JPS63306790A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS63306790A
JPS63306790A JP62142371A JP14237187A JPS63306790A JP S63306790 A JPS63306790 A JP S63306790A JP 62142371 A JP62142371 A JP 62142371A JP 14237187 A JP14237187 A JP 14237187A JP S63306790 A JPS63306790 A JP S63306790A
Authority
JP
Japan
Prior art keywords
color
aperture ratio
unit
colors
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62142371A
Other languages
Japanese (ja)
Other versions
JPH0720248B2 (en
Inventor
Takashi Murayama
任 村山
Yoshimitsu Kudo
吉光 工藤
Kenji Suzuki
賢治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62142371A priority Critical patent/JPH0720248B2/en
Publication of JPS63306790A publication Critical patent/JPS63306790A/en
Publication of JPH0720248B2 publication Critical patent/JPH0720248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a titled element for color image whose average aperture ratio is improved by allocating the photoelectric conversion elements uniformly to (l) kinds of colors in the initialization, and modifying the allocation corresponding to the optimization of the picture element allocation to respective colors. CONSTITUTION:It is assumed that, under a system requirement, the color balance is set so that the required aperture ratio among the three colors of one unit is DR:DG:DB =40:25:60 in terms of percent. One unit is executed in accordance with an inequality I when the picture element allocation is optimized for respective colors. The subtraction in said inequality means the subtraction of a requested aperture ratio value at the minimum from a requested aperture ratio value at the maximum, (m) and (n) represent respectively the number of rows and that of columns constituting one unit (for example m=n=3). When prescribed values are substituted to the equation I, to be satisfied with equalization, the number of picture elements in the color corresponding to the minimum requested aperture ratio i.e. G is decreased by one, while the picture elements in the color corresponding to the maximum requested aperture ratio i.e. B, is increased by one piece. Then the relative ratios of the aperture ratios for respective colors after modifying the picture element allocation is re-calculated, in order to optimize the picture element allocation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高感度出力が得られるカラー画像用の固体撮
像素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid-state image pickup device for color images that can provide high-sensitivity output.

(従来技術〉 従来よ’)、MO8型固体撮像素子を計測用セ/すとし
て用いる事は良(知られている。例えば。
(Prior art) It is well known (for example) to use an MO8 type solid-state image sensor as a measurement cell.

最近のカラープリンタでは、カラー原dA(カラーネガ
フィルム等)を複数のシーンに分類し、各シーンに応じ
て色補正フィルタの光路への挿入量を調節することによ
り色補正を行ない、カラーバランスの良好なプリント写
真を作成している。このシーン分類のために、カラー画
像用の固体撮像素子が用いられ、プリント前にカラー原
画の各点の三色濃度を測定している。
Recent color printers classify the color original dA (color negative film, etc.) into multiple scenes, and perform color correction by adjusting the insertion amount of the color correction filter into the optical path according to each scene, resulting in good color balance. I am creating beautiful printed photos. For this scene classification, a solid-state image sensor for color images is used, and the three-color density of each point of the color original image is measured before printing.

力2−画像を読み取る場合には、3個のイメージセンナ
を用いる所浦3板式と、1個のイメージセンナを用いる
所謂単板式があることは周知のとおりである。後者は、
イメージセンナの受光面の上に、各画素に対応して例え
ば青色(B)、緑色(G)、赤色(R)をモザイク状に
配列したカラーフィルタを取9付けたものであり、前者
の3板式に較ベコストが安いという利点から、多く用い
られている。
Force 2 - When reading an image, it is well known that there are two types: the Tokoura three-plate type, which uses three image sensors, and the so-called single-plate type, which uses one image sensor. The latter is
On the light-receiving surface of the image sensor, nine color filters are attached corresponding to each pixel, with blue (B), green (G), and red (R) arranged in a mosaic pattern. It is widely used because of its low cost compared to the plate type.

なお、イメージセンナと固体撮像素子は本来同義語であ
るが、ここでは便宜的に半導体装置のみをイメージセン
ナと称し、マイクロフィルタを含んだものを固体撮像素
子と称する。
Although the terms "image sensor" and "solid-state imaging device" are originally synonymous, here, for convenience, only the semiconductor device will be referred to as an "image sensor", and the device including the microfilter will be referred to as a "solid-state imaging device".

本発明者等は、先に、受光部内の隣接するm83個の複
数画素を1ユニットとし、かっこの1ユニット内の画素
KR,G、Bを均等に振9分け、同色画素の信号を加算
して出力する単板式の固体撮像素子を提案した(%願昭
61−071299号)。
The inventors first defined m83 adjacent pixels in the light receiving section as one unit, divided the pixels KR, G, and B within one unit in parentheses into nine equal parts, and added the signals of the same color pixels. proposed a single-chip solid-state image sensor that outputs images (%Global Application No. 61-071299).

処で、このような単板式の固体撮像素子においては、測
光条件0光源バランス、センサの感度バランスに応じて
R,G、Hの各開口率は適宜設定されており1例えばR
GBの相対開口率比は、R:G: B=40%: 50
%: 6096に設定されていた。従って、この場合の
1ユニット当りの単純平均開口率は50g6が得られて
いた。
However, in such a single-chip solid-state image sensor, the aperture ratios of R, G, and H are appropriately set according to the photometry condition, light source balance, and sensor sensitivity balance.
The relative aperture ratio of GB is R:G:B=40%:50
%: It was set to 6096. Therefore, in this case, the simple average aperture ratio per unit was 50g6.

(発明が解決しようとする問題点) 然るに、計測用センナとしては、S/ステムサイドの要
求で3色の色バランスを大きく崩さナケれば都合の悪い
場合がある。例えばRGBの相対開口率比を、R: G
 : B=40%: 25%: 60%としたい場合で
ある。この場合、前述の構成と同じくlユニット内にお
ける画素の色配分をR,G。
(Problems to be Solved by the Invention) However, as a measuring sensor, it may be inconvenient if the color balance of the three colors is significantly disrupted due to S/stem side requirements. For example, the relative aperture ratio of RGB is R: G
: B=40%: 25%: This is the case where you want to set it to 60%. In this case, the color distribution of pixels within l unit is R, G, as in the above-mentioned configuration.

B均等に振り分けたとすると、lユニット当りの単純平
均開口率は4296に低下してしまい、感度が下げられ
た状態に設けられてしまう。即ち、システム要求は色バ
ランスの変更であって、感度低下は望ましくない。
If B is distributed equally, the simple average aperture ratio per unit will drop to 4296, and the sensitivity will be lowered. That is, the system requirement is a change in color balance, and a decrease in sensitivity is not desirable.

本発明の目的は、上記事情に鑑みなされたもので、シス
テム仕様に合わせてユニット内の画素の色配分を最適化
することにより、平均開口率が向上できろカラー画像用
の固体撮像素子を提供することにある。
An object of the present invention was to provide a solid-state image sensor for color images that can improve the average aperture ratio by optimizing the color distribution of pixels within the unit according to the system specifications. It's about doing.

(問題点を解決するための手段) 上記目的を達成するために1本発明の固体撮像素子は次
のことを示している。すなわち、隣接するm行n列(m
、n〉zで、かつtn = n = 2以外の整数)の
画素を1ユニットとし、カラーフィルタの1色(lは3
以上の整数)をそれぞれの要求開口率り1. D1、D
2、・・・・、Dlに合わせて画素に配置する場合に、
 M&X (D、 、 D1、D2、 ・−・・? D
ρ−Mi n (Dl * D2 s・・・・、Dρ≦
2 X (D、+D2+・・・・Dr)/mnの関係を
満たす様に各色への画素数刻g当℃を行う。
(Means for Solving the Problems) In order to achieve the above object, a solid-state imaging device of the present invention shows the following. That is, adjacent m rows and n columns (m
, n>z, and tn = n = an integer other than 2) as one unit, and one color of the color filter (l is 3
(an integer greater than or equal to 1. D1, D
2,..., when arranging pixels according to Dl,
M&X (D, , D1, D2, ...? D
ρ−Min (Dl * D2 s..., Dρ≦
The number of pixels for each color is incremented so as to satisfy the relationship 2.times.(D, +D2+...Dr)/mn.

本発明の好ましい実施例では、マトリクス状に配列され
た光電変換素子は、mxn、例えば3X3すなわち9個
づつ1ユニットにまとめられている。
In a preferred embodiment of the present invention, the photoelectric conversion elements arranged in a matrix are grouped into one unit of mxn, for example 3x3, that is, nine photoelectric conversion elements.

これら9個の光電変換素子には、2色例えば(それぞれ
)3原色1例えばR,G、Bのうちの1つの色のフィル
タが付属している。光電変換素子に組合わせるフィルタ
の色は、1ユニット内でどのように配列されていてもよ
い。しかし例えば9個の光電変換素子の色配分は、初期
設定において例えば3つの色に対して均当に振り分けて
おき、各色への画素配分の最適化に応じて配分が変更さ
れる。
These nine photoelectric conversion elements are attached with filters of two colors, for example, one of the three primary colors (for each), for example, R, G, and B. The colors of the filters combined with the photoelectric conversion element may be arranged in any manner within one unit. However, the color distribution of, for example, nine photoelectric conversion elements is uniformly distributed to, for example, three colors in the initial setting, and the distribution is changed according to optimization of pixel distribution to each color.

なお、初期設定において各色への画素の振り分けが均等
に行えない場合には、略均等に振り分けておく。lユニ
ット内では、同色の信号電荷を加算することが必要であ
るが、信号読出し後に特別な加算回路を用いて加算をし
な(てもよいようにするため1本発明の固体撮像素子で
は各画素の信号読出し時に、同じ色の光電変換素子に蓄
積された信号電荷を加算して取り出すようにしている。
Note that if the pixels cannot be distributed evenly to each color in the initial settings, they are distributed approximately evenly. It is necessary to add signal charges of the same color within the l unit, but in order to avoid adding them using a special adder circuit after signal readout, the solid-state image sensor of the present invention When reading signals from pixels, signal charges accumulated in photoelectric conversion elements of the same color are added and extracted.

この加算は1色々な方法が考えられるが、その1つとし
ては1色数に対応した個数の垂直MOSスイッチを各ユ
ニット毎に設け、各垂直MOSスイッチのソースに、対
応した色の光電変換素子を接続すればよい。そして、こ
の垂直MOSスイッチのゲートには対応した色の水平線
を接続し、またドレインには対応した色の垂直線を接続
する。こうすると1例えばR,G、Bの3色を用い、そ
れぞれ3個づつ組み合わせた3X3の光電変換素子にょ
91ユニットを構成する場合には、マトリクスの各列各
行毎に1本の信号線を配置するだけでよい。
Various methods can be considered for this addition, one of which is to provide each unit with a number of vertical MOS switches corresponding to the number of colors, and to connect a photoelectric conversion element of the corresponding color to the source of each vertical MOS switch. Just connect. A horizontal line of a corresponding color is connected to the gate of this vertical MOS switch, and a vertical line of a corresponding color is connected to the drain. In this way, for example, when configuring 91 units of 3 x 3 photoelectric conversion elements using three colors of R, G, and B and combining three of each, one signal line is placed in each column and row of the matrix. Just do it.

これは光電変換素子毎に垂直MOSスイッチを設けたも
のに比べて信号線が1本少な(なっている。
This has one fewer signal line than a structure in which a vertical MOS switch is provided for each photoelectric conversion element.

(実施例) 本発明の実施例を以下図面により説明jる。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は、受光部の1部を構成する3行3列
の光電変換素子をlユニツ)10として。
In FIGS. 1 and 2, photoelectric conversion elements arranged in 3 rows and 3 columns, which constitute a part of the light receiving section, are shown as 10 units.

これら9個の光電変換素子上に1画素1t′C対応して
R,G、Bの色のフィルタがそれぞれ配置されている様
子を示している。また、R,G、Bの記号の下に小さく
示した各数字はそれぞれの画素の開口率<96)を示し
ている。
It is shown that R, G, and B color filters are respectively arranged on these nine photoelectric conversion elements corresponding to one pixel 1t'C. Further, each number shown in small size below the symbols R, G, and B indicates the aperture ratio of each pixel (<96).

いま、システム要求により、1ユニットにおける3色の
要求開口率の比がDR:DG:D8=4o96:25%
:60%となる様に1色バランスが設定される場合につ
いて述べる。
Now, due to system requirements, the ratio of the required aperture ratios of the three colors in one unit is DR:DG:D8=4o96:25%
The case where the one color balance is set to 60% will be described.

なお、前記へ、 D、 、 DBは各色に対応する画素
の要求開口率を示す。
In addition, in the above, D, , DB indicate the required aperture ratio of the pixel corresponding to each color.

第2図は、R,G、Bの各色が3個づつの画素に均等に
割り振られ、かつ図示する色配列を有して3行×3列を
1ユニットとした従来例を示しており、各画素はR,G
、Hに対応してそれぞれ所定の要求開口率に設定されて
いる。
FIG. 2 shows a conventional example in which each color of R, G, and B is equally allocated to three pixels each, and has the color arrangement shown in the figure, with 3 rows x 3 columns as one unit. Each pixel is R, G
, H, respectively, are set to predetermined required aperture ratios.

次に、この第2図に基づいて、各色への画素配分を最適
化した場合の1ユニットを、第1図に示す。この最適化
は以下の手法により行われる。
Next, FIG. 1 shows one unit in which the pixel allocation to each color is optimized based on FIG. 2. This optimization is performed using the following method.

但し、上式において、 Max(DR,DB、DB) 
−Min(DR,D1、DB)は、最大を示す要求開口
率の値から最小を示す要求開口率の値を減算することを
意味し、m、nはlユニットを構成する行及び列の数、
すなわち1本実施例ではm = n = 3が代入され
る。
However, in the above formula, Max(DR, DB, DB)
-Min (DR, D1, DB) means subtracting the minimum required aperture ratio value from the maximum required aperture ratio value, and m and n are the numbers of rows and columns that make up l unit. ,
That is, in this embodiment, m=n=3 is substituted.

上記(1)式にそれぞれ所定値を代入して、(1)式の
等号関係が成立した場合には、最小要求開口率に対応す
る色の画素、すなわち9本実施例では色Gの画素を1個
減らし、最大要求開口率に対応する色の画素、すなわち
1色Bの画素を1個殖す。そして、1Iii素配分変更
後の各色の開口率の相対比率を計算仕直す。
By substituting each predetermined value into the above equation (1), if the equality relationship in equation (1) is established, the pixel of the color corresponding to the minimum required aperture ratio, that is, 9 pixels of color G in this embodiment is decreased by one, and one pixel of the color corresponding to the maximum required aperture ratio, that is, one pixel of one color B, is increased. Then, the relative ratio of the aperture ratio of each color after changing the element distribution is recalculated.

変更後の画素配分は。What is the pixel distribution after the change?

R:B:G=3a:2b:4e    (2)の関係に
設けられている。
R:B:G=3a:2b:4e (2).

上記(2)式のa、 b、 eは1画素配分変更後の各
色に対応した1画素当9の要求開口率の補正値を示し℃
おり。
In the above equation (2), a, b, and e represent the correction values of the required aperture ratio of 9 per pixel corresponding to each color after changing the pixel allocation.℃
Ori.

DR 3a =         X mn DR十D0+DB により求められ、  a=0.96 、 b=Q、90
 、 e=1.08がそれぞれ得られる。そし℃、各色
の変更後の開口率は、素子製作上の観点から1画素の開
口率上限を例えば色Bの6096としたとき、凡の画素
の開口率は。
DR 3a = X mn DR+D0+DB, a=0.96, b=Q, 90
, e=1.08 are obtained, respectively. Then, the aperture ratio after changing each color is, from the viewpoint of device manufacturing, assuming that the upper limit of the aperture ratio of one pixel is, for example, 6096 for color B, the aperture ratio of the ordinary pixel is as follows.

Gの画素の開口率は。What is the aperture ratio of the G pixel?

Bの11ii素の開口率は。The aperture ratio of B's 11ii element is.

D、=DB =60  (%) をそれぞれ得る。D, = DB = 60 (%) are obtained respectively.

次に、上記変更後の開口率を用いて、前記(1)式の等
号関係を再び確認する。この際、(1)式の等号関係が
不変であれば、すなわち、右項〉有頂の関係であれば、
更に最小開口率の色を1画素減らし。
Next, using the aperture ratio after the above change, the equality relationship in the above equation (1) is confirmed again. In this case, if the equality relationship in equation (1) remains unchanged, that is, if the right term is eclipsed, then
Furthermore, the color of the minimum aperture ratio is reduced by one pixel.

かつ最大開口率の色を1画素殖して、再び上記方法に基
づいて画素数刻g当て変更後の開口率を計算仕直す。そ
して、前記(1)式の左項≦有頂になるまで、上記手法
を繰り返す。本実施例では1回の画素数割り振り変更で
、上記(1)式の等号が変る。
Then, the color with the maximum aperture ratio is multiplied by one pixel, and the aperture ratio after changing the pixel number g is calculated again based on the above method. Then, the above method is repeated until the left term of equation (1)≦eclipse. In this embodiment, the equal sign in equation (1) above changes by changing the pixel number allocation once.

この際1画素数配分の最適化が得られたことを意味する
。従って1本実施例では、各色への画素数配分の最適化
は、R:3画素、G:2画素、B:4画素にそれぞれ変
更し、かつそれぞれの1画素当りの開口率の比を、RA
G:B=53%:50%:60%に設定することにより
得られる。このように構成することにより、1ユニット
当りの平均開口率は、第2図に示す従来例の42%に対
し。
This means that the distribution of the number of pixels per pixel has been optimized. Therefore, in this embodiment, the optimization of the pixel number allocation to each color is changed to R: 3 pixels, G: 2 pixels, and B: 4 pixels, and the ratio of the aperture ratio per pixel is R.A.
This is obtained by setting G:B=53%:50%:60%. With this configuration, the average aperture ratio per unit is 42% in the conventional example shown in FIG.

本発明の素子は5596と、約143倍に向上さハる。The device of the present invention has an improvement of about 143 times to 5596.

しかもlユニット当9の要求開口率の比は、システム要
求であるDR:DG:DB=4096:25%:609
6を達成している。
Moreover, the ratio of the required aperture ratio of 9 per l unit is the system requirement DR:DG:DB=4096:25%:609
6 has been achieved.

次に、第2図の従来例から第1図に図示した本発明の好
ましい色配列を得るためには、第2因に図示したlユニ
ットのうち、1画素のGをBに変更すれば良い訳けであ
る。その際1色信号の重み付けに応じた色配分が行われ
る必要がある。このため、1つの手法として、第1列第
3行目のGをBに変更した後、第1列と第3列の第3行
目を入れ替えることにより、第1図の画素配列が得られ
る。
Next, in order to obtain the preferable color arrangement of the present invention shown in FIG. 1 from the conventional example shown in FIG. It's a translation. At this time, it is necessary to perform color allocation according to the weighting of one color signal. Therefore, one method is to change G in the 1st column and 3rd row to B, and then swap the 3rd row of the 1st and 3rd columns to obtain the pixel array shown in Figure 1. .

なお1本発明は画素配列が前記第1図の実施例に限定さ
れろものでな(1例えば、一般的に知られているベイヤ
配列或いはストライプ配膚−用したものであってもよい
Note that the pixel arrangement of the present invention is not limited to the embodiment shown in FIG. 1 (for example, the generally known Bayer arrangement or striped arrangement may be used).

(発明の効果) 以上記載したとおり1本発明の固体撮像素子によれば、
システム仕様に合わせて、各ユニットにおける画素のフ
ィルタ各色への色配分を最適化することにより、平均開
口率を向上させて、感度増加がはかれる。
(Effects of the Invention) As described above, according to the solid-state image sensor of the present invention,
By optimizing the color distribution of each pixel filter color in each unit in accordance with the system specifications, the average aperture ratio can be improved and sensitivity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の固体撮像素子に適用されるカラーフ
ィルタの好ましいl実施例で1色配列及び開口率を示す
図、第2図は第1図と比較のために用いた従来例を説明
する図である。 1・・・画素、10・・・lユニット 代理人 弁理士(8107)佐々木清隆(ほか3名)
FIG. 1 shows a preferred embodiment of a color filter applied to the solid-state image sensor of the present invention, showing the one-color arrangement and aperture ratio, and FIG. 2 shows a conventional example used for comparison with FIG. FIG. 1...pixel, 10...l Unit agent Patent attorney (8107) Kiyotaka Sasaki (and 3 others)

Claims (1)

【特許請求の範囲】 マトリクス状に配置された光電変換素子上に画素対応し
てモザイク状のカラーフィルタが配置されるカラー画像
用の固体撮像素子において、隣接するm行n列(m、n
>2で、かつm=n=2以外の整数)の画素を1ユニッ
トとし、カラーフィルタのl色(lは3以上の整数)を
それぞれの要求開口率D_1、D_2、・・・・、D_
lに合わせて画素に配置する場合に、 Max(D_1、D_2、・・・・、D_l)−Min
(D_1、D_2、・・・・、D_l)≦2×(D_1
+D_2+・・・・D_l)/mnの関係を満たす様に
各色への画素数割り当て行うことを特徴とする固体撮像
素子。
[Scope of Claims] In a solid-state image sensor for color images in which mosaic color filters are arranged corresponding to pixels on photoelectric conversion elements arranged in a matrix, adjacent m rows and n columns (m, n
>2 and m=n=an integer other than 2) as one unit, and l colors of the color filter (l is an integer of 3 or more) are each required aperture ratio D_1, D_2, ..., D_
When arranging pixels according to l, Max (D_1, D_2, ..., D_l) - Min
(D_1, D_2, ..., D_l)≦2×(D_1
A solid-state image sensor characterized in that the number of pixels is allocated to each color so as to satisfy the relationship: +D_2+...D_l)/mn.
JP62142371A 1987-06-09 1987-06-09 Filter color allocation method for solid-state image sensor Expired - Fee Related JPH0720248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142371A JPH0720248B2 (en) 1987-06-09 1987-06-09 Filter color allocation method for solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142371A JPH0720248B2 (en) 1987-06-09 1987-06-09 Filter color allocation method for solid-state image sensor

Publications (2)

Publication Number Publication Date
JPS63306790A true JPS63306790A (en) 1988-12-14
JPH0720248B2 JPH0720248B2 (en) 1995-03-06

Family

ID=15313827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142371A Expired - Fee Related JPH0720248B2 (en) 1987-06-09 1987-06-09 Filter color allocation method for solid-state image sensor

Country Status (1)

Country Link
JP (1) JPH0720248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229603A (en) * 2004-02-11 2005-08-25 Samsung Electronics Co Ltd Solid-state image-sensing device improved in display quality in sub-sampling mode, and its driving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229603A (en) * 2004-02-11 2005-08-25 Samsung Electronics Co Ltd Solid-state image-sensing device improved in display quality in sub-sampling mode, and its driving method

Also Published As

Publication number Publication date
JPH0720248B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US8035711B2 (en) Sub-pixel array optical sensor
US7400332B2 (en) Hexagonal color pixel structure with white pixels
US8723995B2 (en) Extended dynamic range in color imagers
US4437112A (en) Solid-state color imaging apparatus
CN1843027B (en) Image sensor with extended dynamic range
KR100982685B1 (en) System and method for a high performance color filter mosaic array
JP5330258B2 (en) Processing images with color and panchromatic pixels
US20070070223A1 (en) Image pickup apparatus and image processing method
US20100149393A1 (en) Increasing the resolution of color sub-pixel arrays
US20060001745A1 (en) Image sensing device, image processing apparatus and method, and memory medium
US20230086743A1 (en) Control method, camera assembly, and mobile terminal
US9060159B2 (en) Image processing device and method, and imaging device
JPS6351436B2 (en)
JPH1126737A (en) Solid-state image sensing device
JPS63306790A (en) Solid-state image pickup element
JPH0378388A (en) Color solid state image pickup element
WO2022178684A1 (en) Camera system, method for hdr composition, and computer usable medium storing software for implementing method
JP2000253412A (en) Image pickup element and image pickup device
JP4119565B2 (en) Color imaging device and color imaging device
JPS60171887A (en) Solid-state color image pickup device
JPH0488781A (en) Image pickup element
JPS5836555B2 (en) Single plate color television camera
JPS59211377A (en) Signal processing method of color linear image sensor
CN109348204A (en) Imaging sensor and the method for generating image
JPH0832051B2 (en) Color solid-state imaging device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees