JPS63307151A - Oxide ceramics based superconductor and production thereof - Google Patents

Oxide ceramics based superconductor and production thereof

Info

Publication number
JPS63307151A
JPS63307151A JP62141208A JP14120887A JPS63307151A JP S63307151 A JPS63307151 A JP S63307151A JP 62141208 A JP62141208 A JP 62141208A JP 14120887 A JP14120887 A JP 14120887A JP S63307151 A JPS63307151 A JP S63307151A
Authority
JP
Japan
Prior art keywords
powder
oxide ceramic
oxygen compound
superconducting
compound powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141208A
Other languages
Japanese (ja)
Inventor
Shuji Sakai
修二 酒井
Hajime Sasaki
元 佐々木
Masahiro Kiyofuji
雅宏 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62141208A priority Critical patent/JPS63307151A/en
Publication of JPS63307151A publication Critical patent/JPS63307151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain complex oxide ceramics based superconductor having good stability and large electric current value and readily causing no damage by a fire, by constituting a complex consisting of a secondary sintered compact of a super conductive powder and ordinary conductive metal fine powder and a stabilized metal substance. CONSTITUTION:The above-mentioned oxide ceramic based superconductor is composed from a secondary sintered compact 1 of a superconductive powder and ordinary conductive metal fine powder having melting point lower than secondarily sintering temperature and stability metal product 2 containing ordinary conductive metal having melting point higher than the above-mentioned secondarily sintering temperature. The above- mentioned superconductive powder is preferably a mixed powder containing one or more kind of powders selected from copper-oxygen based compound powder, barium- oxygen based compound and/or strontium-oxygen based compound powder, yttrium- oxygen based compound powder, lanthanum-oxygen based compound powder and scandium-oxygen based compound powder. The above-mentioned ordinary conductive metal fine powder is preferably especially fine powder of zinc. The stabilized metal substance 2 is preferably silver, silver alloy, copper (copper free from oxygen), copper alloy substance, etc.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、酸化物セラミックス系超電導導体、特に、安
定化された複合化酸化物セラミックス系超電導導体およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an oxide ceramic superconducting conductor, particularly to a stabilized composite oxide ceramic superconducting conductor and a method for manufacturing the same.

〈従来技術〉 従来、超電導導体は、Nb−Ti、Nb−Zr、Nb−
Ti−Zr等の合金系、Nb3Sn、(Nb−Ti) 
3Sn%V3 Ga等の化合物系が提案されているが、
これらの超電導臨界温度(Tc)は、何れも20に以下
のものである。 また、実用化に至っていないが、Tc
の最も高いNb3Geにしても高々24に以下である。
<Prior art> Conventionally, superconducting conductors are Nb-Ti, Nb-Zr, Nb-
Alloy systems such as Ti-Zr, Nb3Sn, (Nb-Ti)
Compound systems such as 3Sn%V3Ga have been proposed, but
All of these superconducting critical temperatures (Tc) are below 20. Also, although it has not been put to practical use, Tc
Even if Nb3Ge has the highest value, it is at most 24 or less.

 従ってこれらの超電導導体は、冷媒としては、液体ヘ
リウムを使用せざるを得ない。 この液体ヘリウムは沸
点が低((4,2K)、非常に高価、かつ液体状態に保
つためには高度な断熱技術を必要とする。
Therefore, these superconducting conductors have no choice but to use liquid helium as a coolant. This liquid helium has a low boiling point ((4,2K)), is very expensive, and requires advanced insulation techniques to keep it in a liquid state.

最近、La−Ba−Cu−0系、La−3r−Cu−0
系、Y−Ba−Cu−0系、5c−Ba−Cu−0系等
の層状ペロブスカイト型セラミックスにおいて、臨界温
度(Tc)が35に〜175にといった高温の酸化物セ
ラミックス系超電導体が発見されている。 しかし、こ
の酸化物セラミックス系超電導体の導体化は、いまだ十
分にはなされておらず、当然、臨界電流密度(Jc)も
低いレベルの状態にある。
Recently, La-Ba-Cu-0 series, La-3r-Cu-0
In layered perovskite ceramics such as Y-Ba-Cu-0, Y-Ba-Cu-0, and 5c-Ba-Cu-0, high-temperature oxide ceramic superconductors with critical temperatures (Tc) of 35 to 175 were discovered. ing. However, this oxide ceramic superconductor has not yet been sufficiently made into a conductor, and naturally its critical current density (Jc) is still at a low level.

しかし、酸化物セラミックス系超電導体を用いることが
できれば、臨界温度(T’ c )が高いので冷媒とし
て、安価でかつ高度な断熱技術を要しない液体窒素(沸
点77K)を使用することが可能なものもあり、全体的
なコストは従来の液体ヘリウムを使用した超電導導体に
比べ激減する。
However, if an oxide ceramic superconductor can be used, it is possible to use liquid nitrogen (boiling point 77K) as a refrigerant, which is inexpensive and does not require advanced insulation technology because of its high critical temperature (T' c ). The overall cost is dramatically reduced compared to conventional superconducting conductors using liquid helium.

しかし、このような酸化物セラミックス系超電導導体に
大電流を流すことができても超電導体の超電導状態が破
れ常電導状態になった場合、従来のN b  T i 
、 N b3S n超電導導体と同様に、非抵抗が非常
に小さい金属(たとえば銅など)を安定化材として使用
し導体の安定化を図らなければ、酸化物セラミックス系
超電導体の常電導状態での比抵抗は、銅の比抵抗=10
−’Ω・cm(77K)に比べて=10−3Ω・cmと
非常に大きいので焼損する可能性が高いなどの問題もあ
る。
However, even if a large current can be passed through such an oxide ceramic superconducting conductor, if the superconducting state of the superconductor is broken and it becomes a normal conducting state, the conventional N b Ti
, N b3S n As with superconducting conductors, unless a metal with very low non-resistance (such as copper) is used as a stabilizing material to stabilize the conductor, the normal conductivity of oxide ceramic superconductors will decrease. The specific resistance is copper specific resistance = 10
-'Ω·cm (=10 −3 Ω·cm), which is very large compared to 77K, so there are problems such as a high possibility of burnout.

ところが従来のCu安定化Nb−TiまたはNb3 S
n系超電導導体は、安定化材と超電導体とが共に金属で
あり、特に電気的密着性は良好で、界面電気抵抗は非常
に小さく安定化材Cuは実用上十分に機能を果した。
However, conventional Cu-stabilized Nb-Ti or Nb3S
In the n-type superconducting conductor, both the stabilizing material and the superconductor are metals, and the electrical adhesion is particularly good, the interfacial electrical resistance is very small, and the stabilizing material Cu functions satisfactorily in practical use.

一方、酸化物セラミックス系超電導体は、金属との密着
性は悪く、特に電気的な界面抵抗は、約10にΩ/Cm
2にも達する。 このことは、酸化物セラミックス系超
電導体の超電導状態が破れた場合、界面抵抗が非常に大
きい為安定化材に電流が遷移せず、導体が焼損する可能
性があるなどの問題がある。
On the other hand, oxide ceramic superconductors have poor adhesion with metals, and in particular have an electrical interfacial resistance of about 10 Ω/Cm.
It even reaches 2. This poses a problem in that if the superconducting state of the oxide ceramic superconductor is broken, the interfacial resistance is so large that no current will transfer to the stabilizing material, and the conductor may burn out.

〈発明が解決しようとする問題点〉 本発明の目的は、上記従来技術の問題点を解消し、酸化
物セラミックス系超電導体と安定化材との密着性の良好
な、安定性が良く、臨界電流値が大きく、容易に焼損し
ない、新規な、安定化材が複合化された酸化物セラミッ
クス系超電導導体およびその製造方法を提供するにある
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a material with good adhesion between an oxide ceramic superconductor and a stabilizing material, good stability, and It is an object of the present invention to provide a novel oxide ceramic superconducting conductor compounded with a stabilizing material, which has a large current value and does not burn out easily, and a method for manufacturing the same.

〈問題を解決するための手段〉 本発明の第1の態様によれば、超電導性粉末と常電導性
金属微粉末との二次焼結体と、安定化金属体とを有する
ことを特徴とする酸化物セラミックス系超電導導体が提
供される。
<Means for solving the problem> According to the first aspect of the present invention, the present invention is characterized by having a secondary sintered body of superconducting powder and normal conductive metal fine powder, and a stabilizing metal body. An oxide ceramic-based superconducting conductor is provided.

また、本発明の第2の態様によれば、超電導性粉末と二
次焼結温度以下の融点を有する常電導性金属微粉末との
混合粉末と、前記二次焼結温度以上の融点を有する常電
導性金属を含有する安定化金属体とを複合化した後に、
二次焼結することを特徴とする酸化物セラミックス系超
電導導体の製造方法が提供される。
According to a second aspect of the present invention, a mixed powder of a superconducting powder and a normal conductive metal fine powder having a melting point below the secondary sintering temperature, and a mixed powder having a melting point above the secondary sintering temperature After compounding with a stabilizing metal body containing a normal conductive metal,
A method for manufacturing an oxide ceramic superconducting conductor is provided, which comprises performing secondary sintering.

また、前記超電導性粉末は一次焼結前の酸化物セラミッ
クス系超電導体の原料粉末であるのが好ましい。
Further, it is preferable that the superconducting powder is a raw material powder of an oxide ceramic superconductor before primary sintering.

また、前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
を含む混合粉末であるのが好ましい。
Further, the superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. Preferably, it is a mixed powder containing one or more types selected from the group consisting of compound powders.

また、前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
の混合粉末を一次焼結後に粉砕して製造した酸化物セラ
ミックス系超電導体粉末であるのが好ましい。
Further, the superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. It is preferable to use an oxide ceramic superconductor powder produced by primary sintering and then pulverizing a mixed powder with one or more compound powders selected from the group consisting of compound powders.

また、前記二次焼結体が、 組成式MM ’ 2Cu3Oy−6(但し、MはYlS
c、およびLa、Gd%Dy、Ho、Er。
Further, the secondary sintered body has a composition formula MM' 2Cu3Oy-6 (where M is YlS
c, and La, Gd%Dy, Ho, Er.

Yb、Lu、Eu等のランタニドからなる群より選ばれ
る少なくとも1種、M′はアルカリ土類金属群より選ば
れる少なくとも1種、δは欠損酸素を表わす)で示す酸
化物セラミックス系超電導体を含むものであるのが好ま
しい。
At least one member selected from the group consisting of lanthanides such as Yb, Lu, and Eu, M' is at least one member selected from the alkaline earth metal group, and δ represents deficient oxygen. It is preferable that the

また、前記複合化は管状の前記安定化金属体に前記超電
導性粉末−金属混合粉末を挿入して圧密化して、線材化
あるいはテープ化することであるのが好ましい。
Preferably, the composite is formed by inserting the superconducting powder-metal mixed powder into the tubular stabilized metal body, compacting it, and forming it into a wire or tape.

また、前記圧密化はスェージング、引抜きあるいは圧延
法により抽伸することであるのが好ましい。
Further, the consolidation is preferably carried out by drawing by swaging, drawing or rolling.

また、前記複合化は前記超電導性粉末−金属混合粉末を
熱分解によってそれ自身が実質的に消失するような有機
高分子化合物の溶液もしくはコロイド状分散液中に分散
混合した後、安定化金属に塗布することであるのが好ま
しい。
In addition, the above-mentioned compositing is carried out by dispersing and mixing the superconducting powder-metal mixed powder in a solution or colloidal dispersion of an organic polymer compound which itself substantially disappears by thermal decomposition, and then converting the superconducting powder-metal mixture into a stabilized metal. Preferably, it is applied by coating.

以下に、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明に用いられる超電導性粉末は一次焼結後に酸化物
セラミックス系超電導体になる一次焼結前の原料粉末あ
るいは既に焼結されて超電導性を有する酸化物セラミッ
クス系超電導体粉末であればどのようなものでもよい。
The superconducting powder used in the present invention may be a raw material powder before primary sintering that becomes an oxide ceramic superconductor after primary sintering, or an oxide ceramic superconducting powder that has already been sintered and has superconductivity. It can be anything.

ここで、酸化物セラミックス系超電導体とは、セラミッ
クス系の超電導体をいい、Y、Sc、およびLa、Gd
、Dy、)(o、Er。
Here, the oxide ceramic superconductor refers to a ceramic superconductor, including Y, Sc, La, and Gd.
, Dy, ) (o, Er.

Yb、Lu、Eu等のランタニドからなる群より選ばれ
る少なくとも1つの元素と、Ca、Sr、Ba等のアル
カリ土類金属の群より選ばれる少なくとも1つの元素と
、Cu元素と、0元素とから構成されたものであって、
臨界温度が従来の合金系超電導体よりも著しく高いこと
を特徴としている。 このような酸化物セラミックス系
超電導体としては、La−3r−Cu−0柔化合物、微
量のCaが混入したLa−5r−Cu−0柔化合物、M
−Ba−Cu−0柔化合物(但し、MはY、Sc、およ
びLa、Gd%Dy、Ho%Er、Yb。
At least one element selected from the group consisting of lanthanides such as Yb, Lu, Eu, at least one element selected from the group of alkaline earth metals such as Ca, Sr, Ba, Cu element, and 0 element. It is composed of
It is characterized by a significantly higher critical temperature than conventional alloy-based superconductors. Examples of such oxide ceramic superconductors include La-3r-Cu-0 soft compounds, La-5r-Cu-0 soft compounds mixed with a trace amount of Ca, and M
-Ba-Cu-0 soft compound (where M is Y, Sc, and La, Gd%Dy, Ho%Er, Yb.

Lu、Eu等のランタニドからなる群より選ばれる少な
くとも1種を表わす)等が好ましく、このうち、特に層
状ペロブスカイト構造を有する組成式MM’ 2Cu3
O7−5 (但し、Mは同上の元素、M′はアルカリ土
類金属の群より選ばれる少なくとも1種、δは欠損酸素
を表わす)等をあげることができる。
At least one member selected from the group consisting of lanthanides such as Lu and Eu is preferred, and among these, MM' 2Cu3 having a layered perovskite structure is particularly preferred.
O7-5 (where M is the same element as above, M' is at least one selected from the group of alkaline earth metals, and δ represents deficient oxygen).

これらはその原料となる元素あるいはその酸化物から粉
末混合法により焼結または共沈混連法あるいはスプレー
ドライにより粉末の焼結により製造することができる。
These can be manufactured by sintering the element or its oxide as a raw material by a powder mixing method, by coprecipitation mixing method, or by spray drying.

