JPS63305916A - Separation of component contained in by-product gas - Google Patents

Separation of component contained in by-product gas

Info

Publication number
JPS63305916A
JPS63305916A JP13968187A JP13968187A JPS63305916A JP S63305916 A JPS63305916 A JP S63305916A JP 13968187 A JP13968187 A JP 13968187A JP 13968187 A JP13968187 A JP 13968187A JP S63305916 A JPS63305916 A JP S63305916A
Authority
JP
Japan
Prior art keywords
gas
membrane
components
separation
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13968187A
Other languages
Japanese (ja)
Inventor
Hisaaki Kamiyama
久朗 神山
Mamoru Inoue
衞 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13968187A priority Critical patent/JPS63305916A/en
Publication of JPS63305916A publication Critical patent/JPS63305916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To separate and recover the aimed component at low cost by introducing by-produce gas into a porous glass membrane to preliminarily concentrate the aimed component and then introducing it into a nonporous high molecular membrane. CONSTITUTION:After introducing by-product gas such as e.g. coke oven gas into an adsorption tower 1 and adsorbing tar, naphthalin NOx and gum, it is pressurized with a compressor 2 and introduced into a porous glass membrane 3 such as a tubular porous alumina body to remove dust and also the concn. of H2 being the aimed component is raised. Then the permeated gas is introduced into a nonporous a high molecular membrane 4 such as e.g. cellulose acetate to obtain high-purity H2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば製鉄所内のコークス炉や熱風炉等の加
熱炉で発生する副生ガス中の任意成分を高効率・高精度
に分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for highly efficient and highly accurate separation of arbitrary components in by-product gases generated in heating furnaces such as coke ovens and hot blast ovens in steel plants. It is something.

従来の技術 従来、副生ガス中の成分を分離しその成分を有効利用す
るために、高分子膜に導入し抽出することが実験的に行
われている。このような技術として例えば、特開昭59
−140321号公報に示されるように燃焼排ガスを非
多孔質高分子膜内装のガス分離装置に導いて二酸化炭素
を濃縮分離し、そのガスを他に有効利用するものがある
BACKGROUND OF THE INVENTION Conventionally, in order to separate components in by-product gases and utilize them effectively, experiments have been carried out to introduce them into a polymer membrane and extract them. As an example of such technology, for example, Japanese Patent Application Laid-open No. 59
As shown in Japanese Patent No. 140321, there is a method in which combustion exhaust gas is introduced into a gas separation device equipped with a non-porous polymer membrane to concentrate and separate carbon dioxide, and the resulting gas is effectively used for other purposes.

発明が解決しようとする問題点 従来用いられている非多孔質高分子膜の特長の一つであ
る高効率・高精度を生かし任意成分を分離するには、膜
の形状・材質等から事前に導入ガス中に含有するダスト
をトレース程度にする必要がある。ダストの除去が完全
でない場合、膜表面への衝突・付着のため充分な分離効
果が発揮でき無くなるばかりか、寿命も大幅に短縮して
しまう。
Problems that the invention aims to solve In order to separate arbitrary components by taking advantage of the high efficiency and high precision that are one of the features of conventionally used non-porous polymer membranes, it is necessary to It is necessary to reduce the amount of dust contained in the introduced gas to a trace level. If dust is not completely removed, it will collide with and adhere to the membrane surface, making it impossible to achieve a sufficient separation effect, and will also significantly shorten the life of the membrane.

さらに、非多孔質高分子膜に導く副生ガス中の分離対象
成分の濃度が高ければ高い程、高効率な分離が可能とな
り、回収率、膜面積、動力等の減少が図られ、大幅なコ
ストダウンが図られるが、現状ではこのような予@濃縮
装置はなく、非多孔質高分子膜装置を2段にして用いれ
ば予備濃縮−濃縮工程は可能であるが、予@濃縮工程後
膜分離の原理から分離ガス圧は常圧となってしまい、再
度予備濃縮前と同等まで加圧しなければならず非常に非
経済的になってしまう。
Furthermore, the higher the concentration of the components to be separated in the by-product gas that leads to the non-porous polymer membrane, the more efficient separation becomes possible, reducing the recovery rate, membrane area, power, etc. Although cost reduction is attempted, there is currently no such pre-concentration equipment, and if a non-porous polymer membrane device is used in two stages, the pre-concentration-concentration process is possible; Due to the principle of separation, the pressure of the separated gas is normal pressure, and it has to be pressurized again to the same level as before preconcentration, which is extremely uneconomical.

