substances into water, an imaging device that converts image information of the creatures into electrical signals at regular time intervals, and a lighting device that illuminates the creatures; A creature binarizing means for extracting the living thing as a binary image from a multivalued image captured by the imaging device, a means for recognizing the position of the living thing individually, and a means for calculating the position of the living thing. A method for recognizing the position of a plurality of fish, characterized in that an abnormality in water quality is detected based on the position of the creature in an image monitoring device.
JP14311987A 1987-06-10 1987-06-10 Method for detecting abnormal water quality by fish Expired - Lifetime JPH07104335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14311987A JPH07104335B2 (en) 1987-06-10 1987-06-10 Method for detecting abnormal water quality by fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14311987A JPH07104335B2 (en) 1987-06-10 1987-06-10 Method for detecting abnormal water quality by fish

Publications (2)

Publication Number Publication Date
JPS63307358A true JPS63307358A (en) 1988-12-15
JPH07104335B2 JPH07104335B2 (en) 1995-11-13

Family

ID=15331356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14311987A Expired - Lifetime JPH07104335B2 (en) 1987-06-10 1987-06-10 Method for detecting abnormal water quality by fish

Country Status (1)

Country Link
JP (1) JPH07104335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429763A (en) * 1987-07-27 1989-01-31 Hitachi Ltd Method and device for monitoring water quality containing knowledge processing
CN111476765A (en) * 2020-03-30 2020-07-31 深圳市水务(集团)有限公司 Water quality judging method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429763A (en) * 1987-07-27 1989-01-31 Hitachi Ltd Method and device for monitoring water quality containing knowledge processing
CN111476765A (en) * 2020-03-30 2020-07-31 深圳市水务(集团)有限公司 Water quality judging method and device

Also Published As

Publication number Publication date
JPH07104335B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
Zion et al. In-vivo fish sorting by computer vision
JPH0785080B2 (en) Fish condition monitor
CN111862246A (en) Intelligent counting method and device for prawn seedlings
CN107830891B (en) Data processing method based on aquaculture water pH value multi-parameter data acquisition device
JPH05263411A (en) Object observation method and device
JPS63307358A (en) Method for recognizing position of plural fishes
CN106417104A (en) Cultured fish swimming direction detecting system and method
JPH0668489B2 (en) Aquatic animal monitoring device
JPH01285854A (en) Apparatus for detecting dangerous degree of invading poison by school of fish
CN109118540B (en) Sturgeon rapid statistical method based on ridge line extraction
JPS63135859A (en) Abnormal water quality monitor
CN1162119A (en) Apparatus for monitoring water quality using aquatic living thing
JPS63179252A (en) Detector of poison produced by aquatic animal
JPH01150855A (en) Image monitoring device for fishes
JP2005227114A (en) System for determining abnormality in water quality, method therefor, image monitor, program therefor, and storage medium therefor
JPS63213080A (en) Picture monitor device for organism group
JPH0737975B2 (en) Biological image monitoring device
JP2526238B2 (en) Image recognition system for aquatic animals raised in a fixed breeding space
JPH0785082B2 (en) Water quality abnormality detector
JPS6366460A (en) Image monitor for aquatic animal
JPH11142394A (en) Apparatus for detecting water quality abnormality
JPS63175766A (en) Abnormal water quality detector
JPS6390761A (en) Image monitoring device for aquatic animal
JPH01217265A (en) Apparatus for detecting abnormality of water quality
JPH0785079B2 (en) Fish condition monitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12