JPS63306238A - Thermal prime mover - Google Patents

Thermal prime mover

Info

Publication number
JPS63306238A
JPS63306238A JP13969187A JP13969187A JPS63306238A JP S63306238 A JPS63306238 A JP S63306238A JP 13969187 A JP13969187 A JP 13969187A JP 13969187 A JP13969187 A JP 13969187A JP S63306238 A JPS63306238 A JP S63306238A
Authority
JP
Japan
Prior art keywords
hollow body
rotor
rotating
compressor
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13969187A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13969187A priority Critical patent/JPS63306238A/en
Publication of JPS63306238A publication Critical patent/JPS63306238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent occurrence of surging by rotating a male rotor and a female rotor in the opposite direction with each other, compressing air, and feeding a combustor with this compressed air. CONSTITUTION:A blade 2 of a male rotor 1 is locked to a blade supporter 4, rotating this blade solidly together with a rotary hollow body 9 as joining it close to the circumference of a fixed follow body 11. In a female rotor 5, there are provided with an outer circumferential part 6 to contact close to a rotor casing inner circumferential surface and a sinking part 7 where the blade 2 is fitted in from the outer circumferential part 6 as sinking down. The female rotor 5 and the male rotor 1 are rotated in the opposite direction with each other, and air out of a suction passage 14 is compressed, feeding a gas turbine combustor with this compressed air. With this constitution, air is compressed by a displacement type compressor so that any surging can be prevented from occurring.

Description

【発明の詳細な説明】 本発明は、雄ローターと雌ローターとが互いに非接触状
態で同期的に互いに反対方向へ回転し合う様に構成され
た容積型圧縮機と速度型膨張機(タービン)とを連結さ
れた熱原動機に関するものである。
Detailed Description of the Invention The present invention provides a positive displacement compressor and a velocity expander (turbine) configured such that a male rotor and a female rotor synchronously rotate in opposite directions without contacting each other. This relates to a thermal motor connected to

一般に熱原動機の一種であるガスタービンはピストン機
関に比し小型・軽量・低振動・抵公害にして粗悪燃焼を
使用できる優れた特徴を有するものであるが、圧縮機の
部分に速度型の圧縮機を使用している為、サーシングが
発生しやすく、熱効率の高い範囲が狭いという宿命的な
欠点があった。
In general, gas turbines, which are a type of heat engine, have superior features compared to piston engines, such as being smaller, lighter, less vibrating, less polluting, and able to use poor combustion. Because it uses a machine, it is prone to surging and has the fatal disadvantage of having a narrow range of high thermal efficiency.

この対策として前記ガスタービンの圧縮機に相当する部
分に容積型圧縮機の一種であるスクリュー圧縮機を採用
する例も見られたが、非常に高価となる新たな問題を生
じさせ、実用化されていない。
As a countermeasure to this problem, there have been cases where a screw compressor, which is a type of positive displacement compressor, is adopted for the part corresponding to the compressor of the gas turbine, but this creates a new problem of being extremely expensive, and has not been put into practical use. Not yet.

又、前記ガスタービンは部分負荷域における熱効率が極
めて低いという重大な欠点がある。
Furthermore, the gas turbine has a serious drawback of extremely low thermal efficiency in the partial load region.

本発明は、小型・軽量・低振動・低公害にして粗悪燃料
を使用できるガスタービンの特徴をそのまま受け継ぎな
がらサーシングの発生のない、かつ安価で熱効率の高い
、とりわけ部分負荷域における熱効率が高い新しい熱原
動機の一実施例で、圧縮機C1,C2は容積型圧縮機で
、前者は一段目の圧縮機,後者は二段目の圧縮機で、図
では一段目と二段目の圧縮機を使った二段圧縮式である
が、三段目の圧縮機を追加して三段圧縮式としても良く
、逆に圧縮機を1個のみ使った■段圧縮式としても良い
The present invention is a new gas turbine that inherits the characteristics of a gas turbine that is small, lightweight, low vibration, low pollution, and can use inferior fuel, while also being inexpensive and highly efficient, especially in the partial load range. In one embodiment of the heat engine, the compressors C1 and C2 are positive displacement compressors, the former being the first stage compressor and the latter being the second stage compressor, and the first and second stage compressors are shown in the figure. The two-stage compression type used here may be replaced by a three-stage compression type by adding a third-stage compressor, or alternatively, a two-stage compression type using only one compressor.

圧縮機C1,C2とタービン21とは流体■手と介存さ
せて連結させる事も可能である。
It is also possible to connect the compressors C1, C2 and the turbine 21 with a fluid interposed therebetween.

圧縮機C1のA―A′線断面図を第2図に示すが、圧縮
機C2の断面のもこれを全く同一で、ただローターの軸
方向長が異なるのみである。
A cross-sectional view taken along the line AA' of the compressor C1 is shown in FIG. 2, and the cross-sectional view of the compressor C2 is exactly the same, with the only difference being the axial length of the rotor.

先ず圧縮機C1について説明する。First, the compressor C1 will be explained.

第2図において羽根2は羽根支持体4にしっかりと固定
・支持され、固定中空体9の周囲に密接して(0.1〜
0.3mm程度の微小な間隙を保って)固定される如く
備えれらた回転中空体11の周囲に密接しながら固定中
空体9と一体的に回転する。
In FIG. 2, the blade 2 is firmly fixed and supported by the blade support 4, and is closely spaced around the fixed hollow body 9 (0.1~
The rotating hollow body 9 rotates integrally with the fixed hollow body 9 while closely surrounding the rotating hollow body 11, which is provided so as to be fixed with a minute gap of about 0.3 mm.

雌ローター5はローターケーシング内周面に密接する雌
ローター外周部6及びこの雌ローター外周部6から陥没
しながら羽根2が嵌り込む陥没部7とを有し、雄ロータ
ー1(羽根2,羽根支持体4から成るローター)と雌ロ
ーター5とは互いに非接触状態で(0.1〜0.3mm
程度の微小な間隙を保って)同期歯車15によって同期
的に互いに反対方向へ回転し合う様になっている。
The female rotor 5 has a female rotor outer circumferential portion 6 that is in close contact with the inner circumferential surface of the rotor casing, and a recessed portion 7 into which the blades 2 fit while recessing from the female rotor outer peripheral portion 6. The rotor consisting of the body 4) and the female rotor 5 are in a non-contact state (0.1 to 0.3 mm) with each other.
They are rotated synchronously in opposite directions by a synchronous gear 15 (while maintaining a very small gap).

雌ローター外周部6は回転中空体11に密接する様に構
成され、望ましくは図示の如く回転中空体11の雌ロー
ター外周部6が密接するのが良い。
The female rotor outer periphery 6 is configured to be in close contact with the rotating hollow body 11, and preferably, the female rotor outer periphery 6 of the rotating hollow body 11 is in close contact with each other as shown in the figure.

次ぎに羽根2の線L1(実際は面であるが、断面を考え
ている)に注目すると、線L1は雌ローター5の線L3
の先端部(点又は小さな丸みとする)によって創成され
、羽根2の線L2と雌ローターの線L4との内でいずれ
か一方の線他方の線によって互いに創成し合う様にする
事が望ましいが、製作等の都合があれば線L2の根元側
の部分と線L4の先端部側の部分とが互いに創成し合う
様にすると共に線L2の先端部側の部分と線L4の根元
側の部分との間に大きな間隙を残しておく様に構成して
も、圧縮機の容量は若干小さくなるものの(線L2とL
4との歯合いが始まる圧縮過程の極く初期の期間に内部
に閉じ込めた気体を無圧縮状態で吸入側へ逃がす事にな
る■)圧縮機としての機■は維持する事ができるもので
ある。
Next, if we pay attention to the line L1 of the blade 2 (actually it is a surface, but we are considering a cross section), the line L1 is the line L3 of the female rotor 5.
It is desirable that the line L2 of the blade 2 and the line L4 of the female rotor be created by the tip of the blade 2 (a point or a small roundness), and that the line L2 of the blade 2 and the line L4 of the female rotor be mutually created by the other line. , if it is convenient for manufacturing, etc., the part on the base side of line L2 and the part on the tip side of line L4 are created so that they overlap each other, and the part on the tip side of line L2 and the part on the root side of line L4 are created. Although the capacity of the compressor will be slightly smaller even if a large gap is left between the lines L2 and L
During the very early period of the compression process when the meshing with 4 begins, the gas trapped inside is released to the suction side in an uncompressed state.■) The machine as a compressor can be maintained. .