しかしながら、これまでこの問題を有利に解決する方法
はなく、現状の非多孔質高分子膜分離装置を用い高効率
に分離する標準的システム構成は、導入副生ガス中ダス
トを除去する工程、非多孔質高分子膜を2段以上の編成
とする必要が生じてしまっている。
However, there is no method to advantageously solve this problem so far, and the standard system configuration for highly efficient separation using current non-porous polymer membrane separation equipment is It has become necessary to organize porous polymer membranes into two or more stages.

問題点を解決するための手段 本発明はこれらの問題点を解決することを目的とするも
ので、非多孔質高分子膜の性能を十分に発揮できるよう
導入する副生ガス中の有害物であるダストを除去し、か
つ任意成分のみをある程度まで濃縮するという2つの工
程を同時におこなえるよう、多孔質ガラス膜の細孔径を
コントロールして、非多孔質高分子膜ガス分離装置の事
前処理として用い、高効率・高精度・低コストの任意成
分分離を可能とした副生ガス中の成分分離方法を提供し
ようとするものである。
Means for Solving the Problems The purpose of the present invention is to solve these problems.It is an object of the present invention to solve these problems by eliminating harmful substances in the by-product gas introduced in order to fully demonstrate the performance of the non-porous polymer membrane. The pore diameter of the porous glass membrane is controlled so that the two processes of removing certain dust and concentrating optional components to a certain extent can be performed simultaneously, and the membrane is used as a pre-treatment for a non-porous polymer membrane gas separation device. The present invention aims to provide a method for separating components in by-product gases, which enables separation of arbitrary components with high efficiency, high precision, and low cost.

すなわち、本発明は、副生ガスを多孔質ガラス膜に導入
し、ガス中に含まれるダストを除去、且つ分離対象成分
のみをある一定以上の濃度に濃縮し、次いでこれを非多
孔質高分子膜に導入し、高効率・高精度に精製分離する
ことを特徴とする副生ガス中任意成分分離方決である。
That is, the present invention introduces a by-product gas into a porous glass membrane, removes dust contained in the gas, concentrates only the components to be separated to a certain concentration or higher, and then converts this into a non-porous polymer. This is a method for separating arbitrary components in by-product gas, which is introduced into a membrane and purified and separated with high efficiency and precision.

作用 本発明は、副生ガスを物理的損傷に強く、細孔径の大き
さにより副生ガス中の任意成分を分離でき、その時の圧
損も非多孔質高分子膜に比べ非常に少ない多孔質ガラス
膜に導き、非多孔質高分子膜で有害となるガス中のダス
トを99%以上除去すると共に、5〜20%程度、任意
成分の予@濃縮を行わせ、これを次工程の非多孔質高分
子膜に導く副生ガス中の成分分離方法であって、本発明
によれば非多孔質高分子膜を単体で利用する場合に比べ
、回収率、動力費、膜面積ともに改善でき、非常に低コ
ストで任意成分を分離することができる。
Function The present invention uses porous glass that is resistant to physical damage to by-product gases, can separate arbitrary components in the by-product gases depending on the size of the pores, and has significantly less pressure loss than non-porous polymer membranes. The non-porous polymer membrane removes more than 99% of the harmful dust in the gas, and pre-concentrates optional components by about 5-20%, which is then transferred to the non-porous membrane in the next step. This is a method for separating components in a by-product gas that is introduced into a polymer membrane, and according to the present invention, compared to the case where a non-porous polymer membrane is used alone, the recovery rate, power cost, and membrane area can be significantly improved. Any component can be separated at low cost.

以下さらに本発明の詳細な説明する。The present invention will be further explained in detail below.

本発明において、多孔質ガラス膜とは、気体分子の平均
自由工程とほぼ同じか、もしくはそれより小さい細孔を
持つものであって、さらに空隙率が大きく、薄い膜状の
ものであり、その膜の細孔の大きさを利用し、分子径差
により、対象成分を分離することができるものである。
In the present invention, a porous glass membrane is one that has pores that are approximately the same as or smaller than the mean free path of gas molecules, has a large porosity, and is thin. By utilizing the size of the pores in the membrane, target components can be separated based on the difference in molecular diameter.

具体的には、5i02系ガラスに熱処理を加えある一定
の細孔径分布を持ったもので、ある任意成分のみを透過
分離されるように目的に応じて細孔径分布を調整したも
のである。
Specifically, 5i02 glass is heat-treated to have a certain pore size distribution, and the pore size distribution is adjusted according to the purpose so that only certain arbitrary components can be permeated and separated.

一方非多孔質高分子膜とは、各気体を透過する機能を有
し、かつ使用条件下で、熱、圧力、化学的安定などに対
する耐性を有し、薄膜化された高分子膜のことであって
、各気体の高分子膜への溶解度係数と高分子膜中の拡散
係数の差を利用して、混合ガス成分を分離するものであ
る。具体的には酢酸セルローズ、ポリイミド、ポリブタ
ジェン、ブロイミド等の有機系高分子を極めて薄い膜状
にしたものであり、そのモデュールとしては、チューブ
ハンドル型、積層型、二流積層型などがある。両者とも
導入する副生ガスをある圧まで昇圧して膜に導き、混合
ガス成分を分離する。
On the other hand, a non-porous polymer membrane is a thin polymer membrane that has the ability to permeate various gases and has resistance to heat, pressure, chemical stability, etc. under the conditions of use. The mixed gas components are separated using the difference between the solubility coefficient of each gas in the polymer membrane and the diffusion coefficient in the polymer membrane. Specifically, it is an extremely thin film made of organic polymers such as cellulose acetate, polyimide, polybutadiene, and bromide, and its modules include tube handle type, laminated type, and two-flow laminated type. In both cases, the introduced by-product gas is boosted to a certain pressure and introduced into the membrane to separate the mixed gas components.

本発明者らはこれらの特長を生かすべく、多孔質ガラス
膜の細孔径をコントロールし、非多孔質高分子膜の分離
機能に影響を及ぼさないよう一定値以下迄ダスト(量・
径)を除去でき、かつ一定値以上にガス成分中の任意成
分のみを濃縮できるようにした。
In order to take advantage of these features, the present inventors controlled the pore diameter of the porous glass membrane and kept the dust (amount and amount) below a certain value so as not to affect the separation function of the non-porous polymer membrane.
diameter), and it is now possible to concentrate only arbitrary components in the gas components above a certain value.

すなわち、多孔質ガラス膜の細孔径を平均100人で、
かつシャープな分布をもたせることにより、副生ガス中
のダストの88%以上が除去され、製鉄所内の加熱炉で
発生する副生ガスを5〜20%程度濃縮するのにほとん
ど数kg/cm’の圧損で可能とすることができた。
In other words, the pore diameter of the porous glass membrane was determined by an average of 100 people.
Moreover, by providing a sharp distribution, more than 88% of the dust in the by-product gas is removed, and it takes just a few kg/cm' to concentrate the by-product gas generated in the heating furnace in a steelworks by 5 to 20%. This was possible with a pressure drop of .

また分離対象成分により非透過側に分離されることもあ
るが、この場合も多孔質ガラス膜内偏流板への衝突によ
り同程度のダストが除去でき、圧損も数kg/crrf
以下で、5〜10%程度のガス濃縮が可能であった。
In addition, depending on the component to be separated, it may be separated to the non-permeate side, but in this case as well, the same amount of dust can be removed by collision with the drift plate in the porous glass membrane, and the pressure loss is also several kg/crrf.
Gas concentration of about 5 to 10% was possible below.