ここで、−次焼結後酸化物セラミックス系超電導体とな
る一次焼結前の原料粉末としては、前述のY、Sc、お
よびLa、Gd、Dy、Ho、Er、Yb、Lu、Eu
等のランタニドからなる群より選ばれる少なくとも1つ
の元素と、Ca、Sr、Ba等のアルカリ土類金属の群
より選ばれる少なくとも1つの元素と、Cu元素あるい
はこれらの元素の酸化物あるいは酸素を含む化合物の混
合粉末であればよいが、銅−酸素系化合物粉末と、バリ
ウム−酸素系化合物粉末および/またはストロンチウム
−酸素系化合物粉末と、イットリウム−酸素系化合物粉
末、ランタン−酸素系化合物粉末およびスカンジウム−
酸素系化合物粉末よりなる群から選ばれた1種以上を含
む混合粉末であるのが好ましい。 前記原料粉末の粒径
としては、1〜5μmと細かいほうが好ましい。
Here, as the raw material powder before primary sintering that becomes the oxide ceramic superconductor after secondary sintering, the above-mentioned Y, Sc, La, Gd, Dy, Ho, Er, Yb, Lu, Eu
At least one element selected from the group consisting of lanthanides such as, at least one element selected from the group of alkaline earth metals such as Ca, Sr, Ba, etc., and Cu element or oxides of these elements or oxygen. Any mixed powder of compounds may be used, such as copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium. −
Preferably, it is a mixed powder containing one or more types selected from the group consisting of oxygen-based compound powders. The particle size of the raw material powder is preferably as fine as 1 to 5 μm.

また、酸化物セラミックス系超電導体粉末としては、上
記した原料粉末を一次焼結して得た酸化物セラミックス
系超電導体を粉砕して製造したものであるのが好ましい
The oxide ceramic superconductor powder is preferably produced by pulverizing the oxide ceramic superconductor obtained by primary sintering the raw material powder described above.

前記−次焼結を行うに際しては、大気または酸素雰囲気
下で長時間(5〜10hr)焼結し、それを粉砕して再
焼結を繰返すのが良く、また、−次焼結温度は850〜
1050℃とするのが好ましい。
When performing the above-mentioned secondary sintering, it is preferable to sinter for a long time (5 to 10 hr) in air or oxygen atmosphere, crush it, and repeat re-sintering, and the secondary sintering temperature is 850°C. ~
The temperature is preferably 1050°C.

本発明に用いられる常電導性金属微粉末とは、二次焼結
温度以下の融点を有する常電導性金属の微粉末である。
The normal conductive metal fine powder used in the present invention is a normal conductive metal fine powder having a melting point below the secondary sintering temperature.

二次焼結温度以下の融点を有する常電導性金属の微粉末
としては、融点が二次焼結温度以下の低融点金属の1種
または2種以上を含む微粉末であれば何でもよく、例え
ば、亜鉛、錫、鉛、インジウム、アルミニウムあるいは
その合金の1種または2種以上を含む微粉末等が好まし
い。 特に好ましくは亜鉛の微粉末である。
The fine powder of a normally conductive metal having a melting point below the secondary sintering temperature may be any fine powder containing one or more low melting point metals having a melting point below the secondary sintering temperature, such as A fine powder containing one or more of , zinc, tin, lead, indium, aluminum, or an alloy thereof is preferable. Particularly preferred is fine zinc powder.

ここで、二次焼結温度以下の融点を有する常電導性金属
の微粉末を用いる理由は、二次焼結時に常電導性金属の
微粉末が安定化金属と十分に反応し、密着するからであ
る。 すなわち、例えば安定化金属として銅を用いた場
合、酸化物セラミックス系超電導体粉末を安定化銅とと
もに大気中で焼結する時に、銅と酸化物セラミ;ンクス
系超電導体の界面に、電気抵抗の大きなCuOが生成さ
れ、界面電気抵抗を増大させる。 ところが、酸化物セ
ラミックス系超電導体粉末に前述の低融点金属微粉末例
えば亜鉛を混ぜた場合、安定化銅が拡散反応しかつ実質
上の界面表面積を増大させるので、界面抵抗を減少させ
ることができるからである。
Here, the reason for using a fine powder of a normally conductive metal with a melting point below the secondary sintering temperature is that the fine powder of a normally conductive metal fully reacts with the stabilizing metal during secondary sintering and becomes in close contact with the stabilizing metal. It is. For example, when copper is used as the stabilizing metal, when sintering the oxide ceramic superconductor powder together with the stabilizing copper in the atmosphere, the electrical resistance increases at the interface between the copper and the oxide ceramic superconductor. Large CuO is produced, increasing the interfacial electrical resistance. However, when the above-mentioned low melting point metal fine powder, such as zinc, is mixed with the oxide ceramic superconductor powder, the stabilized copper undergoes a diffusion reaction and substantially increases the interfacial surface area, making it possible to reduce the interfacial resistance. It is from.

前記超電導性粉末と前記常電導性金属微粉末との混合粉
末を得る際の混合割合は、前記超電導性粉末と前記常電
導性金属微粉末との比が体積比で0.8:0.2より常
電導性金属微粉末が少ないほうが好ましい。
The mixing ratio when obtaining the mixed powder of the superconducting powder and the normal conductive metal fine powder is such that the ratio of the superconducting powder to the normal conductive metal fine powder is 0.8:0.2 by volume. It is preferable that the amount of normal conductive metal fine powder is smaller.

この理由は前記超電導性粉末が少ないと、二次焼結後超
電導体として連結しないからである。
The reason for this is that if the amount of the superconducting powder is small, it will not connect as a superconductor after secondary sintering.

本発明において、二次焼結体とは前記超電導性粉末と前
記常電導性金属微粉末との混合粉末を焼結した前記酸化
物セラミックス系超電導体と低融点の該常電導性金属と
の混合焼結導体をいう。
In the present invention, the secondary sintered body is a mixture of the oxide ceramic superconductor obtained by sintering a mixed powder of the superconducting powder and the normal conductive metal fine powder, and the normal conductive metal having a low melting point. Refers to a sintered conductor.

前記二次焼結を行うに際しては、酸化物セラミックス系
超電導体を焼結でき、低融点の常電導性金属の特性を劣
化させない条件が良く、また、二次焼結温度は850℃
〜1100℃とするのが好ましい。
When carrying out the secondary sintering, conditions are suitable that allow the oxide ceramic superconductor to be sintered and do not deteriorate the properties of the low-melting-point normal conductive metal, and the secondary sintering temperature is 850°C.
It is preferable to set it as -1100 degreeC.

本発明に用いられる安定化金属体としては、電気、熱の
良導体であって、酸化物セラミックス系超電導体に局所
的に生じた常電導部の電流をバイパスさせるとともに、
局所的に発生した熱を速やかに拡散させて、前記常電導
部の伝播を防止し、また系の磁気拡散係数を小さくする
ことにより、磁束の侵入速度を遅くし、熱発生を少なく
することのできる二次焼結温度以上の融点を有する常電
導性金属を含有する金属体であればなんでもよいが、よ
り好ましくは銀、銀合金、銅(無酸素銅)、銅合金体、
Cu/Fe−Ni複合金属体、Cu−非磁性高融点金属
複合金属体、銅複合金属体である。
The stabilizing metal body used in the present invention is a good conductor of electricity and heat, which bypasses the current locally generated in the normal conducting part of the oxide ceramic superconductor, and
By quickly diffusing locally generated heat and preventing its propagation through the normal conductive portion, and by reducing the magnetic diffusion coefficient of the system, the rate of penetration of magnetic flux is slowed down and heat generation is reduced. Any metal body may be used as long as it contains a normally conductive metal having a melting point higher than the secondary sintering temperature, but more preferably silver, silver alloy, copper (oxygen-free copper), copper alloy body,
These are a Cu/Fe-Ni composite metal body, a Cu-nonmagnetic high melting point metal composite metal body, and a copper composite metal body.