即ち雄ローターの陥没部7と同陥没部7へ嵌り込むべき
雄ローターの羽根2に注目すると、同陥没部7を形成す
る進み側の壁面の先端部側にある部分(線L3の先端部
―点又は小さな丸み)によって創成される同羽根2の羽
根断面(線L1)の裏側にある羽根側面の断面の線(線
L2)と同陥没部7を形成する遅れ側の壁面の断面の線
(線L4)との内で、いずれか一方の線が他方の線の少
なくとも比較的多くを占める部分によって互いに創成し
合う様に構成するのである。
That is, if we pay attention to the recessed part 7 of the male rotor and the blade 2 of the male rotor that should fit into the recessed part 7, we can see that the part on the tip side of the advancing side wall forming the recessed part 7 (the tip of line L3 - A line (line L2) of the cross section of the blade side surface on the back side of the blade cross section (line L1) of the same blade 2 created by a point or small roundness) and a line (line L2) of the cross section of the wall surface on the lagging side forming the depression 7. Among the lines L4), one of the lines is constructed such that they mutually create each other by a portion that occupies at least a relatively large portion of the other line.

線L1の先端部と線L3(但しその先端部は除く)との
間には、両者が最も接近した状態でも気体が自由に出入
りできる十分な間隙を残しておく様にしておく。
A sufficient gap is left between the tip of the line L1 and the line L3 (excluding the tip) so that gas can freely enter and exit even when the two are closest.

線L5は雄ローター外周部3が密接する円弧である。Line L5 is a circular arc in which the male rotor outer circumferential portion 3 is in close contact.

今、雄ローターの羽根2と雄ローター5とによって挟ま
れた作動室8に注目すると、同作動室8内の気体は同作
動室8の容積の縮小によって密閉的に圧縮され、固定中
空体9内の圧力(高圧)にほぼ等しくなった時点で固定
中空体11に形成された連通口12及び固定中空体9内
に形成された開閉口10を介して固定中空体9内へ吐出
される様になっている。
Now, paying attention to the working chamber 8 sandwiched between the male rotor blades 2 and the male rotor 5, the gas in the working chamber 8 is hermetically compressed by the reduction in the volume of the working chamber 8, and the fixed hollow body 9 When the internal pressure (high pressure) becomes almost equal to the internal pressure (high pressure), the liquid is discharged into the fixed hollow body 9 through the communication port 12 formed in the fixed hollow body 11 and the opening/closing port 10 formed in the fixed hollow body 9. It has become.

即ち、同作動室8の中間容積状態から最小容積状態まで
同作動室8が連通口12,開閉口10を介して固定中空
体9内へ連通する様に構成するのである。
That is, the working chamber 8 is configured to communicate with the fixed hollow body 9 through the communication port 12 and the opening/closing port 10 from the intermediate volume state to the minimum volume state of the working chamber 8.

羽根2が連通口12を連通する時、連通口12を介して
同作動室8とのこの遅れ側にある作動室とが連通する事
を防ぐには連通口12の中心角を,羽根2の回転中空体
11の周囲に密接する部分の中心角をとして、とすれば
良い。
When the blade 2 communicates with the communication port 12, in order to prevent the working chamber 8 from communicating with the working chamber on the lagging side through the communication port 12, the central angle of the communication port 12 should be The central angle of the portion that is in close contact with the periphery of the rotating hollow body 11 may be set as follows.

同作動室8のP―V線図(圧力―容積線図)を第3図に
示すが、高い全断熱効率を有する事が理解されよう。
A PV diagram (pressure-volume diagram) of the working chamber 8 is shown in FIG. 3, and it will be understood that it has a high total adiabatic efficiency.

尚、図では雄ローターの羽根2の数,雌ローターの陥没
部7の数を各々2枚,2個としたが、この他例えば3枚
,2個のものも考えられる事は明らかである。
In the figure, the number of blades 2 of the male rotor and the number of recessed portions 7 of the female rotor are 2 and 2, respectively, but it is clear that other configurations, such as 3 or 2, are also possible.

第1図における羽根支持体4′は固定中空体9に直接的
に固定されているわけではないが、各々の羽根2に作用
する遠心力を平衡させ、補強する役割を負うものである
Although the blade support 4' in FIG. 1 is not directly fixed to the fixed hollow body 9, it has the role of balancing and reinforcing the centrifugal force acting on each blade 2.

第1図に戻って、本発明による熱原動機を更に詳しく述
べる事とする(以下、第2図をも参照)。
Returning to FIG. 1, the thermal motor according to the present invention will be described in more detail (see also FIG. 2 below).

即ち吸入通路から一段目の圧縮機C1に吸入された気体
(通常は大気圧状態にある空気)はここで圧縮され、固
定中空体9内から冷却機6によって冷却された後に二段
目の圧縮機C2へ流入し、再びここで圧縮されつつ二段
目の圧縮機C2の固定中空体9内から熱交換器17を介
して加熱室18内へ導入される。
That is, the gas (usually air at atmospheric pressure) sucked into the first stage compressor C1 from the suction passage is compressed here, and after being cooled by the cooler 6 from inside the fixed hollow body 9, it is compressed in the second stage. The air flows into the compressor C2, where it is compressed again and introduced from the fixed hollow body 9 of the second stage compressor C2 into the heating chamber 18 via the heat exchanger 17.

加熱室18内へは点火線9と燃料噴射弁20とが臨んで
おり、燃料が噴射されて点火栓9により点火されると、
加熱室18内で連■燃焼が維持される様になっている。
An ignition line 9 and a fuel injection valve 20 face into the heating chamber 18, and when fuel is injected and ignited by the ignition plug 9,
Continuous combustion is maintained within the heating chamber 18.

かくして、加熱室18内で熱エネルギーを与えられた気
体(通常は燃焼ガス)はタービン21へ導入され、ここ
で十分に膨張仕■を行う事になっている。
The gas (usually combustion gas) that has been given thermal energy in the heating chamber 18 is thus introduced into the turbine 21, where it is sufficiently expanded.

22はノズル,23はタービン羽根である。22 is a nozzle, and 23 is a turbine blade.

この時、タービン21から排出された気体は熱交換器1
7へ導かれ、加熱室18内へ導入される気体を加熱した
後に大気中に排出する様にしている。
At this time, the gas discharged from the turbine 21 is transferred to the heat exchanger 1
The gas introduced into the heating chamber 18 is heated and then discharged into the atmosphere.

これは排熱を回収して熱原動機の熱効率を向上させる為
である。
This is to recover waste heat and improve the thermal efficiency of the heat engine.

冷却器16の目的は圧縮機を奪い去って等温圧縮に近づ
け、圧縮動力を節減する為であり、構造の間■化が要求
される場合は除去しても良い。
The purpose of the cooler 16 is to take away the compressor, approximate isothermal compression, and save compression power, and it may be removed if a reduction in structure is required.

かくしてタービン21で発生した動力から圧縮機C1,
C2を駆動するに要した動力を差し引いた分だけ熱原動
機に動力が発生する事になり、発電機等の負荷を駆動す
るのである。
In this way, from the power generated by the turbine 21, the compressor C1,
After subtracting the power required to drive C2, the thermal motor will generate power corresponding to the amount of power required to drive C2, which will drive a load such as a generator.