本発明において、適用可能な副生ガスとじては、たとえ
ば製鉄所内で発生する熱風炉燃焼排ガス、コークス炉燃
焼排ガス、ボイラー燃焼排ガス、鋼材加熱炉燃焼ガス等
があげられる。
In the present invention, applicable by-product gases include, for example, hot-blast furnace combustion exhaust gas, coke oven combustion exhaust gas, boiler combustion exhaust gas, steel heating furnace combustion gas, etc. generated in a steelworks.

これらの副生ガスの成分としては、代表的には水素、メ
タン、−酸化炭素、二酸化炭素、窒素などが挙げられる
。本発明を適用することにより、これらの1種以上のガ
スを高効率、高精度に分離回収することができる。
Components of these by-product gases typically include hydrogen, methane, carbon oxide, carbon dioxide, and nitrogen. By applying the present invention, one or more of these gases can be separated and recovered with high efficiency and precision.

実施例 以下実施例をあげて、本発明を具体的に説明するが、本
発明はこれら実施例により限定されるものではない。
EXAMPLES The present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 コークス炉ガスより水素を分離する場合、第1図に示す
ようにマークス炉ガスを活性炭などを挿入しである吸着
塔1に導き、コークス炉ガス中のタール、ナフタリン、
NOxガムを吸着させ、これらの不純物の含量をトレー
スとした。次に、不純物を除去したガスをコンプレッサ
ー2に導き、その圧力2〜20kg/crn’Gに昇圧
すると共に、コンプレッサー内装クーラーによりガス温
度40〜150℃とした後、例えば管状アルミナ多孔体
からなり透過係数H2:57、CO2:15、N2 :
 IIX 10−’cm3/ cm・s e cmHg
を有するような多孔質ガラス膜3に導入した。このとき
のガス成分は水素50〜60%程度、メタン20%程度
、−酸化炭素、二酸化炭素等からなり、ダストは活性炭
を含めl mg/Nm”程度であった。
Example 1 When separating hydrogen from coke oven gas, as shown in FIG.
NOx gum was adsorbed and the content of these impurities was traced. Next, the gas from which impurities have been removed is led to the compressor 2, where the pressure is increased to 2 to 20 kg/crn'G, and the gas temperature is set to 40 to 150 degrees Celsius by a cooler inside the compressor. Coefficient H2: 57, CO2: 15, N2:
IIX 10-'cm3/cm・s e cmHg
was introduced into the porous glass membrane 3 having the following properties. The gas components at this time consisted of about 50 to 60% hydrogen, about 20% methane, -carbon oxide, carbon dioxide, etc., and the amount of dust including activated carbon was about 1 mg/Nm''.

このガスを平均細孔径50〜80人程度の多孔質ガラス
膜3に導入すると、ダストは完全にトレースまで除去さ
れ、一方透過側平均水素儂縮度は10〜20%上昇し、
その透過側圧力は15〜8 kg/cm″Gとなった。
When this gas is introduced into the porous glass membrane 3 with an average pore diameter of about 50 to 80 pores, the dust is completely removed to the trace level, while the average hydrogen shrinkage degree on the permeate side increases by 10 to 20%.
The pressure on the permeate side was 15-8 kg/cm''G.

次いでこれを例えば酢酸セルロースからなり透過係数H
7: 35.9、CO2: 3.05、N2 : 0.
21X 10−11cm” / cm * s m c
mHgを有するような非多孔質高分子膜4に導入すると
、99.8%以上の水素濃度のガスが得られた。
This is then made of, for example, cellulose acetate and has a permeability coefficient H.
7: 35.9, CO2: 3.05, N2: 0.
21X 10-11cm” / cm * s m c
When introduced into a non-porous polymer membrane 4 having mHg, a gas with a hydrogen concentration of 99.8% or more was obtained.

この実施例の方法は従来の非多孔質高分子膜単独分離装
置を用いた場合に比べて、回収率で数10%上昇し、膜
所要面積も届〜115減少し、動力費も数10%減少し
、非常に効率のよいプロセスであった。
Compared to the case of using a conventional non-porous polymer membrane separation device, the method of this example increases the recovery rate by several tens of percent, reduces the required membrane area by ~115, and reduces power costs by several tens of percent. It was a very efficient process.

実施例2 熱風炉の排ガス中の二酸化炭素を分離する場合、第2図
に示すように水冷式ドレンカット5に導き、現状100
〜200℃程度の排ガスを温度50〜100℃に冷却し
てドレンをカットし、ガス中の水分を飽和濃度以下にし
てコンプレッサー2に導入し、その圧力を9〜20kg
/cm2に昇圧すると共にコンプレッサー内装クーラー
により温度50〜100℃の範囲に冷却し、排ガス飽和
点以下の温度にならないようにコントロールした。
Example 2 When separating carbon dioxide from the exhaust gas of a hot air stove, as shown in FIG.
The exhaust gas at ~200℃ is cooled to a temperature of 50~100℃, the drain is cut, the moisture in the gas is reduced to below the saturation concentration, and the gas is introduced into the compressor 2, and the pressure is set to 9~20kg.
The pressure was increased to /cm2, and the temperature was cooled to a range of 50 to 100°C using a cooler built into the compressor, and the temperature was controlled so as not to fall below the exhaust gas saturation point.

この時の排ガス中の成分は窒素ガス70〜80%、二酸
化炭素20〜30%、ダストはl −10+ag/Nr
n’であった。
The components in the exhaust gas at this time are 70-80% nitrogen gas, 20-30% carbon dioxide, and the dust is 1 -10 + ag/Nr.
It was n'.

このガスを平均細孔径100人程度で、非常にシャープ
な分布をもたせた多孔質ガラス膜3に導くと、透過側に
二酸化炭素は流れ、ダス) 0.1mg/Nm’以下、
二酸化炭素濃度は5〜10%程度上昇、圧力は8〜19
kg/cnfどなった。
When this gas is introduced into the porous glass membrane 3, which has an average pore diameter of about 100 mm and a very sharp distribution, carbon dioxide flows to the permeate side, and the carbon dioxide is less than 0.1 mg/Nm'.
Carbon dioxide concentration rose by about 5-10%, pressure 8-19
What happened to kg/cnf?

これを例えばポリイミドからなり透過係数H2:57、
 CO2: 10.5、N2 : 0.58X 10−
”  cm37cm e  s・emHgを有するよう
な非多孔質高分子膜4に導き、二酸化炭素80〜99%
程度とした。この実施例の方法は従来の非多孔質高分子
膜単独分離装6を用いた場合に比べて、回収率で数10
%上昇、膜所要面積も局〜175減少し、動力費も数1
0%減少し、非常に効率のよいプロセスであった。
For example, it is made of polyimide, with a transmission coefficient H2: 57,
CO2: 10.5, N2: 0.58X 10-
” cm 37 cm e s em Hg, and carbon dioxide 80 to 99%.
degree. The method of this example has a recovery rate of several tens of times higher than that of the conventional non-porous polymer membrane separation device 6.
% increase, the required membrane area decreased by ~175, and the power cost decreased by several points.
It was a very efficient process with a reduction of 0%.

発明の効果 本発明は、副生ガスを多孔質ガラス膜に導入して、その
不要成分を減少させるとともに、目的成分を予備濃縮さ
せ、これを非多孔質高分子膜に導入して目的成分を分#
(回収)する方法であって、本発明によれば非多孔質高
分子膜単体で用いる場合に比べて、回収率、動力費、膜
面積ともに改善され非常に低コストで目的成分を分離す
ることができる。
Effects of the Invention The present invention introduces a by-product gas into a porous glass membrane to reduce its unnecessary components, pre-concentrates a target component, and introduces it into a non-porous polymer membrane to reduce the target component. Minute #
According to the present invention, compared to the case where a non-porous polymer membrane is used alone, the recovery rate, power cost, and membrane area are improved, and the target component can be separated at a very low cost. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであって、第1図はコ
ークス炉ガス中の水素ガス成分を分離する工程のフロー
図、第2図は熱風炉の排ガス中の炭酸ガス成分を分離す
る工程のフロー図である。 1・・・吸着塔、21111 @コンプレッサー、3・
・・多孔質ガラス膜、4・◆拳非多孔質高分子膜、5−
・・ドレンカット。
The drawings show an embodiment of the present invention, in which Fig. 1 is a flow diagram of the process of separating hydrogen gas components from coke oven gas, and Fig. 2 is a flow diagram of a process for separating carbon dioxide gas components from hot blast oven exhaust gas. It is a flow diagram of a process. 1... Adsorption tower, 21111 @ Compressor, 3.
・・Porous glass membrane, 4・◆Fist non-porous polymer membrane, 5-
...Drain cut.

Claims (1)

【特許請求の範囲】[Claims] 副生ガスを多孔質ガラス膜に導入し、ガス中に含まれる
ダストを除去、且つ分離対象成分のみをある一定以上の
濃度に濃縮し、次いでこれを非多孔質高分子膜に導入し
、高効率・高精度に精製分離することを特徴とする副生
ガス中任意成分分離方法。
The by-product gas is introduced into a porous glass membrane, the dust contained in the gas is removed, and only the components to be separated are concentrated to a certain concentration or higher, and then this is introduced into a non-porous polymer membrane to remove the dust contained in the gas. A method for separating arbitrary components in by-product gas, which is characterized by efficient and highly accurate purification and separation.
JP13968187A 1987-06-05 1987-06-05 Separation of component contained in by-product gas Pending JPS63305916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13968187A JPS63305916A (en) 1987-06-05 1987-06-05 Separation of component contained in by-product gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13968187A JPS63305916A (en) 1987-06-05 1987-06-05 Separation of component contained in by-product gas

Publications (1)

Publication Number Publication Date
JPS63305916A true JPS63305916A (en) 1988-12-13

Family

ID=15250949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13968187A Pending JPS63305916A (en) 1987-06-05 1987-06-05 Separation of component contained in by-product gas

Country Status (1)

Country Link
JP (1) JPS63305916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858826A2 (en) * 1997-02-14 1998-08-19 Praxair Technology, Inc. Air separation system and method
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858826A2 (en) * 1997-02-14 1998-08-19 Praxair Technology, Inc. Air separation system and method
EP0858826A3 (en) * 1997-02-14 1998-09-09 Praxair Technology, Inc. Air separation system and method
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine

Similar Documents

Publication Publication Date Title
US5944874A (en) Solid electrolyte ionic conductor systems for the production of high purity nitrogen
US20080127632A1 (en) Carbon dioxide capture systems and methods
CN103635248B (en) CO2Zeolite membrane separation and recovery system
KR840005356A (en) How to remove nitrogen gas from N₂ and CO, or a mixture of N₂, CO and CO
CN107081045A (en) The method and its special equipment of a kind of collecting carbon dioxide from fuel gas
KR20180050450A (en) Separation and recovery process of carbon monoxide from by-product gas of steel industry
CN114904372A (en) Energy-saving carbon dioxide capture system and method thereof
CN110156016A (en) The combined recovery device and method of carbon dioxide in flue gas, nitrogen and oxygen
TWI405605B (en) Blasting method of blast furnace gas
CA2205364A1 (en) Very high purity nitrogen by membrane separation
CN110157486A (en) The Integrated Processing Unit and method of blast furnace gas
CN210915955U (en) Device for increasing combustion heat value of blast furnace gas
JPS63305916A (en) Separation of component contained in by-product gas
CN110127700A (en) The combined recovery device and method of carbon dioxide in flue gas, nitrogen and oxygen
CN113735080B (en) Method and production device for gradient extraction of ultrapure helium from helium-containing natural gas at normal temperature
CN210134071U (en) Device for increasing combustion heat value of blast furnace gas
CN210134070U (en) Device for removing carbonyl sulfide in blast furnace gas and improving combustion heat value of blast furnace gas
CN210134072U (en) Comprehensive treatment device for blast furnace gas
CN111715028B (en) Product diversified helium high-yield separation and purification coupling process
CN210134073U (en) Comprehensive treatment device for blast furnace gas
JPH03267110A (en) Method for recovering carbon dioxide in waste combustion gas from power plant
CN105950241A (en) Biogas purifying membrane and pressure swing adsorption mixing system
CN110451466B (en) Xenon krypton gas separation method
CN210150733U (en) Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas
US10012434B2 (en) Method and apparatus for producing carbon dioxide and hydrogen