前記安定化金属体として、融点が二次焼結温度以上の高
融点金属を含有する金属体を用いる理晶は二次焼結時に
前記安定化金属体が溶落するのを防止することができる
ためである。 また、特に、前記安定化金属体として、
Cu/Fe−Ni複合金属体を用いれば、Fe−Ni合
金は熱膨張係数がCu単体よりも酸化物セラミックス系
超電導体に近く、焼結するための熱処理前後の耐熱衝撃
性に優れているので好ましい。
Crystallization using a metal body containing a high melting point metal whose melting point is higher than the secondary sintering temperature as the stabilizing metal body can prevent the stabilizing metal body from melting off during secondary sintering. It's for a reason. In particular, as the stabilizing metal body,
If a Cu/Fe-Ni composite metal body is used, the Fe-Ni alloy has a thermal expansion coefficient closer to that of an oxide ceramic superconductor than Cu alone, and has excellent thermal shock resistance before and after heat treatment for sintering. preferable.

以下に本発明を添付の図面に示す好適実施例に基づいて
さらに詳細に説明する。
The present invention will be explained in more detail below based on preferred embodiments shown in the accompanying drawings.

本発明に係る酸化物セラミックス系超電導導体は、その
断面形状を第1a図ないし第4b図に示すように、セラ
ミックス系の前記超電導性粉末と前記常電導性金属微粉
末とのセラミックス−金属二次焼結体1と安定化金属体
2を有するものであればいかなる形状を有していてもよ
いが、線状体あるいはテープ(リボン)状体に形成する
のが好ましい。
The oxide ceramic-based superconducting conductor according to the present invention has a ceramic-metal secondary structure made of the ceramic-based superconducting powder and the normal-conducting metal fine powder, as shown in FIGS. 1a to 4b. Although it may have any shape as long as it has the sintered body 1 and the stabilizing metal body 2, it is preferable to form it into a linear body or a tape (ribbon) body.

第1a図ないし第2b図に示すように、前記セラミツク
ス−金属焼結体1を安定化金属体2でシースして複合化
するように構成してもよいし、第3a図ないし第4b図
に示すように、安定化金属体2の外表面上に層状の前記
セラミックス−金属二次焼結体を形成させて複合化する
ように構成してもよい。
As shown in FIGS. 1a to 2b, the ceramic-metal sintered body 1 may be sheathed with a stabilizing metal body 2 to form a composite structure, or as shown in FIGS. 3a to 4b. As shown, a layered ceramic-metal secondary sintered body may be formed on the outer surface of the stabilized metal body 2 to form a composite.

また、第2a図または第2b図に示すように安定化金属
体2を外層22が銀や銅などの二次焼結温度より少し高
い融点を有する金属、内層24が二次焼結温度よりはる
かに高い融点を有する非磁性高融点金属であるクラツド
管材で構成してもよい。
In addition, as shown in FIG. 2a or 2b, the stabilizing metal body 2 is made of a metal such that the outer layer 22 is a metal having a melting point slightly higher than the secondary sintering temperature, such as silver or copper, and the inner layer 24 is made of a metal having a melting point slightly higher than the secondary sintering temperature. The cladding may be made of a non-magnetic high melting point metal having a high melting point.

また、第4a図および第4b図に示すように、安定化金
属体2を純銅体26にFe−Ni合金体28を複合化し
たC u / F e −N i合金複合金属体で構成
してもよい。
Further, as shown in FIGS. 4a and 4b, the stabilizing metal body 2 is composed of a Cu/Fe-Ni alloy composite metal body in which a Fe-Ni alloy body 28 is combined with a pure copper body 26. Good too.

本発明に係る酸化物セラミックス系超電導導体の断面形
状は、制限的ではなく、第1a図、第2a図、第3a図
および第4a図に示す如く、円形としてもよく、第1b
図、第2b図。
The cross-sectional shape of the oxide ceramic superconducting conductor according to the present invention is not limited, and may be circular as shown in FIG. 1a, FIG. 2a, FIG. 3a, and FIG. 4a;
Figure 2b.

第3b図および第4b図に示す如く、矩形(リボシ状)
としてもよく、あるいは異形等所望の形状とすることが
できる。
As shown in Figures 3b and 4b, rectangular (ribo-shaped)
Alternatively, it can be made into a desired shape such as an irregular shape.

さらに、第5a図および第5b図に示すように、コアの
硬質金属体3の外周に、第1a図ないし第4b図に示す
ようなシングル形状の酸化物セラミックス系超電導導体
を素線として多数、マルチ状酸化物セラミックス系超電
導導体層4を成形して、この外周をさらに安定化金属2
でシース被覆するよう構成してもよい。 このようにマ
ルチ状酸化物セラミックス系超電導導体とすると、さら
に超電導状態の安定度が増加し、臨界電流密度Jcはさ
らに向上する。
Further, as shown in FIGS. 5a and 5b, on the outer periphery of the hard metal body 3 of the core, a large number of single-shaped oxide ceramic superconducting conductors as shown in FIGS. 1a to 4b are arranged as strands. A multi-shaped oxide ceramic superconducting conductor layer 4 is formed, and the outer periphery is further coated with a stabilizing metal 2.
It may also be configured to be covered with a sheath. When a multi-shaped oxide ceramic superconducting conductor is used in this way, the stability of the superconducting state is further increased, and the critical current density Jc is further improved.

この時前記マルチ状酸化物セラミックス系超電導導体の
断面形状は制限的ではなく、第5a図に示すように、円
形としてもよいし、第5b図に示すように矩形としても
よいし、あるいは異形等所望の形状とすることができる
At this time, the cross-sectional shape of the multi-shaped oxide ceramic superconductor is not limited, and may be circular as shown in FIG. 5a, rectangular as shown in FIG. 5b, or irregularly shaped. It can have any desired shape.

本発明に係る酸化物セラミックス系超電導導体は基本的
には以上のように構成されるものであり、以下にその製
造方法について詳細に説明する。
The oxide ceramic superconducting conductor according to the present invention is basically constructed as described above, and the manufacturing method thereof will be explained in detail below.

本発明の酸化物セラミックス系超電導導体の製造方法の
一実施例のフローチャートを第6図に示す。
A flowchart of an embodiment of the method for manufacturing an oxide ceramic superconductor of the present invention is shown in FIG.

本発明の酸化物セラミックス系超電導導体の製造方法に
おける第1工程は前述の超電導性粉末すなわち酸化物セ
ラミックス系超電導体の原料粉末あるいは酸化物セラミ
ックス系超電導体粉末と、常電導性金属微粉末とを混合
する工程である。 混合する方法は特に限定する必要は
ないが、例えば有機溶剤を媒体とし、回転混合した後、
媒体を飛散させる方法が好ましい。
The first step in the method for manufacturing an oxide ceramic superconductor of the present invention is to combine the above-mentioned superconducting powder, that is, the raw material powder of the oxide ceramic superconductor or the oxide ceramic superconductor powder, and the fine normal-conducting metal powder. This is a mixing process. The mixing method does not need to be particularly limited, but for example, after rotational mixing using an organic solvent as a medium,
A method of scattering the medium is preferred.

この工程において、超電導性粉末として前記酸化物セラ
ミックス系超電導体粉末を用いる場合は、前記酸化物セ
ラミックス系超電導体の原料粉末を一次焼結する。 前
記原料粉末の粒径は2〜5μmが好ましい。 この理由
は粒径な小さくした方が均一な超電導体粉末が得られる
からである。 −次焼結は前述したように850〜10
50℃で酸素雰囲気で行うのが好ましい。
In this step, when the oxide ceramic superconductor powder is used as the superconducting powder, the raw material powder of the oxide ceramic superconductor is primarily sintered. The particle size of the raw material powder is preferably 2 to 5 μm. The reason for this is that the smaller the particle size, the more uniform the superconductor powder can be obtained. -Next sintering is 850~10 as mentioned above.
Preferably, it is carried out at 50° C. in an oxygen atmosphere.

次にこの一次焼結体を粉砕する。 粉砕は通常の方法で
行えばよいが、例えば回転乳鉢にて粉砕するのが好まし
い。 前記酸化物セラミックス系超電導体粉末の粒径は
0.5〜5μmが好ましい。 これは粒径を小さくした
方が二次焼結温度を低下でき最適条件とできてよい。
Next, this primary sintered body is crushed. Although pulverization may be carried out by a conventional method, it is preferable to use a rotating mortar, for example. The particle size of the oxide ceramic superconductor powder is preferably 0.5 to 5 μm. This may be achieved by reducing the particle size, since the secondary sintering temperature can be lowered and the optimum conditions can be achieved.

前記超電導性粉末として酸化物セラミックス系超電導体
の原料粉末を直接、常電導性金属微粉末と直接混合する
場合、前記原料粉末の粒径は1〜4μmであるのが好ま
しい。 この理由は直接入れた場合、さらに低温焼結を
要求され、微細化が必要となるからである。
When the raw material powder of the oxide ceramic superconductor is directly mixed with the normal conductive metal fine powder as the superconducting powder, the particle size of the raw material powder is preferably 1 to 4 μm. The reason for this is that when directly inserted, lower temperature sintering is required and refinement is required.

第2工程は前記超電導性粉末と常電導性金属微粉末との
混合粉末とを前記安定化金属体と複合化する工程である
The second step is a step of compounding the mixed powder of the superconducting powder and the normal conductive metal fine powder with the stabilizing metal body.

前記複合化工程は該混合粉末をペレット状に圧粉成形し
た後、管状の安定化金属体に組込(挿入)後、スェージ
ングにより減面加工し、その後引抜きにより線状体を形
成し、あるいは圧延加工によりテープ(リボン)状体に
加工する工程である。
The compounding step is performed by compacting the mixed powder into a pellet, incorporating (inserting) it into a tubular stabilizing metal body, reducing the area by swaging, and then forming a linear body by drawing, or This is a process of processing into a tape (ribbon) shaped body by rolling.

この時、該混合粉末を管径サイズのベレット状に圧粉成
形したけれども、これに限定されるわけではなく、微細
ベレット状、微細球形状に圧粉成形してもよいし、ある
いは、圧粉成形せずに、直接、管状安定化金属体に組込
んでもよい。 微細圧粉成形体の大きさは100μm〜
1mmがよい。
At this time, the mixed powder was compacted into a pellet shape having the same diameter as the tube, but the present invention is not limited to this. It may also be incorporated directly into the tubular stabilizing metal body without molding. The size of the fine powder compact is 100 μm ~
1mm is good.

管状安定化金属体のサイズは特に限定するものではない
が、例えば内径は5〜50mm、肉厚は0.5〜5mm
が次工程で加工するのに加工が安定してできるサイズで
ある。
The size of the tubular stabilizing metal body is not particularly limited, but for example, the inner diameter is 5 to 50 mm and the wall thickness is 0.5 to 5 mm.
This is a size that allows stable processing in the next process.

また、前記混合粉末を組込んだ管状安定化金属体を線状
体あるいはテープ(リボン)状体に加工する方法はいか
なる方法でもよいが、前述したようにスェージングによ
り減面加工した後に、引抜きにより線状体に、圧延によ
りテープ(リボン)状体に加工するのが好ましい。
Further, any method may be used to process the tubular stabilized metal body incorporating the mixed powder into a linear body or tape (ribbon) body, but as described above, after reducing the area by swaging, drawing is performed. It is preferable to process the linear body into a tape (ribbon)-like body by rolling.

状体の線径は0.2〜5mmが好ましく、テープ(リボ
ン)状体の断面形状は2XO,1〜toxo、5mmが
好ましい。 この理由はサイズが薄いあるいは小さいと
加工が難しく、大きいと曲げ加工ができず、超電導体の
配向性が不十分で、特性がでないからである。
The wire diameter of the shaped body is preferably 0.2 to 5 mm, and the cross-sectional shape of the tape (ribbon) shaped body is preferably 2XO, 1 to TOXO, 5 mm. The reason for this is that if the size is thin or small, it is difficult to process, and if it is large, bending cannot be performed, and the orientation of the superconductor is insufficient, resulting in no properties.

第3工程は、こうして、得られた線状複合体あるいはテ
ープ(リボン)状複合体を二次焼結して、それぞれ、線
状超電導導体あるいはテープ(リボン)状超電導導体を
得る工程である。
The third step is a step of secondary sintering the linear composite or tape (ribbon)-shaped composite thus obtained to obtain a linear superconducting conductor or a tape (ribbon)-shaped superconducting conductor, respectively.

二次焼結は前述したようにその構成によるが酸素雰囲気
中で、850〜1100℃で、3O分〜20時間加熱処
理するのが好ましい。 これは線状あるいはテープ(リ
ボン)状複合体中の超電導性粉末が二次焼結加熱処理に
よって層状ペロブスカイト構造を有する酸化物セラミッ
クス系超電導導体化するからである。
As mentioned above, the secondary sintering depends on the structure, but it is preferable to perform heat treatment in an oxygen atmosphere at 850 to 1100° C. for 30 minutes to 20 hours. This is because the superconducting powder in the linear or tape (ribbon) composite is transformed into an oxide ceramic superconductor having a layered perovskite structure by the secondary sintering heat treatment.

次に、前記複合化工程の別の実施態様について述べる。Next, another embodiment of the composite step will be described.

 この複合化工程は前述の超電導性粉末と常電導性金属
微粉末との混合粉末を有機化合物の溶液もしくはコロイ
ド状分散液中にて分散混合した後、該分散混合溶液を前
記安定化金属体に塗布して、複合体を得る工程である。
This compounding step involves dispersing and mixing the above-mentioned mixed powder of the superconducting powder and the normal-conducting metal fine powder in a solution or colloidal dispersion of an organic compound, and then applying the dispersed mixed solution to the stabilized metal body. This is the step of coating to obtain a composite.

前記有機化合物の溶液もしくはコロイド状分散液として
は、前記混合粉末を充分に分散混合でき、かつ、二次焼
結時に熱分解によってそれ自体が実質的に消失するよう
なものであれば何でもよく、メタクリル酸などの有機高
分子化合物の溶液あるいはこれらの溶液をトルエン、な
どの有機溶媒に溶解したものが好ましい。
The solution or colloidal dispersion of the organic compound may be of any kind as long as it can sufficiently disperse and mix the mixed powder and that itself is substantially eliminated by thermal decomposition during secondary sintering. Preferably, a solution of an organic polymer compound such as methacrylic acid or a solution thereof dissolved in an organic solvent such as toluene is used.