次に、本発明による熱原動機は純粋な回転機械であり、
連続燃焼型である為、小型・軽量・低振動・低公害にし
て粗悪燃料を使用できる特徴を有しながら、圧縮機とし
て容積型圧縮機を使用している為、サ―ジングの発生は
一切なく、速度型圧縮機に比し全運動範囲にわたって高
効率が得られ、低速域でも高い圧力比を発生し得るので
、熱効率は極めて高く、かつ低速運転となる部分負荷域
でも高い熱効率を期待する事ができる。
Next, the thermal motor according to the invention is a pure rotating machine,
Since it is a continuous combustion type, it has the characteristics of being small, lightweight, low vibration, and low pollution, and can use poor quality fuel, but since it uses a positive displacement compressor as a compressor, no surging occurs. Compared to speed type compressors, high efficiency can be obtained over the entire motion range, and a high pressure ratio can be generated even in the low speed range, so thermal efficiency is extremely high, and high thermal efficiency is expected even in the partial load range where low speed operation is required. I can do things.

本発明による熱原動機のおける圧縮機は各々にローター
はスクリュー圧縮機とは異なって軸の回りにヘリカル状
に■れている事はなく、従って製作が容易で、製造価格
も低■である。
Unlike a screw compressor, the compressor in the heat engine according to the present invention does not have a helical rotor around the shaft, and is therefore easy to manufacture and inexpensive to manufacture.

又、各々のローターはローターケーシング内周面に広い
面積を以って密接しており、雌ローター外周部6と回転
中空体11とが密接する部分を広い面とする事ができる
ので、漏れ損失は極めて小さく、スクリュー圧縮機に比
し全断熱効率は高い特徴を有する。
In addition, each rotor is in close contact with the inner peripheral surface of the rotor casing over a wide area, and the part where the outer peripheral part 6 of the female rotor and the rotating hollow body 11 are in close contact can be made into a wide surface, so that leakage loss can be reduced. is extremely small, and has a higher total adiabatic efficiency than a screw compressor.

これは熱原動機の熱効率を高いものにする重要な要素で
ある。
This is an important element that makes the thermal efficiency of the thermal engine high.

かくして本発明の目的は達成されるのである。The object of the invention is thus achieved.

尚、第1図では圧縮機C1,C2は気体(通常は空気)
のみを吸入するようにしても良い。
In Fig. 1, compressors C1 and C2 are gas (usually air).
You may also inhale only the

即ち、点火栓19によって一旦燃焼が起きれば、残留す
る火炎によって次々と送られてくる気体と燃料との混合
物を加熱室18内で連結燃焼させる事ができるのである
(この場合、燃料噴射弁20は不要である)。
That is, once combustion occurs with the ignition plug 19, the mixture of gas and fuel successively sent by the remaining flame can be combined and combusted within the heating chamber 18 (in this case, the fuel injection valve 20 is not necessary).

第1図において加熱室18内へ導入される気体に外部か
ら熱エネルギーを与える事も考えられ、これを第4図に
示す。
It is also possible to apply thermal energy from the outside to the gas introduced into the heating chamber 18 in FIG. 1, and this is shown in FIG. 4.

即ち第4図において、燃料噴射弁20から燃料が噴射さ
れて点火栓19によって燃焼(連結燃焼)が起ると、圧
縮機(二段目の圧縮機C2)から送られてきた気体は加
熱室24の外部から熱エネルギーを与えられ、かくして
高温・高圧の気体をタービン21へ導入して動力を発生
させ、本発明の目的を達成するのである。
That is, in FIG. 4, when fuel is injected from the fuel injection valve 20 and combustion (coupled combustion) occurs by the spark plug 19, the gas sent from the compressor (second stage compressor C2) enters the heating chamber. Thermal energy is applied from the outside of the turbine 24, and thus high-temperature, high-pressure gas is introduced into the turbine 21 to generate power, thereby achieving the object of the present invention.

次ぎに第5図に示す実施例は基本的には第1図と同様で
あるが、二段圧縮を3個のローターで達成し、構造の簡
素化を図ったところが異なるものである。
Next, the embodiment shown in FIG. 5 is basically the same as that in FIG. 1, but differs in that two-stage compression is achieved using three rotors and the structure is simplified.

即ち、雌ローター5と非接触状態で噛合う雄ローター1
を雌ローター5の両側に備えた圧縮機を使用しており、
前記圧縮機は雌ローター5及びこの雌ローター5と噛合
う一方の側の雄ローター1から成る一段目の圧縮機C1
と,雌ローター5及びこの雌ローター5と噛合う他方の
側の雄ローター1から成る二段目の圧縮機C2ちから構
成されているのである。
That is, the male rotor 1 meshes with the female rotor 5 in a non-contact manner.
It uses a compressor equipped on both sides of the female rotor 5,
The compressor is a first stage compressor C1 consisting of a female rotor 5 and a male rotor 1 on one side meshing with the female rotor 5.
The second stage compressor C2 consists of a female rotor 5 and a male rotor 1 on the other side that meshes with the female rotor 5.

そして以上の圧縮機とタービン(図示せず)とを連結さ
せているのである。
The compressor and turbine (not shown) are connected to each other.

従って、一段目の圧縮機C1で圧縮された固定中空体9
内からの気体を二段目の圧縮機C2へ導入すると共に、
二段目の圧縮機C2で圧縮された固定中空体9内からの
気体を加熱室18(第1図参照)内へ導入して熱エネル
ギーを与え、かくして高温・高圧となった気体をタービ
ンへ導入して膨張させているのである。
Therefore, the fixed hollow body 9 compressed by the first stage compressor C1
While introducing the gas from inside to the second stage compressor C2,
The gas from the fixed hollow body 9 compressed by the second-stage compressor C2 is introduced into the heating chamber 18 (see Figure 1) to give thermal energy, and the high-temperature and high-pressure gas is sent to the turbine. It is introduced and expanded.

尚,第1図から第5図までは■放サイクルを適用したの
もであるが、タービン21から排出された気体を冷却し
て再び圧縮機に吸入させる様にすれば、密閉サイクルを
適用させる事も可能である(ただし、加熱室は第4図の
形式のものを採用する必要がある)。
Note that Figures 1 to 5 apply the open cycle, but if the gas discharged from the turbine 21 is cooled and sucked into the compressor again, a closed cycle can be applied. (However, the heating chamber must be of the type shown in Figure 4).

更に本発明はタービン21の発生動力を圧縮機駆動■■
とならしめ、前記タービン21から排出される気体によ
り負荷に連結する別のタービンを駆動する様に構成する
事も考えられるものである。
Furthermore, the present invention uses the power generated by the turbine 21 to drive the compressor.
It is also conceivable that the gas discharged from the turbine 21 be used to drive another turbine connected to the load.

次ぎに、以上の熱原動機においては開閉口10と連通口
12との連通開始時期、即ち作動室8と固定中空体9内
との連通開始時期が固定されている為、部分負荷域にお
いて加熱室18(加熱室24も含む―以下、加熱室18
で代表する)内へ導入される気体に与えられる熱エネル
ギーが減少して(燃料噴射弁20から噴射される燃料噴
射量が減少して)加熱室18内の圧力が低下すると、誘
う室8のP−V線図を示す第6図からも明らかな様に作
動室8内での過圧縮により斜線の部分に相当する損失を
生じ、部分負荷域における熱効率が若干■化する問題が
ある。
Next, in the above heat engine, since the timing at which communication between the opening/closing port 10 and the communication port 12 starts, that is, the timing at which communication starts between the working chamber 8 and the inside of the fixed hollow body 9, is fixed, the heating chamber 18 (including heating chamber 24 - hereinafter referred to as heating chamber 18
When the pressure inside the heating chamber 18 decreases as the thermal energy given to the gas introduced into the chamber (represented by ) decreases (as the amount of fuel injected from the fuel injection valve 20 decreases), the As is clear from FIG. 6, which shows a P-V diagram, overcompression within the working chamber 8 causes a loss corresponding to the shaded area, and there is a problem that the thermal efficiency in the partial load range becomes slightly negative.

この欠点を解消するには作動室8と固定中空体9内との
連通開始時期を可変式とすれば良いわけで、第7図に示
す如く回転中空体11の内部に回動体25そ回動自在に
備え(図では回動体25を固定中空体9の内周面に密接
させて備えてある)、回動体25を回動させる事により
開閉口10と回動体25に形成された制御口26との連
通開始時期を変仕させる様にするのが良い。
In order to eliminate this drawback, it is sufficient to make the communication start timing between the working chamber 8 and the inside of the fixed hollow body 9 variable.As shown in FIG. The opening/closing opening 10 and the control port 26 formed in the rotating body 25 are freely provided (in the figure, the rotating body 25 is provided in close contact with the inner peripheral surface of the fixed hollow body 9), and by rotating the rotating body 25, the opening/closing opening 10 and the control port 26 formed in the rotating body 25 are rotated. It is better to vary the start time of communication.

即ち、部分負荷域において燃料噴射弁20から噴射され
る燃料噴射量が減少して(加熱室18内へ導入される気
体に与えられる熱エネルギーが減少して)加熱室18内
の圧力が低下すると、回動体25を図示の位置まで回動
させて開閉口10と制御口26との連通開始時期を早め
(連通口12を拡大させて、開閉口10と制御口26と
の連通開始時期を第2図のものよりも早め得る様にして
ある)。作動室8と固定中空体9内との連通開始時期を
早める様に制御するのである。
That is, when the amount of fuel injected from the fuel injection valve 20 decreases in the partial load region (the thermal energy given to the gas introduced into the heating chamber 18 decreases), the pressure inside the heating chamber 18 decreases. , the rotating body 25 is rotated to the illustrated position to advance the timing at which communication between the opening/closing port 10 and the control port 26 starts (by enlarging the communication port 12, the timing at which communication between the opening/closing port 10 and the control port 26 starts is advanced). (It is designed so that it can be obtained earlier than the one in Figure 2). Control is performed to bring forward the timing at which communication between the working chamber 8 and the interior of the fixed hollow body 9 begins.

従って作動室8内に一杯に吸入した気体を同作動室8の
容積の縮小によって密閉的に圧縮し、ほぼ固定中空体9
内の圧力に等しくなった時点で吐出が開始される様にし
、同作動室8のP―V線図を第8図の如く描かせる事が
可能となり、第6図に見られる斜線の部分に相当する損
失を完全に消滅させ、部分負荷域における熱効率を向上
させる事ができる。
Therefore, the gas fully sucked into the working chamber 8 is hermetically compressed by reducing the volume of the working chamber 8, and the almost fixed hollow body 9
Discharge is started when the pressure within the working chamber 8 becomes equal to that of the inside, and the PV diagram of the working chamber 8 can be drawn as shown in Fig. 8, and the shaded area shown in Fig. 6 It is possible to completely eliminate the corresponding loss and improve thermal efficiency in the partial load range.

この回動体25は、例えば加熱室18内の圧力を感知し
て作動するダイアフラム装置又はピストン装置の様な駆
動装置により駆動する様にするのである。
The rotating body 25 is driven by a drive device such as a diaphragm device or a piston device that operates by sensing the pressure within the heating chamber 18, for example.

回動体25は固定中空体9の外周面に密接させて備える
様にする事も可能で、これを第9図に示す。
The rotating body 25 can also be provided in close contact with the outer peripheral surface of the fixed hollow body 9, and this is shown in FIG.

即ち第9図において、固定中空体9の外周面に密接させ
て備えられた回動体25(もちろん回動体25は固定中
空体11の内部にある)を回動させる事により開閉口1
0と制御口26との連通開始時期を変仕させて、作動室
8内における過圧縮を消滅させているのである。
That is, in FIG. 9, the opening/closing opening 1 is rotated by rotating the rotating body 25 (of course, the rotating body 25 is inside the fixed hollow body 11) provided in close contact with the outer peripheral surface of the fixed hollow body 9.
0 and the control port 26 are changed to eliminate overcompression within the working chamber 8.

27は回動体25に固着された密接弁で、羽根2の回転
中空体11の周囲に密接する部分に密接する様になって
いる。
A close contact valve 27 is fixed to the rotating body 25 and is adapted to come into close contact with a portion of the blade 2 that is in close contact with the periphery of the rotating hollow body 11.

全負荷域では部分負荷域よりも開閉口10と制御口26
との連通開始時期を遅らせなければならないわけである
が、この時には第10図に示す如く回動体25を反時計
方向に所定角度だけ回動させておくのであり、この場合
には開閉口10と制御口26との連通が遮断される直前
に密接弁27により固定中空体9内の高圧の気体が開閉
口10,制御口26を介して低圧側へ逃げ出す事が防止
されるのである(もし密接弁27がなければ、開閉口1
0と開閉口26との連通が遮断される直前に固定中空体
9内の高圧の気体が低圧側へ逃げ出すのである―開閉口
10と制御口26との連通が遮断される様に羽根2の幅
が大であれば、密接弁27は不用である)。
In the full load range, the opening/closing port 10 and the control port 26 are smaller than in the partial load range.
In this case, as shown in FIG. 10, the rotating body 25 is rotated by a predetermined angle in the counterclockwise direction. Immediately before the communication with the control port 26 is cut off, the close valve 27 prevents the high pressure gas in the fixed hollow body 9 from escaping to the low pressure side via the opening/closing port 10 and the control port 26 (if If there is no valve 27, opening/closing port 1
Immediately before the communication between the opening and closing port 26 is cut off, the high pressure gas in the fixed hollow body 9 escapes to the low pressure side. If the width is large, the close valve 27 is unnecessary).

次いで、部分負荷域における熱効率を向上させる方法を
更に述べる。
Next, a method for improving thermal efficiency in the partial load range will be further described.

即ち、第1図から第10図までに述べた熱原動機では、
燃料噴射弁20から噴射される燃焼噴射量を変仕させる
事のみにより出力を制御する方法が採用されるが、この
方法は簡単ではあるが部分負荷域では空気過■率が大と
なり、サイクル最高温度が低下して熱効率が大幅に悪化
する欠点がある。
That is, in the thermal motors described in Figs. 1 to 10,
A method is adopted in which the output is controlled only by varying the amount of combustion injection injected from the fuel injection valve 20, but although this method is simple, the air overload rate becomes large in the partial load range, and the cycle peaks. There is a drawback that the temperature decreases and the thermal efficiency deteriorates significantly.

部分負荷域において高い熱効率を維持できる出力制御法
は、燃料噴射量を変えると共に加熱室18内へ導入され
る気体の流量を変え、サイクル最高温度を常時高く保つ
様にしておく事であり、これを第11図によって説明す
る。
The output control method that can maintain high thermal efficiency in the partial load range is to change the amount of fuel injection and the flow rate of gas introduced into the heating chamber 18 to keep the maximum cycle temperature high at all times. will be explained with reference to FIG.

即ち第11図は、前記目的を達成する本発明による熱原
動機の圧縮機を示し(従って前記目的を達成する本発明
による熱原動機は第1図において圧縮機C1,C2を第
11図に示す圧縮機で置き換えたもので表わされる)、
回転中空体11の内部には回動体25が回動自在に密接
させて備えられいる)、ケーシング内壁面(図ではロー
ターケーシング内周面)に開口しながら圧縮機の吸入側
(吸入通路14内)へ通ずる連通路28に連通弁29,
30を備えてあろ(連通弁は3個備えても、逆に1個の
み備える様にしても良い)。
That is, FIG. 11 shows a compressor of a heat engine according to the present invention that achieves the above object (therefore, the heat engine according to the invention that achieves the above object replaces the compressors C1 and C2 in FIG. 1 with the compressor shown in FIG. 11). (represented by replacing machine),
A rotary body 25 is rotatably provided in the interior of the rotating hollow body 11 in close contact with each other so as to be rotatable. ) A communication valve 29 is provided in the communication passage 28 leading to the
30 (it may be provided with three communication valves, or conversely, it may be provided with only one).

この時、作動室8は中間容積状態から最小容積状態まで
連通口12及び開閉口10及び回動体25に形成された
制御口26を介して固定中空体9内へ連通し、回動体2
5を回動させれば開閉口10と制御口26との連通開始
時期が変仕し、これにより作動室8と固定中空体9内と
の連通開始時期が変仕せしめられるのである。
At this time, the working chamber 8 communicates with the inside of the fixed hollow body 9 from the intermediate volume state to the minimum volume state through the communication port 12, the opening/closing port 10, and the control port 26 formed in the rotating body 25.
By rotating 5, the timing at which communication between the opening/closing port 10 and the control port 26 starts can be changed, thereby changing the timing at which communication between the working chamber 8 and the inside of the fixed hollow body 9 starts.

連通弁29を開く事よって作動室8は最大容積状態から
所定の容積状態まで圧縮機の吸入側(吸入通路14内)
へ連通する様になり、連通弁29を開閉させる事によっ
て作動室8と圧縮機の吸入側との連通遮断時期を変仕さ
せる事ができる(連通弁30についても同様である)。
By opening the communication valve 29, the working chamber 8 changes from the maximum volume state to the predetermined volume state on the suction side of the compressor (inside the suction passage 14).
By opening and closing the communication valve 29, the communication cutoff timing between the working chamber 8 and the suction side of the compressor can be changed (the same applies to the communication valve 30).

今、部分負荷域において燃料噴射弁20から噴射される
燃料噴射量が減少すると、連通弁29を開くと共に回動
体25を図示の位置まで回動させて開閉口10と制御口
26との連通開始時期を遅らせ、作動室8と固定中空体
9内との連通開始時期を遅らせる様に制御するのである
Now, when the amount of fuel injected from the fuel injection valve 20 decreases in the partial load region, the communication valve 29 is opened and the rotating body 25 is rotated to the illustrated position to start communication between the opening/closing port 10 and the control port 26. Control is performed to delay the timing of communication between the working chamber 8 and the inside of the fixed hollow body 9.

従って、作動室8内に一杯に吸入された気体は連通路2
8を介して所定量だけ圧縮機の吸入側へ戻され、同作動
室8と圧縮機の吸入側との連通が遮断された後は同作動
室8内の気体は容積の縮小によって密閉的に圧縮され、
固定中空体9内の圧力にほぼ等しくなった時点で連通口
12,開閉口10,制御口26を介して固定中空体9内
へ吐出され、即ち同作動室8のP―V線図は第12図の
如く描かれ(実線の部分)、かくして圧縮機の容量が制
御され(減少)、加熱室18内へ導入される気体の流量
が減少するのである。
Therefore, the gas fully sucked into the working chamber 8 is transferred to the communication path 2.
8, a predetermined amount of gas is returned to the suction side of the compressor, and after the communication between the working chamber 8 and the suction side of the compressor is cut off, the gas in the working chamber 8 is hermetically sealed due to the volume reduction. compressed,
When the pressure in the fixed hollow body 9 becomes almost equal to that in the fixed hollow body 9, the air is discharged into the fixed hollow body 9 through the communication port 12, the opening/closing port 10, and the control port 26. In other words, the PV diagram of the working chamber 8 is As shown in FIG. 12 (solid line), the capacity of the compressor is thus controlled (reduced) and the flow rate of gas introduced into the heating chamber 18 is reduced.

この場合、加熱室18内へ導入される気体の流量が減少
しているので、タービン21側(第1図参照)もノズル
締切法(ノズル22をいくつかの組に分割し、各々に設
けた弁を順次開閉してノズル22を通過する気体の流速
の低下を防ぐ方法で、蒸気タービン等で既に実用されて
いる)やノズル22を可変節にする方法等を使用して、
タービン22側の効率を向上させる様にする事が望まし
い。
In this case, since the flow rate of the gas introduced into the heating chamber 18 is decreasing, the turbine 21 side (see Fig. 1) also uses the nozzle shut-off method (the nozzle 22 is divided into several sets and installed in each set). This is a method of sequentially opening and closing valves to prevent a decrease in the flow velocity of gas passing through the nozzle 22, which is already in practical use in steam turbines, etc.) or a method of making the nozzle 22 a variable node.
It is desirable to improve the efficiency on the turbine 22 side.

更に燃料噴射量が減少して低負荷域へ移行した場合には
、連通弁30をも開いて圧縮機の容量を制御(減少)す
ると共に、回動体25を更に回動させて開閉口10と制
御口26との連通開始時期を遅れせ、作動室8のP―V
線図が第12図の二点■■末の如く描かれる様に制御す
るのである。
When the fuel injection amount further decreases and shifts to a low load range, the communication valve 30 is also opened to control (reduce) the capacity of the compressor, and the rotating body 25 is further rotated to close the opening/closing port 10. By delaying the start of communication with the control port 26, the P-V of the working chamber 8 is
Control is performed so that the line diagram is drawn as shown at the end of the two points (■■) in Figure 12.

この様に燃料噴射弁20から噴射される燃料噴射量の減
少に相応じて圧縮機の容量を制御(減少)させて、加熱
室18内を流れる気体の流量を減少させる事ができるの
で、空気過剰率は常に適正に保たれ(全負荷時とはほぼ
同一に保たれ)、サイクル最高温度を常に高く維持する
(全負荷時とはほぼ同一のサイクル最高温度に維持する
―サイクル最高圧力も全負荷時とほぼ同一に保つ事がで
きる)事が可能となり、部分負荷域における熱効率を大
幅に改善する事ができる。
In this way, the capacity of the compressor is controlled (reduced) in accordance with the decrease in the amount of fuel injected from the fuel injection valve 20, and the flow rate of the gas flowing inside the heating chamber 18 can be reduced. The excess rate is always kept reasonable (almost the same as at full load) and the maximum cycle temperature is always kept high (the maximum cycle temperature is approximately the same as at full load - the maximum cycle pressure is also kept at full load). This makes it possible to maintain almost the same value as when under load), and it is possible to significantly improve thermal efficiency in the partial load range.

全負荷時には連通弁29,30を全閉とすることは言う
までもない。
Needless to say, the communication valves 29 and 30 are fully closed during full load.

連通路28のローターケーシング内周面に開口する開口
部の中心角を,羽根2の雄ローター外周部3の中心角を
とすれば、となる様に構成されているから、連通路28
のローターケーシング内周面に開口する開口部を羽根2
が通過する時、作動室間が互いに連通状態と陥る事はな
い。
If the center angle of the opening of the communication passage 28 that opens into the inner peripheral surface of the rotor casing is the center angle of the male rotor outer peripheral part 3 of the blade 2, then the communication passage 28 is configured as follows.
The opening on the inner peripheral surface of the rotor casing of the blade 2
When passing, the working chambers will not be in communication with each other.

第11図では作動室8と圧縮機の吸入側との連通遮断時
期を連通弁29,30の順次の開閉によって段階的に変
仕させる様にしたが、連続的に変仕させる様にした実施
例を第13図に示す。
In Fig. 11, the communication cutoff timing between the working chamber 8 and the suction side of the compressor is changed in stages by sequentially opening and closing the communication valves 29 and 30, but in an embodiment in which the timing is changed continuously. An example is shown in FIG.

即ち第13図は前記目的を達成する本発明による熱原動
機を示し、一段目の圧縮機C1のB―B′線断面図,C
―C′線断面図を第14,15図に各々示し(二段目の
圧縮機C2についても、一段目の圧縮機と同様に構成さ
れている)、分離壁37によって回転中空体11内を(
固定中空体9内を)吐出側へ通ずる高圧空間Hと固定中
空体9に形成された四角8、通路39を介して吸入側(
吸入通路14内)へ通ずる低圧空間Lとに区分している
(以下第13,14,15図をも同時に参照のこと)。
That is, FIG. 13 shows a thermal motor according to the present invention that achieves the above object, and is a sectional view taken along line B-B' of the first stage compressor C1, and C
-C' line cross-sectional views are shown in FIGS. 14 and 15, respectively (the second-stage compressor C2 is configured similarly to the first-stage compressor), and the inside of the rotating hollow body 11 is separated by the separating wall 37. (
The inside of the fixed hollow body 9 is connected to the suction side (through the high pressure space H which leads to the discharge side), the square 8 formed in the fixed hollow body 9, and the passage 39.
It is divided into a low-pressure space L that communicates with the suction passage 14 (inside the suction passage 14) (see also FIGS. 13, 14, and 15 below).

高圧空間H側の回転中空対11内には回動体25が回動
自在に備えられ(例えば固定中空体9の内周面に密接さ
せて備える)、回動体25を回動させる様により高圧空
間H側の固定中空体9に形成された開閉口10と回動体
25に形成された制御口26との連通開始時期、即ち作
動室8と高圧空間H内との連通開始時期が変仕せしめら
れる。
A rotary body 25 is rotatably provided in the rotating hollow pair 11 on the side of the high pressure space H (for example, provided in close contact with the inner circumferential surface of the fixed hollow body 9), and the high pressure space The timing at which communication starts between the opening/closing port 10 formed in the fixed hollow body 9 on the H side and the control port 26 formed in the rotating body 25, that is, the timing at which communication starts between the working chamber 8 and the inside of the high pressure space H is changed. .

12は高圧空間H側の回転中空対11に形成された連通
口である。
12 is a communication port formed in the rotating hollow pair 11 on the high pressure space H side.

他方、低圧空間L側の回転中空対11内には低圧回動体
32が回動自在に備えられ(図では固定中空体9の外周
面に密接させて備えられている)、これにより作動室8
は最大容積状態から所定の容積状態まで低圧空間L側の
回転中空対11に形成された低圧連通口31,低圧回動
体32に形成された低圧制御口33,低圧空間L側の固
定中空体9に形成された低圧開閉口34を介して低圧空
間L内へ連通する事になり、低圧回動他意32を回動さ
せる事により低圧開閉口34と低圧制御口33との連通
遮断時期,即ち作動室8と低圧空間Lとの連通遮断時期
が変仕せしめられる。
On the other hand, a low-pressure rotating body 32 is rotatably provided in the rotating hollow pair 11 on the low-pressure space L side (in the figure, it is provided in close contact with the outer circumferential surface of the fixed hollow body 9).
From the maximum volume state to the predetermined volume state, the low pressure communication port 31 formed in the rotating hollow pair 11 on the low pressure space L side, the low pressure control port 33 formed on the low pressure rotating body 32, and the fixed hollow body 9 on the low pressure space L side It communicates with the low pressure space L through the low pressure opening/closing port 34 formed in the low pressure opening/closing port 34, and by rotating the low pressure rotating shaft 32, it is possible to determine when to cut off the communication between the low pressure opening/closing port 34 and the low pressure control port 33, that is, to operate the low pressure opening/closing port 34. The timing of communication interruption between the chamber 8 and the low pressure space L is changed.

従って部分負荷域において燃料噴射量が減少すると、低
圧回動対32を回動させて低圧開閉口34と低圧制御口
33との連通遮断時期を遅らせて(作動室8内に一杯に
吸入した気体を所定量だけ吸入側へ戻して)圧縮機の容
量を制御(減少)すると共に、回動体25を回動させて
開閉口10と制御口26との連通開始時期を遅らせ、作
動室8のP―V線図が第12図の如く描かれる様に制御
し、かくして低圧回動体32を回動させる事により作動
室8と吸入側との連通遮断時期を連続的に変仕させてい
るのである。
Therefore, when the fuel injection amount decreases in the partial load region, the low pressure rotating pair 32 is rotated to delay the timing of disconnecting the communication between the low pressure opening/closing port 34 and the low pressure control port 33. is returned to the suction side by a predetermined amount) to control (reduce) the capacity of the compressor, and also rotates the rotating body 25 to delay the start of communication between the opening/closing port 10 and the control port 26, thereby reducing the P of the working chamber 8. - Control is performed so that the V diagram is drawn as shown in Fig. 12, and by rotating the low-pressure rotating body 32, the timing of cutting off communication between the working chamber 8 and the suction side is continuously varied. .

かくして部分負荷域における熱効率を大幅に向上させる
事ができる。
In this way, thermal efficiency in the partial load range can be significantly improved.

連通弁36は特に必要不可欠なものではないが、作動室
8が低圧連通口31,手う圧開閉口34,低圧制御口3
3を介して吸入通路14内へ連通する時、連絡弁36を
開いておいて作動室8が連絡弁35をも介して吸入通路
14内へ連通する様にし、連通断面積を拡大させる役割
を果すものである。
Although the communication valve 36 is not particularly essential, the working chamber 8 is connected to the low pressure communication port 31, the hand pressure opening/closing port 34, and the low pressure control port 3.
3, the communication valve 36 is opened so that the working chamber 8 also communicates with the suction passage 14 via the communication valve 35, which serves to expand the communication cross-sectional area. It is something that will be fulfilled.

これにより低圧連通口31の軸方向長を小とし、連通口
12の断面積を拡大させる効果が生まれる。
This produces the effect of reducing the axial length of the low-pressure communication port 31 and increasing the cross-sectional area of the communication port 12.

連結路35のローターケーシング内周面に開口する開口
部を羽根2が通過する時、低圧開閉口34と低圧制御口
33との連通が既に遮断されている如き制御位置に低圧
回動体32がある場合は、連絡弁36を全閉させておか
なければならないから、連絡弁36の切換点(開から閉
へ、閉から開へ切換える点)は低圧回動体32の制御位
置によって従属的に定められる事になる。
When the blade 2 passes through the opening of the connecting path 35 that opens on the inner circumferential surface of the rotor casing, the low-pressure rotating body 32 is in a control position such that communication between the low-pressure opening/closing port 34 and the low-pressure control port 33 is already cut off. In this case, the communication valve 36 must be fully closed, so the switching point of the communication valve 36 (the point at which it switches from open to closed and from closed to open) is dependently determined by the control position of the low-pressure rotating body 32. It's going to happen.

全負荷域では、連絡弁36を全閉させると共に低圧連通
口31,低圧開閉口34,低圧制御口33の三者が同時
に互いに連通し合う事のない位置まで低圧回動体32を
回動させる事は言うまでもない。
In the full load range, the communication valve 36 is fully closed and the low pressure rotating body 32 is rotated to a position where the low pressure communication port 31, low pressure opening/closing port 34, and low pressure control port 33 do not communicate with each other at the same time. Needless to say.

尚、低圧回動他意32は例えばカム等を介して回動体2
5へ連動する様に構成される様になっている。
Note that the low-pressure rotating body 32 is connected to the rotating body 2 via a cam or the like, for example.
It is configured to be linked to 5.

尚、第15図において羽根2の回転中空体11の周囲に
密接する部分の中心角を,低圧連通口31の中心角をと
すれば,となっているから、 羽根2が低圧連通口31を連通する時、作動室間が互い
に連通状態に陥る陥る事はないが、低圧連通口31の大
きさが羽根2の幅によって制限される結果、低圧回動体
32の制御範囲も制限される事になる。
In addition, in FIG. 15, if the central angle of the part of the blade 2 that is in close contact with the periphery of the rotating hollow body 11 is the central angle of the low pressure communication port 31, then When communicating, the working chambers do not fall into communication with each other, but as the size of the low pressure communication port 31 is limited by the width of the blade 2, the control range of the low pressure rotating body 32 is also limited. Become.

低圧回動体32の制御範囲を拡大するには、第16図に
示す如く低圧連通口31′を別に新設すれば良い。
In order to expand the control range of the low pressure rotating body 32, a new low pressure communication port 31' may be newly provided as shown in FIG.

低圧連通口31′が図示の如く低圧回動体32によって
完全に閉鎖されている時には、羽根2が低圧連通口31
′,31を通過しても隔壁40によって作動室間が互い
に連通状態に陥る事はない。
When the low pressure communication port 31' is completely closed by the low pressure rotating body 32 as shown in the figure, the blade 2 closes the low pressure communication port 31'.
', 31, the working chambers do not come into communication with each other due to the partition wall 40.

本発明は以上の如く構成されているので、小型・軽量・
低振動・抵公害のして粗悪燃料を使用できる特徴を有し
ながら、サージングの発生のない、かつ安価で熱効率の
高い、とりわけ部分負荷域にあける熱効率が高い熱原動
機を提供する事ができる。
Since the present invention is configured as described above, it is small, lightweight, and
It is possible to provide a thermal motor that has low vibration, low pollution, and can use inferior fuel, does not cause surging, is inexpensive, and has high thermal efficiency, especially in a partial load range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・5・7・9・10・11・13図は本発明による
熱原動機の断面図,第2図は第1図のA―A′線断面図
,第3・6・8・12図はP―V線図,第4図は加熱室
を示す図,第14・15図は各々第13図のB―B′線
断面図・C―C′線断面図,第16図は低圧連通口を複
数形成した図を示す。 1は雄ローター,2は羽根,3は雄ローター外周部,4
・4′は羽根支持体,5は雌ローター,6は雌ローター
外周部,7は陥没部,8は作動室,9は固定中空体,1
0は開閉口,11は回転中空体,12は連通口,13は
欠円部,14は吸入通路,15は同期歯車,16は冷却
器,17は熱交換器,18・24は加熱室,19は点火
栓,20は燃料噴射弁,21はタービン,22はノズル
,23はタービン羽根,25は回動体,26は制御口,
27は密接片,28は連通路,29・30は連通弁,3
1は低圧連通口,31′も低圧連通口,32は低圧回動
体,33は低圧制御口,34は低圧連通口,35は連絡
路,36は連絡弁,37は分離壁,38は孔,39は通
路,40は隔壁,Hは高圧空間,Lは低圧空間,C1・
C2は各々一段目・二段目の圧縮機を示すものである。
Figures 1, 5, 7, 9, 10, 11, and 13 are cross-sectional views of the thermal motor according to the present invention, Figure 2 is a cross-sectional view taken along line A-A' in Figure 1, and Figures 3, 6, 8, and 12. is a PV diagram, Figure 4 is a diagram showing the heating chamber, Figures 14 and 15 are sectional views taken along lines B-B' and C-C' in Figure 13, respectively, and Figure 16 is a low-pressure connection. A diagram showing a plurality of mouths is shown. 1 is the male rotor, 2 is the blade, 3 is the outer circumference of the male rotor, 4
・4' is the blade support, 5 is the female rotor, 6 is the outer periphery of the female rotor, 7 is the recessed part, 8 is the working chamber, 9 is the fixed hollow body, 1
0 is an opening/closing port, 11 is a rotating hollow body, 12 is a communication port, 13 is a missing circular part, 14 is a suction passage, 15 is a synchronous gear, 16 is a cooler, 17 is a heat exchanger, 18 and 24 are heating chambers, 19 is a spark plug, 20 is a fuel injection valve, 21 is a turbine, 22 is a nozzle, 23 is a turbine blade, 25 is a rotating body, 26 is a control port,
27 is a sealing piece, 28 is a communication passage, 29 and 30 are communication valves, 3
1 is a low pressure communication port, 31' is also a low pressure communication port, 32 is a low pressure rotating body, 33 is a low pressure control port, 34 is a low pressure communication port, 35 is a communication path, 36 is a communication valve, 37 is a separation wall, 38 is a hole, 39 is a passage, 40 is a partition, H is a high pressure space, L is a low pressure space, C1.
C2 indicates the first and second stage compressors, respectively.

Claims (4)

【特許請求の範囲】[Claims] (1)回転中空体の外部に固定される如く備えられた固
定中空体の周囲に密接しながら前記回転中空体と一体的
に回転する羽根を備えた雄ローターと、ローターケーシ
ング内周面に密接する雌ローター外周部及びこの雌ロー
ター外周部から陥没しながら前記雄ローターの羽根が嵌
り込む陥没部を有する雌ローターとが互いに非接触状態
で同期的に互いに反対方向へ回転し合い、かつ前記雌ロ
ーター外周部が前記固定中空体に密接する様に構成した
圧縮機であり、前記雌ローターの陥没部と同陥没部へ嵌
り込むべき雄ローターの羽根に注目し、同陥没部を構成
する進み側の壁面の先端部側にある部分によって創成さ
れる同羽根の羽根側面の裏側にある羽根側面の断面の線
と同陥没部を形成する遅れ側の壁面の断面の線との内で
、いずれか一方の線が他方の線の少なくとも比較的多く
を占める部分によって互いに創成し合う様に構成し、更
に前記雄ローターの羽根と雌ローターとによって挟まれ
た作動室に注目し、同作動室の中間容積状態から最小容
積状態まで同作動室が前記固定中空体に形成された連通
口及び前記回転中空体に形成された開閉口を介して前記
回転中空体内へ連通する様にし、以上の如く構成された
圧縮機をタービンへ連結せしめ、前記圧縮機の作動室内
で圧縮された回転中空体内からの気体を加熱室内へ導入
し、更に前記加熱室内で熱エネルギーを与えられた気体
を前記タービンへ導入して膨張させる様にした事を特徴
とする熱原動機。
(1) A male rotor equipped with blades that rotate integrally with the rotary hollow body while closely surrounding the fixed hollow body that is fixed to the outside of the rotary hollow body, and a male rotor that is provided with blades that rotate integrally with the rotary hollow body, and closely attached to the inner circumferential surface of the rotor casing. and a female rotor having a recessed part into which the blades of the male rotor fit while recessed from the outer peripheral part of the female rotor rotate in opposite directions synchronously in a non-contact state, and The compressor is configured such that the outer circumference of the rotor is in close contact with the fixed hollow body. Either the line of the cross section of the blade side surface on the back side of the blade side surface of the same blade created by the part on the tip side of the wall surface, or the line of the cross section of the wall surface on the lagging side forming the same depression. One line is constructed so that it mutually creates at least a relatively large portion of the other line, and furthermore, focusing on the working chamber sandwiched between the blades of the male rotor and the female rotor, The working chamber communicates with the rotating hollow body from the volume state to the minimum volume state through the communication port formed in the fixed hollow body and the opening/closing port formed in the rotating hollow body, and is configured as described above. a compressor connected to a turbine, gas from a rotating hollow body compressed in a working chamber of the compressor is introduced into a heating chamber, and further gas given thermal energy in the heating chamber is introduced into the turbine. A thermal motor that is characterized by being made to expand.
(2)回転中空体の外部に固定される如く備えられた固
定中空体の周囲に密接しながら前記回転中空体と一体的
に回転する羽根を備えた雄ローターと、ローターケーシ
ング内周面に密接する雌ローター外周部及びこの雌ロー
ター外周部から陥没しながら前記雄ローターの羽根が嵌
り込む陥没部を有する雌ローターとが互いに非接触状態
で同期的に互いに反対方向へ回転し合い、かつ前記雌ロ
ーター外周部が前記固定中空体に密接する様にすると共
に前記固定中空体の内部に回動体を回動自在に備えた圧
縮機であり、前記雌ローターの陥没部と同陥没部へ嵌り
込むべき雄ローターの羽根に注目し、同陥没部を形成す
る進み側の壁面の先端部側にある部分によって創成され
る同羽根の羽根側面の裏側にある羽根側面の断面の線と
同陥没部を形成する遅れ側の壁面の断面の線との内で、
いずれか一方の線が他方の線の少なくとも比較的多くを
占める部分によって互いに創成し合う様に構成し、更に
前記雄ローターの羽根と雌ローターとによって挟まれた
作動室に注目し、同作動室の中間容積状態から最小容積
状態まで同作動室が前記固定中空体に形成された連通口
及び前記回転中空体に形成された開閉口及び前記回動体
に形成された制御口を介して前記回転中空体内へ連通す
る様にし、以上の如く構成された圧縮機をタービンへ連
結せしめ、前記圧縮機の作動室内で圧縮された回転中空
体内からの気体を加熱室内へ導入し、更に前記加熱室内
で熱エネルギーを与えられた気体を前記タービンへ導入
して膨張させる様にした熱原動機において、前記回動体
を回動させる事によって前記開閉口と前記制御口との連
通開始時期を変仕させる様にした事を特徴とする熱原動
機。
(2) A male rotor provided with blades that rotates integrally with the rotating hollow body while closely surrounding the fixed hollow body that is fixed to the outside of the rotating hollow body, and a male rotor that is closely attached to the inner peripheral surface of the rotor casing. and a female rotor having a recessed part into which the blades of the male rotor fit while recessed from the outer peripheral part of the female rotor rotate in opposite directions synchronously in a non-contact state, and The compressor is configured such that the outer circumference of the rotor is brought into close contact with the fixed hollow body, and a rotating body is rotatably provided inside the fixed hollow body, and the rotating body should fit into the same depression as the female rotor. Focusing on the blade of the male rotor, form the same depression with the line of the cross section of the blade side surface on the back side of the blade side surface of the same blade, which is created by the part on the tip side of the advancing side wall that forms the same depression. Within the line of the cross section of the wall on the lagging side,
It is constructed such that one of the lines is mutually generated by at least a relatively large portion of the other line, and further, focusing on the working chamber sandwiched between the blades of the male rotor and the female rotor, the working chamber The operating chamber is connected to the rotating hollow body from the intermediate volume state to the minimum volume state through the communication port formed in the fixed hollow body, the opening/closing port formed in the rotating hollow body, and the control port formed in the rotating body. The compressor configured as described above is connected to the turbine so as to communicate with the body, and the gas from the rotating hollow body compressed in the working chamber of the compressor is introduced into the heating chamber, and further the heat is generated in the heating chamber. In the thermal motor, in which energized gas is introduced into the turbine and expanded, the timing at which communication between the opening/closing port and the control port starts can be varied by rotating the rotating body. A thermal engine characterized by
(3)回転中空体の外部に固定される如く備えられた固
定中空体の周囲に密接しながら前記回転中空体と一体的
に回転する羽根を備えた雄ローターと、ローターケーシ
ング内周面に密接する雌ローター外周部及びこの雌ロー
ター外周部から陥没しながら前記雄ローターの羽根が嵌
り込む陥没部を有する雌ローターとが互いに非接触状態
で同期的に互いに反対方向へ回転し合い、かつ前記雌ロ
ーター外周部が前記固定中空体に密接する様にすると共
に前記固定中空体の内部に回動体を回動自在に備えた圧
縮機であり、前記雌ローターの陥没部と同陥没部へ嵌り
込むべき雄ローターの羽根に注目し、同陥没部を形成す
る進み側の壁面の先端部側にある部分によって創成され
る同羽根の羽根側面の裏側にある羽根側面の断面の線と
同陥没部を形成する遅れ側の壁面の断面の線との内で、
いずれか一方の線が他方の線の少なくとも比較的多くを
占める部分によって互いに創成し合う様に構成し、更に
前記雄ローターの羽根と雌ローターとによって挟まれた
作動室に注目し、同作動室の中間容積状態から最小容積
状態まで同作動室が前記固定中空体に形成された連通口
及び前記回転中空体に形成された開閉口及び前記回動体
に形成された制御口を介して前記回転中空体内へ連通す
る様にし、以上の如く構成された圧縮機をタービンへ連
結せしめ、前記圧縮機の作動室内で圧縮された回転中空
体内からの気体を加熱室内へ導入し、更に前記加熱室内
で熱エネルギーを与えられた気体を前記タービンへ導入
して膨張させる様にした熱原動機において、前記回動体
を回動させる事によって前記開閉口と前記制御口との連
通開始時期を変仕せしめ、ケーシング内壁面に開口しな
がら前記圧縮機の吸入側へ通ずる連通路に備えられた連
通弁を開く事によって前記作動室が最大容積状態から所
定の容積状態まで圧縮機の吸入側へ連通する様にし、前
記連通弁を開閉させる事によって前記作動室と圧縮機の
吸入側との連通遮断時期を変仕させる様にした事を特徴
とする熱原動機。
(3) A male rotor provided with blades that rotates integrally with the rotary hollow body while closely surrounding the fixed hollow body provided so as to be fixed to the outside of the rotary hollow body, and a male rotor that is provided with blades that rotate integrally with the rotary hollow body and close to the inner circumferential surface of the rotor casing. and a female rotor having a recessed part into which the blades of the male rotor fit while recessed from the outer peripheral part of the female rotor rotate in opposite directions synchronously in a non-contact state, and The compressor is configured such that the outer circumference of the rotor is brought into close contact with the fixed hollow body, and a rotating body is rotatably provided inside the fixed hollow body, and the rotating body should fit into the same depression as the female rotor. Focusing on the blade of the male rotor, form the same depression with the line of the cross section of the blade side surface on the back side of the blade side surface of the same blade, which is created by the part on the tip side of the advancing side wall that forms the same depression. Within the line of the cross section of the wall on the lagging side,
It is constructed so that one of the lines is mutually generated by at least a relatively large portion of the other line, and further, focusing on the working chamber sandwiched between the blades of the male rotor and the female rotor, the working chamber The operating chamber is connected to the rotating hollow body from the intermediate volume state to the minimum volume state through the communication port formed in the fixed hollow body, the opening/closing port formed in the rotating hollow body, and the control port formed in the rotating body. The compressor configured as described above is connected to the turbine so as to communicate with the body, and the gas from the rotating hollow body compressed in the working chamber of the compressor is introduced into the heating chamber, and further heat is generated in the heating chamber. In a thermal motor that introduces energized gas into the turbine and expands it, by rotating the rotating body, the timing at which communication between the opening/closing port and the control port starts is varied, and the inside of the casing is The working chamber communicates with the suction side of the compressor from a maximum volume state to a predetermined volume state by opening a communication valve provided in a communication passage that opens in a wall surface and communicates with the suction side of the compressor, and A thermal engine characterized in that the communication cutoff timing between the working chamber and the suction side of the compressor can be varied by opening and closing a communication valve.
(4)固定中空体に雌ローター外周部が密接する欠円部
を形成する様にした特許請求の範囲第1項ないし第3項
のいずれかに記載の熱原動機。
(4) The thermal motor according to any one of claims 1 to 3, wherein the fixed hollow body is formed with a circular cutout portion in which the outer peripheral portion of the female rotor is in close contact.
JP13969187A 1987-06-05 1987-06-05 Thermal prime mover Pending JPS63306238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13969187A JPS63306238A (en) 1987-06-05 1987-06-05 Thermal prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13969187A JPS63306238A (en) 1987-06-05 1987-06-05 Thermal prime mover

Publications (1)

Publication Number Publication Date
JPS63306238A true JPS63306238A (en) 1988-12-14

Family

ID=15251174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13969187A Pending JPS63306238A (en) 1987-06-05 1987-06-05 Thermal prime mover

Country Status (1)

Country Link
JP (1) JPS63306238A (en)

Similar Documents

Publication Publication Date Title
WO1990002259A1 (en) Rotary piston engine
US7493885B2 (en) Asymmetric complete expansion rotary engine cycle
US7314035B2 (en) Rotary vane engine and thermodynamic cycle
JPH05503334A (en) rotary internal combustion engine
US3858557A (en) Two-stage rotary engine of trochoidal type
US4138848A (en) Compressor-expander apparatus
JP4489768B2 (en) Rotary engine
US6886528B2 (en) Rotary machine
US5340292A (en) Scroll compressor with relief port for reduction of vibration and noise
US3811804A (en) Rotary engine with interengaging rotating members and reversing valve
JPS63306238A (en) Thermal prime mover
US5125379A (en) Rotary engine
JPH01100320A (en) Prime mover
GB2438859A (en) Toroidal fluid machine
JPS6331650B2 (en)
CN208347920U (en) Single screw-rod engine
RU2699864C1 (en) Volumetric type rotary machine
US20040255898A1 (en) Tri-vane rotary engine
JPS5849692B2 (en) ninenkikan
JPS63285201A (en) Prime mover
US5579733A (en) Rotary engine with abutments
JPH01100321A (en) Rotating internal combustion engine
JP4131561B2 (en) Scroll compressor
KR100440496B1 (en) Constant Temperature Exhaust Rotary Engine
RU2133356C1 (en) Gas screw engine