JPS63307103A - Method for removing ruthenium in nitric acid solution - Google Patents

Method for removing ruthenium in nitric acid solution

Info

Publication number
JPS63307103A
JPS63307103A JP14314487A JP14314487A JPS63307103A JP S63307103 A JPS63307103 A JP S63307103A JP 14314487 A JP14314487 A JP 14314487A JP 14314487 A JP14314487 A JP 14314487A JP S63307103 A JPS63307103 A JP S63307103A
Authority
JP
Japan
Prior art keywords
nitric acid
acid solution
ruo4
ions
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14314487A
Other languages
Japanese (ja)
Inventor
Fumio Kawamura
河村 文雄
Akira Sasahira
朗 笹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14314487A priority Critical patent/JPS63307103A/en
Publication of JPS63307103A publication Critical patent/JPS63307103A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/267Means for preventing deterioration or loss of catalyst or for recovering lost catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enable effective removal of corrosion accelerating Ru ions, by adding an oxidizing agent into a nitric acid solution containing the Ru. CONSTITUTION:Although Ru ions contained in a nitric acid solution are mostly present as a nitrosyl ions assuming the form of RuNO<3+>, the ions are partially oxidized into RuO4 by oxidizing power of nitric acid to accelerate corrosion of equipment structural materials. As a result, an oxidizing agent, e.g. O3 or O2, is blown into the nitric acid solution to convert the RuO4 is extremely volatile, the formed RuO4 is rapidly volatilized to migrate from the nitric acid solution to the vapor phase and almost 100% of RuNO<3+> and RuO4 in the liquid phase is removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は再処理プラント機器に係り、特に、硝酸溶液取
扱い機器の耐食性を向上するのに好適な硝酸溶液中のR
u Oa除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to reprocessing plant equipment, and in particular, R in a nitric acid solution suitable for improving the corrosion resistance of equipment handling nitric acid solution.
u Regarding Oa removal method.

〔従来の技術〕[Conventional technology]

原子燃料再処理プラントにおける高レベル廃液濃縮・貯
蔵系、酸回収系等の硝酸溶液取扱機器は、核分裂生成物
(F P)を多量に含む高濃度、沸騰条件の硝酸を扱う
ため、腐食環境が厳しく機器構造物の腐食が問題になる
といわれている。これらについては、エム・ベネデイク
1−5のニュークリア・ケミカル・エンジニアリング、
第491頁において論じられている(M 、 Bene
dict : NucleanChenical En
gineering、 p 491  (1981)M
cEnan −Hill)。
Equipment handling nitric acid solutions such as high-level waste liquid concentration/storage systems and acid recovery systems in nuclear fuel reprocessing plants handle highly concentrated and boiling nitric acid containing large amounts of fission products (FP), so they are exposed to corrosive environments. Corrosion of equipment structures is said to be a serious problem. Regarding these, Nuclear Chemical Engineering of M. Benedik 1-5,
Discussed on page 491 (M, Bene
dict: NucleanChemical En
gineering, p 491 (1981) M
cEnan-Hill).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

硝酸取扱機器の腐食に大きな影響をおよぼすのは、硝酸
そのものと硝酸中に含まれる各種のFPイオンである。
It is the nitric acid itself and the various FP ions contained in the nitric acid that have a major effect on the corrosion of equipment that handles nitric acid.

このうち硝酸は、硝酸取扱機器である以上さけることは
できないが、FPイオンについては何らかの対策を立て
うる。FPイオンの中でも酸に力の強いCe、Cr、R
u等が腐食に影響を及ぼすといわれているが、特にRu
は強酸化性のため腐食加速効果が大きい。従来、これら
のFPイオンの影響を除外しようとする試みは種々なさ
れているが、実用的、かつ、効果的なものは少ない。
Of these, nitric acid cannot be avoided since the equipment handles nitric acid, but some measures can be taken against FP ions. Among the FP ions, Ce, Cr, and R are strong against acids.
Ru, etc. are said to have an effect on corrosion, but especially Ru
has a strong corrosion accelerating effect due to its strong oxidizing properties. Conventionally, various attempts have been made to eliminate the influence of these FP ions, but few have been practical and effective.

本発明の目的は、硝酸溶液中に含まれる腐食加速性のR
uイオンを効果的に除去することにある。
The object of the present invention is to reduce corrosion-accelerating R contained in nitric acid solution.
The objective is to effectively remove U ions.

〔問題点を解決するための手段〕[Means for solving problems]

硝酸溶液中に含まれるFPのRuイオンは、RuNO3
+の形態をとるニトロシルイオンとしてその大部分が存
在するが、その一部が硝酸の酸化力によってRu O4
に酸にされ、これが機器構造材の腐食を加速する。従っ
て、上記目的を達するには、親物質であるRuNO3+
を除去するが、腐食因子であるRuO4を除去する必要
がある。
The Ru ions of FP contained in the nitric acid solution are RuNO3
Most of the nitrosyl ions exist in the + form, but some of them are converted to RuO4 by the oxidizing power of nitric acid.
acid, which accelerates corrosion of equipment construction materials. Therefore, in order to achieve the above purpose, the parent substance RuNO3+
However, it is necessary to remove RuO4, which is a corrosion factor.

本発明は硝酸溶液中に存在するR u N O’十を溶
液中に酸化剤、例えば、オゾン(08)や酸素(02)
を吹き込み、強制的にRuNO3+をRu0aに変化さ
せる。Ru O4は極めて揮発性が高いため、生成した
RuO4はすみやかに揮発、し、硝酸溶液から気相に移
行し、液相中のRuN0”+。
The present invention combines R u N O' present in a nitric acid solution with an oxidizing agent such as ozone (08) or oxygen (02)
was injected to forcibly change RuNO3+ to Ru0a. Since RuO4 is extremely volatile, the generated RuO4 quickly volatilizes and moves from the nitric acid solution to the gas phase, forming RuN0''+ in the liquid phase.

RuO+は、はぼ、100%除去される。気相に移行し
たRu0aはガス状であるが、ある種のトラップ、例え
ばプラスチック等の有キ物により容易に捕集できるし、
又は、還元性のガスにより、例えば、Noガスによりす
みやかにRuO2の固体に還元される。即ち、 なお、固体になったRuO2は腐食性をもたない。
Almost 100% of RuO+ is removed. Although Ru0a that has transitioned to the gas phase is in a gaseous state, it can be easily captured by a certain type of trap, such as a material such as plastic.
Alternatively, it is quickly reduced to solid RuO2 by a reducing gas, for example, No gas. That is, RuO2 that has become solid does not have corrosive properties.

図中、1は蒸発缶でR−u−符を含む硝酸溶液は2から
供給され、加熱蒸発される。3は酸化剤(オゾン)タン
クである。酸化剤は蒸発缶1内の液中に供給される。蒸
発した硝酸溶液5に含まれるRIJO4は還元剤8、本
実施例ではNoガスによりRu0zとなりトラップ4で
捕集される。その後の硝酸蒸気6は、次工程へ送られる
。又、濃縮された缶液7も次工程へ送られる。
In the figure, 1 is an evaporator, and a nitric acid solution containing R-u- is supplied from 2 and heated and evaporated. 3 is an oxidizer (ozone) tank. The oxidizing agent is supplied to the liquid in the evaporator 1. RIJO4 contained in the evaporated nitric acid solution 5 is converted into Ru0z by the reducing agent 8, in this example No gas, and is collected by the trap 4. The subsequent nitric acid vapor 6 is sent to the next step. Further, the concentrated can liquid 7 is also sent to the next process.

第2図は本実施例の場合の液中のRu量の変化を示した
図である。3000ppmのRuを含む3規定の硝酸溶
液を100℃に加熱した場合、08の吹き込みがない場
合はRuの極く一部が自然酸化されて消失するのみであ
るが、反応当量以上の08を吹きこんだ場合は四時間以
下で検出限界以下となる。
FIG. 2 is a diagram showing changes in the amount of Ru in the liquid in this example. When a 3N nitric acid solution containing 3,000 ppm of Ru is heated to 100°C, only a small portion of the Ru will naturally oxidize and disappear if 08 is not blown into the solution, but if 08 is blown in an amount greater than the reaction equivalent, If it is contaminated, it will be below the detection limit in less than four hours.

なお、本発明は、再処理プラントの硝酸回収蒸発缶のみ
ならず、Ruを含む他の硝酸取扱機器にも適用できるこ
とは言うまでもない。
It goes without saying that the present invention is applicable not only to a nitric acid recovery evaporator in a reprocessing plant but also to other equipment that handles nitric acid containing Ru.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硝酸溶液中に存在し、機器材料腐食の
要因となるRuを効果的に除去することができる。
According to the present invention, Ru that is present in a nitric acid solution and causes corrosion of equipment materials can be effectively removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す硝酸回収蒸発装置の系
統図、第2図は液中のRu量の変化を示す説明図である
。 1・・・硝酸回収蒸発缶、3・・・酸化剤容器、4・・
何−ラ芽 1 目 $2 目 y1町 (<h)
FIG. 1 is a system diagram of a nitric acid recovery and evaporation device showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing changes in the amount of Ru in the liquid. 1... Nitric acid recovery evaporator, 3... Oxidizer container, 4...
What-ra bud 1st $2 y1 town (<h)

Claims (1)

【特許請求の範囲】 1、ルテニウムを含む硝酸溶液中に酸化剤を添加するこ
とにより、前記硝酸溶液中の前記ルテニウムを揮発性の
四酸化ルテニウムにかえ、前記硝酸溶液中から除去する
ことを特徴とする硝酸溶液中のルテニウムの除去法。 2、特許請求の範囲第1項において、 揮発性の四酸化ルテニウムに還元剤を添加し、これを二
酸化ルテニウムにかえ、トラップで捕集することを特徴
とする硝酸溶液中のルテニウムの除去法。 3、前記酸化剤としてオゾンもしくは酸素を用いること
を特徴とする特許請求の範囲第1項記載の硝酸溶液中の
ルテニウムの除去法。 4、前記還元剤として亜硝酸ガスを用いることを特徴と
する特許請求の範囲第2項記載の硝酸溶液中のルテニウ
ムの除去法。
[Claims] 1. By adding an oxidizing agent to a nitric acid solution containing ruthenium, the ruthenium in the nitric acid solution is converted into volatile ruthenium tetroxide and removed from the nitric acid solution. A method for removing ruthenium in nitric acid solution. 2. A method for removing ruthenium from a nitric acid solution according to claim 1, which comprises adding a reducing agent to volatile ruthenium tetroxide to convert it into ruthenium dioxide, which is collected in a trap. 3. The method for removing ruthenium from a nitric acid solution according to claim 1, characterized in that ozone or oxygen is used as the oxidizing agent. 4. The method for removing ruthenium from a nitric acid solution according to claim 2, characterized in that nitrite gas is used as the reducing agent.
JP14314487A 1987-06-10 1987-06-10 Method for removing ruthenium in nitric acid solution Pending JPS63307103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14314487A JPS63307103A (en) 1987-06-10 1987-06-10 Method for removing ruthenium in nitric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14314487A JPS63307103A (en) 1987-06-10 1987-06-10 Method for removing ruthenium in nitric acid solution

Publications (1)

Publication Number Publication Date
JPS63307103A true JPS63307103A (en) 1988-12-14

Family

ID=15331955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14314487A Pending JPS63307103A (en) 1987-06-10 1987-06-10 Method for removing ruthenium in nitric acid solution

Country Status (1)

Country Link
JP (1) JPS63307103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048084A (en) * 2012-08-30 2014-03-17 Japan Atomic Energy Agency Method of separating and capturing ruthenium
JP2015125025A (en) * 2013-12-26 2015-07-06 株式会社Ihi Method and device for removing ruthenium in high-level radioactive waste liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048084A (en) * 2012-08-30 2014-03-17 Japan Atomic Energy Agency Method of separating and capturing ruthenium
JP2015125025A (en) * 2013-12-26 2015-07-06 株式会社Ihi Method and device for removing ruthenium in high-level radioactive waste liquid

Similar Documents

Publication Publication Date Title
EP0154832A2 (en) Decontamination using electrolysis
US3752876A (en) Removal of organic and inorganic iodine from a gaseous atmosphere
US3803295A (en) Method for removing iodine from nitric acid
JPS63307103A (en) Method for removing ruthenium in nitric acid solution
JP3058453B2 (en) Nuclear plant component decontamination method.
US5135728A (en) Method for dissolving delta-phase plutonium
US3852407A (en) Method for removing alkyl iodides from air by mercuric nitrate solution
US3243256A (en) Processes for the dissolution of uranium in nitric acid
DE1567867A1 (en) Process for the production of metal fluorides
JP2008014708A (en) Reprocessing method of spent nuclear fuel
US4206185A (en) Process to retain tritium
JPH0149919B2 (en)
JPH06331793A (en) Method for removing ruthenium from nitric acid solution
JPH0333699A (en) Treatment method and device for liquid waste containing radioactive ruthenium
JPH01316695A (en) Reprocessing of nuclear fuel by using vacuum freeze drying method
JPS61260196A (en) Method of evaporating and treating nitric acid containing ruthenium
US3075825A (en) Low temperature process for the removal and recovery of chlorides and nitrates from aqueous nitrate solutions
Harmon Removal of Fission Products from Feeds
Yarbro et al. Iodine scrubbing from off-gas with concentrated nitric acid
Gens Zircex and modified zirflex processes for dissolution of 8% U-91% Zr-1% H TRIGA reactor fuel
McLain et al. Stainless Steel Process Wastes: I. Removal of Alloy Metals from Waste Solutions by Mercury Cathode Electrolysis
Amphlett et al. Decontamination of Cementitious Waste Using Deep Eutectic Solvents
JP2565277B2 (en) Cleaning of used solvent and treatment of cleaning waste liquid
Flanary et al. Recovery of Enriched Uranium from Uranium Dioxide—Stainless Steel Fuel Elements by Solvent Extraction
DE2613536C2 (en) Process for the oxidation of uranium (IV) and / or plutonium (III) that is dissolved in liquids during a liquid-liquid extraction for the reprocessing of irradiated nuclear fuel and / or breeding material