前記分散混合溶液を前記安定化金属体に塗布する方法は
スプレー、へヶ塗り、スクリーン印刷などや前記安定化
金属体を前記分散混合溶液中に浸漬する方法など、前記
安定化金属体表面上に前記混合粉末含有分散混合溶液の
塗膜を形成する方法であれば何でもよい。
The dispersion mixture solution may be applied to the stabilized metal body by spraying, smearing, screen printing, etc., or by immersing the stabilized metal body in the dispersion mixture solution. Any method may be used as long as it forms a coating film of the dispersed mixed solution containing the mixed powder.

ここで、前記安定化金属体の形状は酸化物セラミックス
系超電導導体の形状に応じて定めればよく、特に限定さ
れないが、線状体の場合に9は          −
00 は1、前記安定化金属体も線状体を用いるのが好ましく
、その線径は0.2〜2mmがよく、その上の塗膜の厚
さは10μm〜1mmが好ましい。 また、テープ(リ
ボン)状体の場合には、前記安定化金属体もテープ(リ
ボン)状体を用いるのが好ましく、その断面形状は2×
0.1〜10X0.5mmがよく、その上の塗膜の厚さ
は10μm〜0.1mmが好ましい。
Here, the shape of the stabilizing metal body may be determined according to the shape of the oxide ceramic superconductor, and is not particularly limited, but in the case of a linear body, 9 is -
00 is 1. Preferably, the stabilizing metal body is also a linear body, the diameter of which is preferably 0.2 to 2 mm, and the thickness of the coating film thereon is preferably 10 μm to 1 mm. Further, in the case of a tape (ribbon) shaped body, it is preferable that the stabilizing metal body also uses a tape (ribbon) shaped body, and its cross-sectional shape is 2×
It is preferably 0.1 to 10×0.5 mm, and the thickness of the coating film thereon is preferably 10 μm to 0.1 mm.

前記塗膜は安定化金属体の全周囲に形成してもよいし、
一部のみに形成してもよい。
The coating film may be formed all around the stabilizing metal body,
It may be formed only in part.

前記塗布後、塗膜を乾燥させる方法はいかなる方法でも
よいが、自然乾燥させるのが好ましい。
After the coating, any method may be used to dry the coating film, but natural drying is preferred.

こうして得られた、線状あるいはテープ(リボン)状複
合体は前述した第3工程において、二次焼結される。 
この時、前記有機化合物は熱分解して消失するので、前
記安定化金属体表面には常電導性金属と酸化物セラミッ
クス系超電導体との二次焼結体層が形成され、酸化物セ
ラミックス系超電導導体が製造される。
The linear or tape (ribbon) composite thus obtained is subjected to secondary sintering in the third step described above.
At this time, the organic compound is thermally decomposed and disappears, so that a secondary sintered layer of the normal conductive metal and the oxide ceramic superconductor is formed on the surface of the stabilized metal body, and the oxide ceramic superconductor layer is formed on the surface of the stabilized metal body. A superconducting conductor is produced.

本発明に係る酸化物セラミックス系超電導導体およびそ
の製造方法は以上のように構成されるけれども、これに
限定されるわけではなく本発明の要旨を逸脱しない範囲
において改良ならびに設計の変更が可能なことは勿論で
ある。
Although the oxide ceramic superconducting conductor and the manufacturing method thereof according to the present invention are constructed as described above, they are not limited thereto, and improvements and changes in design are possible without departing from the gist of the present invention. Of course.

〈実施例〉 以下に、本発明を実施例に基づいて具体的に説明する。<Example> The present invention will be specifically described below based on examples.

(実施例1) BaCO3、Y2O3、CuOの粉末(サイズ1〜20
 p mφ)をBa%Y、Cuのモル比率が約0.6:
0.4:1に成るように秤量、混粉し、これを900℃
大気中で24時間加熱し一次焼結した。 この得られた
酸化物セラミックス系超電導体の一次焼結体を粉砕し、
粉末(サイズ0.5〜20μmφ)とした。 これに、
平均粒径約20μmの亜鉛微粉末を体積比率で10%混
合し、酸化物セラミックス超電導体と亜鉛との混合粉末
を得た。 この混合粉末を外径10mm肉厚2 m m
と無酸素鋼管に圧粉挿入した後、スェージング加工、引
抜加工を施こし、外径2mmにした。 これをさらに1
000℃×3O分、Ar雰囲気中で、加熱し二次焼結体
を得た。 得られた酸化物セラミックス系超電導導体の
臨界温度(Tc)は約90にで臨界電流密度(Jc)は
850 A/cm2でありかつ安定化銅と酸化物セラミ
ックス系超電導体の界面抵抗は=10mΩφCm2で、
亜鉛微粉末を混合しないものに比べ界面抵抗は約100
万分の1以下であり、良好な電気的密着性を保っていた
(Example 1) BaCO3, Y2O3, CuO powder (size 1 to 20
p mφ), Ba% Y, Cu molar ratio is about 0.6:
Weigh and mix the powder so that the ratio is 0.4:1, and heat it at 900℃.
Primary sintering was performed by heating in the air for 24 hours. This obtained primary sintered body of oxide ceramic superconductor is crushed,
It was made into powder (size 0.5 to 20 μmφ). to this,
Fine zinc powder having an average particle size of about 20 μm was mixed at a volume ratio of 10% to obtain a mixed powder of an oxide ceramic superconductor and zinc. This mixed powder was made into a mold with an outer diameter of 10 mm and a wall thickness of 2 mm.
After inserting the powder into an oxygen-free steel pipe, swaging and drawing were performed to obtain an outer diameter of 2 mm. Add this to 1 more
A secondary sintered body was obtained by heating at 000° C. for 30 minutes in an Ar atmosphere. The critical temperature (Tc) of the obtained oxide ceramic superconductor was approximately 90, the critical current density (Jc) was 850 A/cm2, and the interfacial resistance between the stabilized copper and the oxide ceramic superconductor was 10 mΩφCm2. in,
The interfacial resistance is approximately 100% compared to the one that does not contain fine zinc powder.
It was less than 1/10,000, and good electrical adhesion was maintained.

(実施例2) BaCOs 、Y203 、CuOの粉末(サイズ1〜
20μmφ)を、Ba、Y、Cuのモル比率が約0.6
:0.4:1に成るように秤量、混粉し、これを900
℃、大気中で24時間加熱し一次焼結した。 この得ら
れた酸化物セラミックス超電導体の一次焼結体を粉砕し
粉末(サイズ、0.5〜20μm)とした。 これに平
均粒径約20μmの亜鉛微粉末を体積比率で約10%混
合し、酸化物セラミックス系超電導体と亜鉛との混合粉
末とした。 この混合粉末をメタクリル酸原液およびト
ルエン混合液中に重量%でそれぞれ60%、10%、3
O%、の割合で均一に混合した塗材を用意し、これを厚
さ0.5mmの無酸素銅波の両面に塗布した。 これを
自然乾燥した後、1000℃X3O分大気中で加熱し二
次焼結体を得た。 得られた酸化物セラミックス超電導
導体はTcが約90にで臨界電流(Jc)は3O00 
A/cm”でありセラミックと安定化銅の界面電気抵抗
は実施例1とほぼ同値であり良好な電気的密着性を保っ
ていた。
(Example 2) BaCOs, Y203, CuO powder (size 1 to
20 μmφ), and the molar ratio of Ba, Y, and Cu is approximately 0.6
: Weigh and mix the powder so that the ratio is 0.4:1, and add this to 900
℃ in the air for 24 hours to perform primary sintering. The obtained primary sintered oxide ceramic superconductor was ground into powder (size, 0.5 to 20 μm). This was mixed with zinc fine powder having an average particle size of about 20 μm at a volume ratio of about 10% to obtain a mixed powder of oxide ceramic superconductor and zinc. This mixed powder was added to a methacrylic acid stock solution and a toluene mixed solution at a weight percentage of 60%, 10%, and 3%, respectively.
A coating material uniformly mixed at a ratio of 0% was prepared, and this was applied to both sides of an oxygen-free copper wave with a thickness of 0.5 mm. After naturally drying this, it was heated in the air at 1000° C. for 30 minutes to obtain a secondary sintered body. The obtained oxide ceramic superconductor has a Tc of about 90 and a critical current (Jc) of 3O00.
The interfacial electrical resistance between the ceramic and the stabilized copper was approximately the same value as in Example 1, and good electrical adhesion was maintained.

〈発明の効果〉 以上詳述したように、本発明によれば、酸化物セラミッ
クス系超電導体中に二次焼結温度以下の融点を有する常
電導性金属が混在する二次焼結体と、前記二次焼結温度
以上の融点を有する常電導性金属を含有する安定化金属
体とを複合イヒしているので、超電導状態の安定化が極
めて良くかつ臨界温度(Tc)および臨界電流密度(J
c)の高い酸化物セラミックス系超電導導体を提供でき
るばかりでなく、安定化金属体と酸化物セラミックス系
超電導体との界面抵抗を下げることができ、良好な電気
的密着性を保つことができるので、たとえ過大電流が流
れて、超電導状態が破れても、該導体が焼損することの
ない酸化物セラミックス系超電導導体を提供できる。
<Effects of the Invention> As detailed above, according to the present invention, a secondary sintered body in which a normal conductive metal having a melting point lower than the secondary sintering temperature is mixed in an oxide ceramic superconductor; Since it is combined with a stabilizing metal body containing a normal conductive metal having a melting point higher than the secondary sintering temperature, the superconducting state is extremely well stabilized and the critical temperature (Tc) and critical current density ( J
In addition to providing a high oxide ceramic superconductor having c), the interfacial resistance between the stabilizing metal body and the oxide ceramic superconductor can be lowered, and good electrical adhesion can be maintained. Therefore, it is possible to provide an oxide ceramic superconducting conductor that does not burn out even if an excessive current flows and the superconducting state is broken.

また、本発明によれば上記効果を有する酸化物セラミッ
クス系超電導導体を容易にかつ簡単な工程で線状導体化
あるいはテープ(リボン)状導体化することができる酸
化物セラミックス系超電導導体の製造方法を提供できる
Further, according to the present invention, a method for manufacturing an oxide ceramic superconducting conductor that can easily and easily convert the oxide ceramic superconducting conductor having the above-mentioned effects into a linear conductor or tape (ribbon) conductor. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図、第2a図、第3a図および第4a図は、断面
が円形である、第1b図、第2b図、第3b図および第
4b図は、断面が矩形である本発明の酸化物セラミック
ス系超電導導体の種々の態様の断面図である。 第5a図は断面が円形の、第5b図は断面が矩形の本発
明の酸化物セラミックス系超電導導体のマルチ形状の一
態様の断面図である。 第6図は本発明の酸化物セラミックス系超電導導体の製
造方法の一態様を示すフローチャートである。 符号の説明 1・・・セラミックス−金属二次焼結体、2・・・安定
化金属体、 3・・・コアの硬質金属体、 4・・・酸化物セラミックス系超電導導体集合体、22
−・・安定化金属体外層、 24・・・安定化金属体内層、 26・・・純銅体、 2 B ・・・F e −N i合金体FIG、Ia 
       FIG、’1bFIG、2a     
   FIG、2bFI G、3a       FI
 G、3bFIG、48 FIG、5a FIG、5b !1b 6図
Figures 1a, 2a, 3a and 4a show the oxides of the invention having a circular cross section; Figures 1b, 2b, 3b and 4b show the oxides of the invention having a rectangular cross section. FIG. 3 is a cross-sectional view of various embodiments of ceramic-based superconducting conductors. FIG. 5a is a cross-sectional view of one embodiment of the multi-shaped oxide ceramic superconducting conductor of the present invention having a circular cross section and FIG. 5b a rectangular cross section. FIG. 6 is a flow chart showing one embodiment of the method for manufacturing an oxide ceramic superconducting conductor of the present invention. Explanation of symbols 1... Ceramic-metal secondary sintered body, 2... Stabilizing metal body, 3... Hard metal body of core, 4... Oxide ceramic superconducting conductor aggregate, 22
-... Stabilized metal body outer layer, 24... Stabilized metal body layer, 26... Pure copper body, 2 B... Fe-Ni alloy body FIG, Ia
FIG, '1bFIG, 2a
FIG, 2bFI G, 3a FI
G, 3bFIG, 48 FIG, 5a FIG, 5b! 1b 6 figure

Claims (13)

【特許請求の範囲】[Claims] (1)超電導性粉末と二次焼結温度以下の融点を有する
常電導性金属微粉末との二次焼結体と、前記二次焼結温
度以上の融点を有する常電導性金属を含有する安定化金
属体とを有することを特徴とする酸化物セラミックス系
超電導導体。
(1) A secondary sintered body of superconducting powder and normal conductive metal fine powder having a melting point below the secondary sintering temperature, and containing a normal conductive metal having a melting point above the secondary sintering temperature. An oxide ceramic superconducting conductor comprising a stabilizing metal body.
(2)前記超電導性粉末は一次焼結前の酸化物セラミッ
クス系超電導体の原料粉末である特許請求の範囲第1項
に記載の酸化物セラミックス系超電導導体。
(2) The oxide ceramic superconducting conductor according to claim 1, wherein the superconducting powder is a raw material powder of the oxide ceramic superconducting material before primary sintering.
(3)前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
を含む混合粉末である特許請求の範囲第1項に記載の酸
化物セラミックス系超電導導体。
(3) The superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. The oxide ceramic superconducting conductor according to claim 1, which is a mixed powder containing one or more selected from the group consisting of compound powders.
(4)前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
の混合粉末を一次焼結後に粉砕して製造した酸化物セラ
ミックス系超電導体粉末である特許請求の範囲第1項に
記載の酸化物セラミックス系超電導導体。
(4) The superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. The oxide ceramic system according to claim 1, which is an oxide ceramic system superconductor powder produced by pulverizing a mixed powder with one or more selected from the group consisting of system compound powders after primary sintering. superconducting conductor.
(5)前記二次焼結体が、 組成式MM′_2Cu_3O_7−δ(但し、MはY、
Sc、およびLa、Gd、Dy、Ho、Er、Yb、L
u、Eu等のランタニドからなる群より選ばれる少なく
とも1種、M′はアルカリ土類金属の群より選ばれる少
なくとも1種、δは欠損酸素を表わす)で示す酸化物セ
ラミックス系超電導体を含むものである特許請求の範囲
第1項ないし第4項のいずれかに記載の酸化物セラミッ
クス系超電導導体。
(5) The secondary sintered body has a composition formula MM′_2Cu_3O_7-δ (where M is Y,
Sc, and La, Gd, Dy, Ho, Er, Yb, L
At least one member selected from the group consisting of lanthanides such as U and Eu, M' is at least one member selected from the group of alkaline earth metals, and δ represents deficient oxygen). An oxide ceramic superconducting conductor according to any one of claims 1 to 4.
(6)超電導性粉末と二次焼結温度以下の融点を有する
常電導性金属微粉末との混合粉末と、前記二次焼結温度
以上の融点を有する常電導性金属を含有する安定化金属
体とを複合化した後に、二次焼結することを特徴とする
酸化物セラミックス系超電導導体の製造方法。
(6) A stabilized metal containing a mixed powder of a superconducting powder and a normal conductive metal fine powder having a melting point below the secondary sintering temperature, and a normal conductive metal having a melting point above the secondary sintering temperature. 1. A method for producing an oxide ceramic superconducting conductor, which comprises performing secondary sintering after compounding the oxide ceramic superconducting conductor.
(7)前記超電導性粉末は一次焼結前の酸化物セラミッ
クス系超電導体の原料粉末である特許請求の範囲第6項
に記載の酸化物セラミックス系超電導導体の製造方法。
(7) The method for producing an oxide ceramic superconductor according to claim 6, wherein the superconducting powder is a raw material powder for the oxide ceramic superconductor before primary sintering.
(8)前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
を含む混合粉末である特許請求の範囲第6項に記載の酸
化物セラミックス系超電導導体の製造方法。
(8) The superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. 7. The method for producing an oxide ceramic superconducting conductor according to claim 6, which is a mixed powder containing one or more selected from the group consisting of compound powders.
(9)前記超電導性粉末は銅−酸素系化合物粉末と、バ
リウム−酸素系化合物粉末および/またはストロンチウ
ム−酸素系化合物粉末と、イットリウム−酸素系化合物
粉末、ランタン−酸素系化合物粉末およびスカンジウム
−酸素系化合物粉末よりなる群から選ばれた1種以上と
の混合粉末を一次焼結後に粉砕して製造した酸化物セラ
ミックス系超電導体粉末である特許請求の範囲第6項に
記載の酸化物セラミックス系超電導導体の製造方法。
(9) The superconducting powder includes copper-oxygen compound powder, barium-oxygen compound powder and/or strontium-oxygen compound powder, yttrium-oxygen compound powder, lanthanum-oxygen compound powder, and scandium-oxygen compound powder. The oxide ceramic system according to claim 6, which is an oxide ceramic system superconductor powder produced by pulverizing a mixed powder with one or more selected from the group consisting of system compound powders after primary sintering. A method for manufacturing superconducting conductors.
(10)前記二次焼結体が、 組成式MM′_2Cu_3O_7−δ(但し、MはY、
Sc、およびLa、Gd、Dy、Ho、Er、Yb、L
u、Eu等のランタニドからなる群より選ばれる少なく
とも1種、M′はアルカリ土類金属の群より選ばれる少
なくとも1種、δは欠損酸素を表わす)で示す酸化物セ
ラミックス系超電導体を含むものである特許請求の範囲
第6項ないし第9項のいずれかに記載の酸化物セラミッ
クス系超電導導体の製造方法。
(10) The secondary sintered body has the composition formula MM′_2Cu_3O_7-δ (where M is Y,
Sc, and La, Gd, Dy, Ho, Er, Yb, L
At least one member selected from the group consisting of lanthanides such as U and Eu, M' is at least one member selected from the group of alkaline earth metals, and δ represents deficient oxygen). A method for producing an oxide ceramic superconducting conductor according to any one of claims 6 to 9.
(11)前記複合化は管状の前記安定化金属体に前記超
電導性粉末−金属混合粉末を挿入して圧密化し、線材化
あるいはテープ化することである特許請求の範囲第6項
ないし第10項のいずれかに記載の酸化物セラミックス
系超電導導体の製造方法。
(11) Claims 6 to 10, wherein the compounding is performed by inserting the superconducting powder-metal mixed powder into the tubular stabilized metal body, compacting it, and forming it into a wire or tape. A method for producing an oxide ceramic superconducting conductor according to any one of the above.
(12)前記圧密化はスエージング、引抜きあるいは圧
延法により抽伸することである特許請求の範囲第11項
に記載の酸化物セラミックス系超電導導体の製造方法。
(12) The method for producing an oxide ceramic superconducting conductor according to claim 11, wherein the consolidation is performed by drawing by swaging, drawing, or rolling.
(13)前記複合化は前記超電導性粉末−金属混合粉末
を熱分解によってそれ自身が実質的に消失するような有
機高分子化合物の溶液もしくはコロイド状分散液中に分
散混合した後、安定化金属に塗布することである特許請
求の範囲第6項ないし第10項のいずれかに記載の酸化
物セラミックス系超電導導体の製造方法。
(13) The above-mentioned compounding is performed by dispersing and mixing the superconducting powder-metal mixed powder in a solution or colloidal dispersion of an organic polymer compound that will substantially disappear by thermal decomposition, and then A method for producing an oxide ceramic-based superconducting conductor according to any one of claims 6 to 10, which comprises coating the oxide ceramic superconducting conductor.
JP62141208A 1987-06-05 1987-06-05 Oxide ceramics based superconductor and production thereof Pending JPS63307151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141208A JPS63307151A (en) 1987-06-05 1987-06-05 Oxide ceramics based superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141208A JPS63307151A (en) 1987-06-05 1987-06-05 Oxide ceramics based superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPS63307151A true JPS63307151A (en) 1988-12-14

Family

ID=15286656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141208A Pending JPS63307151A (en) 1987-06-05 1987-06-05 Oxide ceramics based superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPS63307151A (en)

Similar Documents

Publication Publication Date Title
CA1340569C (en) Superconductive body having improved properties, and apparatus and systems comprising such a body
JP3450328B2 (en) Improved processing of oxide superconductors
CA2281804C (en) Ceramic/metal and a15/metal superconducting composite materials exploiting superconducting proximity effect
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
TWI298169B (en) Method for producing oxide superconductive wire material, method for modifying oxide superconductive wire material and an oxide superconductive wire material
JPH05283138A (en) Superconductive joint for superconductive oxide tape
US6700067B1 (en) High temperature superconducting ceramic oxide composite with reticulated metal foam
JPS63307150A (en) Oxide cremics based superconductor and production thereof
CA2000722C (en) Superconductive metal matrix composites and method for making same
JPS63307151A (en) Oxide ceramics based superconductor and production thereof
JP2995796B2 (en) Manufacturing method of oxide superconductor
JPS63299012A (en) Superconductive fiber and its manufacture
EP0409150B1 (en) Superconducting wire
CA2016807A1 (en) Method for manufacturing superconducting article
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
KR930003843B1 (en) Manufacturing method of super conductor goods
JP3513915B2 (en) Oxide superconducting wire, method for producing the same, and oxide superconducting conductor
KR940005010B1 (en) Forming method for wire
WO1996032730A1 (en) SYNTHESIS OF Bi1.8Pb0.4Sr2Ca2Cu3Ox SUPERCONDUCTORS
Bellingeri et al. Mono-and multifilamentary Ag-sheathed Tl (1223) tapes
JP2855125B2 (en) Oxide superconductor
Smith et al. Synthesis of Bi 1. 8 Pb 0. 4 Sr 2 Ca 2 Cu 3 O x superconductor
JP2855126B2 (en) Oxide superconductor
JP3313908B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire