JPS63305844A - Method and apparatus for measuring oxygen partial pressure of arterial blood - Google Patents

Method and apparatus for measuring oxygen partial pressure of arterial blood

Info

Publication number
JPS63305844A
JPS63305844A JP62142871A JP14287187A JPS63305844A JP S63305844 A JPS63305844 A JP S63305844A JP 62142871 A JP62142871 A JP 62142871A JP 14287187 A JP14287187 A JP 14287187A JP S63305844 A JPS63305844 A JP S63305844A
Authority
JP
Japan
Prior art keywords
oxygen gas
partial pressure
arterial blood
skin
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62142871A
Other languages
Japanese (ja)
Other versions
JP2554082B2 (en
Inventor
Tomohisa Mikami
智久 三上
Katsuyuki Yamamoto
克之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP62142871A priority Critical patent/JP2554082B2/en
Publication of JPS63305844A publication Critical patent/JPS63305844A/en
Application granted granted Critical
Publication of JP2554082B2 publication Critical patent/JP2554082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the oxygen partial, pressure of arterial blood in a real time with high accuracy, by integerating two detection parts having membrane systems different in oxygen diffusion resistance to measure the amount of the oxygen gas flowing in the detection parts and calculating the oxygen diffusion resistance of skin tissue from the measured value. CONSTITUTION:For example, a detection part 1 is constituted by integrating two detection parts having membrane systems different in oxygen diffusion resistance and consists of two detection part having two kinds of membranes provided thereto under tension and mounted to the skin to measure the amount J1, J2 of oxygen flowing in the detection parts. A microprocessor 4 calculates the oxygen gas transmission coefficient 1/Rt of skin tissue from the oxygen amounts J1, J2 alternately measured by a medical mass analyser by mounting the detection part 1 to the skin to calculate oxygen partial pressure. As mentioned above, highly accurate correction is performed using the diffusion resistance R capable of being calculated using two detection parts in the detection of purcataneous oxygen partial pressure obtained by heating he skin at low temp. to calculate the oxygen partial pressure Pa of arterial blood and, therefore, it becomes unnecessary to heat the skin to high temp. and the possibility of a low temp. burn is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、経皮的酸素ガス分圧の実時間補正による動脈
血酸素ガス分圧測定法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for measuring arterial blood oxygen gas partial pressure by real-time correction of transcutaneous oxygen gas partial pressure.

〔従来の技術〕[Conventional technology]

体内、特に動脈血の酸素ガス分圧は、代謝や呼吸機能に
関する情報を含み、新生児や重症患者の短期又は長期に
わたる呼吸管理に重要な役割を果たすものである。その
ため、体表面より動脈血のガス分圧を無侵襲で計測する
方法は、新生児や重症患者の呼吸循環動態を監視する有
力な手段として注目されている。このような計測では、
体内から皮膚を透過してくる酸素や炭酸ガスを測定し、
これから動脈血の酸素ガス分圧や炭酸ガス分圧を推定す
るものである。
Oxygen gas partial pressure in the body, especially in arterial blood, contains information regarding metabolism and respiratory function, and plays an important role in short-term or long-term respiratory management of newborns and critically ill patients. Therefore, a method of non-invasively measuring the gas partial pressure of arterial blood from the body surface is attracting attention as a powerful means of monitoring respiratory and hemodynamics in newborns and critically ill patients. In such measurements,
Measures oxygen and carbon dioxide gas that passes through the skin from the body,
From this, the oxygen gas partial pressure and carbon dioxide gas partial pressure of arterial blood are estimated.

従来、電極法や医用質量分析法で経皮的に動脈血の酸素
や炭酸ガス分圧を連続測定するものがある。これは、検
出部にヒーターとサーミスタを内蔵し、それらを含む温
度制御回路で摂氏約44度の設定温度に保持するもので
ある。このようにして検出部を皮膚に装着すると、その
下の皮膚は加温され、表皮近傍まで血流が増加して皮膚
のガス透過性が大きくなり、動脈血ガス分圧を測定する
ことができる。ここで、動脈血ガスは皮膚組織と検出部
底面に張られた高分子のガス透過膜を拡散して検出部内
部へ導入され、電極や質量分析計へ導かれて分析される
Conventionally, there are electrode methods and medical mass spectrometry methods that continuously measure oxygen and carbon dioxide gas partial pressures in arterial blood percutaneously. This device has a built-in heater and a thermistor in the detection section, and uses a temperature control circuit that includes them to maintain a set temperature of about 44 degrees Celsius. When the detection section is attached to the skin in this manner, the underlying skin is heated, blood flow increases to the vicinity of the epidermis, and gas permeability of the skin increases, making it possible to measure arterial blood gas partial pressure. Here, arterial blood gas diffuses through the skin tissue and a polymeric gas-permeable membrane placed on the bottom of the detection unit, is introduced into the detection unit, and is guided to electrodes and a mass spectrometer where it is analyzed.

第5図は経皮的酸素ガス分圧測定におけるガス拡散モデ
ルを示す図である。
FIG. 5 is a diagram showing a gas diffusion model in transcutaneous oxygen gas partial pressure measurement.

第5図において、縦軸は酸素分圧であり、Aが検出部側
、B、Cが組織側である。特にCは、十分に血液が供給
されて動脈血酸素ガス分圧Paを保持している組織、B
は、血液供給のない皮膚組織、Aは検出部に張られたガ
ス透過膜である。経皮的酸素ガス分圧tcPozは、膜
を透過して検出部内に流入してくる酸素分子の流入量J
によって測られる。検出部への酸素分子の流入量は、皮
膚における酸素ガス拡散抵抗R1と膜の拡散抵抗Rmに
よって規制される。従って、検出部内に入ってくる酸素
分子は、測定のため直ちに消費されるので、検出部内の
酸素ガス分圧は、常に零である。すなわち、流入酸素量
Jは、膜と皮膚表面との接触面における酸素ガス分圧値
に比例することになるので、Jによって測られる経皮的
酸素ガス分圧tcPo2は、接触面における酸素ガス分
圧となる。従来法は、この接触面における酸素ガス分圧
をできるだけ動脈血酸素ガス分圧に近づけようとするも
のであり、そのために所定の加温を行って経皮的酸素ガ
ス分圧jcPOzから動脈血酸素ガス分圧を推定するも
のである。
In FIG. 5, the vertical axis is the oxygen partial pressure, A is the detection part side, and B and C are the tissue side. In particular, C is a tissue that is sufficiently supplied with blood and maintains arterial blood oxygen gas partial pressure Pa;
is a skin tissue without blood supply, and A is a gas permeable membrane stretched over the detection area. The transcutaneous oxygen gas partial pressure tcPoz is the inflow amount J of oxygen molecules that permeate the membrane and flow into the detection part.
It is measured by The amount of oxygen molecules flowing into the detection section is regulated by the oxygen gas diffusion resistance R1 in the skin and the membrane diffusion resistance Rm. Therefore, the oxygen molecules that enter the detection section are immediately consumed for measurement, so the oxygen gas partial pressure within the detection section is always zero. In other words, since the amount of inflowing oxygen J is proportional to the oxygen gas partial pressure value at the contact surface between the membrane and the skin surface, the transcutaneous oxygen gas partial pressure tcPo2 measured by J is proportional to the oxygen gas partial pressure value at the contact surface. It becomes pressure. The conventional method attempts to bring the oxygen gas partial pressure at this contact surface as close to the arterial blood oxygen gas partial pressure as possible, and for this purpose, a predetermined heating is performed to reduce the arterial blood oxygen gas partial pressure from the transcutaneous oxygen gas partial pressure jcPOz. This is to estimate the pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように従来の動脈血の酸素ガス分圧を経皮的に測
定する方法では、摂氏約44度の皮膚加温が不可欠であ
り、加熱された検出部によって皮膚加温が行われている
As described above, in the conventional method of transcutaneously measuring the partial pressure of oxygen gas in arterial blood, skin heating to about 44 degrees Celsius is essential, and the skin heating is performed by a heated detection section.

ところがこのような装置は、一般に臨床で長時間にわた
るモニターとして患者に使用するものである。しかし、
摂氏約44度の皮膚加温を行い同じ箇所に長時間装着し
ていると低温やけどのおそれがあり、また、暑い時期に
は発汗により湿疹が現れたり炎症を起こしたりするとい
う問題がある。
However, such devices are generally used in clinical settings to monitor patients over long periods of time. but,
There is a risk of low-temperature burns if the skin is heated to about 44 degrees Celsius and worn on the same spot for a long time, and there is also the problem that sweating can cause eczema and inflammation in hot weather.

そのため、しばしば部位の移動をしなければならなず、
極めて不便であった。
Therefore, it is often necessary to move the body part,
It was extremely inconvenient.

本発明は、上記の問題点を解決するものであって、皮J
1組織の酸素ガス拡散抵抗を算出しながら低温やけどの
おそれのない僅かな加温または加温なしの条件下で経皮
的に動脈血酸素ガス分圧を精度高く実時間測定できる動
脈血酸素ガス分圧測定法及びその装置を提供することを
目的とする。
The present invention solves the above problems, and
Arterial blood oxygen gas partial pressure can be measured transcutaneously in real time with high precision under slight heating or no heating conditions without the risk of low-temperature burns while calculating the oxygen gas diffusion resistance of one tissue. The purpose is to provide measurement methods and equipment.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の動脈血酸素ガス分圧測定法は、酸素
ガス拡散抵抗の異なる膜システムをもつ2個の検出部を
一体化して検出部に流入する酸素ガス量を測定し、それ
ぞれの測定値から皮膚組織の酸素ガス拡散抵抗を算出し
、動脈血酸素ガス分圧を求めることを特徴とするもので
あり、その装置は、検出手段とデータ処理手段を備え、
データ処理手段は、膜システムの各拡散抵抗値と皮膚組
織の代謝によって生ずる酸素ガス分圧の降下値が予め入
力され、これらの設定値と測定値から動脈血酸素ガス分
圧を求めるように構成したことを特徴とするものである
To this end, the arterial blood oxygen gas partial pressure measuring method of the present invention integrates two detection sections with membrane systems with different oxygen gas diffusion resistances, measures the amount of oxygen gas flowing into the detection section, and calculates the amount of oxygen gas flowing into the detection section from each measurement value. The device is characterized by calculating the oxygen gas diffusion resistance of the skin tissue and determining the arterial blood oxygen gas partial pressure, and the device includes a detection means and a data processing means,
The data processing means was configured such that each diffusion resistance value of the membrane system and the drop value of oxygen gas partial pressure caused by skin tissue metabolism were input in advance, and the arterial blood oxygen gas partial pressure was determined from these set values and measured values. It is characterized by this.

〔作用〕[Effect]

本発明の動脈血酸素ガス分圧測定法及びその装置では、
酸素ガス拡散抵抗の異なる膜システムをもつ2個の検出
部により酸素ガス量を測定し、膜システムの各拡散抵抗
値と皮膚組織の代謝によって生ずる酸素ガス分圧の降下
値を使って皮膚組織の酸素ガス拡散抵抗を算出して動脈
血酸素ガス分圧を求めるので、経皮的酸素ガス分圧から
推定することなく動脈血酸素ガス分圧を求めることがで
きる。従って、特に皮膚加温をすることなく高い精度で
動脈血酸素ガス分圧を測定することができる。
In the arterial blood oxygen gas partial pressure measurement method and device of the present invention,
The amount of oxygen gas is measured by two detection units having membrane systems with different oxygen gas diffusion resistances, and the amount of oxygen gas is measured using the respective diffusion resistance values of the membrane systems and the drop in oxygen gas partial pressure caused by skin tissue metabolism. Since the oxygen gas diffusion resistance is calculated to determine the arterial oxygen gas partial pressure, the arterial oxygen gas partial pressure can be determined without estimating it from the transcutaneous oxygen gas partial pressure. Therefore, arterial blood oxygen gas partial pressure can be measured with high accuracy without particularly applying skin warming.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の動脈血酸素ガス分圧測定法の1実施例
を説明するための図、第2図は検出部の構成例を示す図
、第3図は酸素ガス透過係数の比較例を示す図、第4図
は皮膚加温による皮膚温度との相関を示す図である。
Fig. 1 is a diagram for explaining one embodiment of the arterial blood oxygen gas partial pressure measurement method of the present invention, Fig. 2 is a diagram showing an example of the configuration of the detection section, and Fig. 3 is a diagram showing a comparative example of the oxygen gas permeability coefficient. The figure shown in FIG. 4 is a diagram showing the correlation between skin temperature and skin heating.

第1図において、■は検出部、2は2チャンネル酸素ガ
ス分圧計、3はADC(アナログ−デジタルコンバータ
ー)、4はマイクロプロセッサ、5はCRT、6は記録
計、7はフロッピーディスクを示す。検出部1は、例え
ば酸素ガス拡散抵抗の異なる膜システムをもつ2つの検
出部を一体化したものであり、第2図に示すように2種
類の膜をはった2個の検出部からなり、皮膚に装着して
検出部に流入する酸素ガス量J、 、J、を測定する。
In FIG. 1, ■ is a detection unit, 2 is a two-channel oxygen gas partial pressure meter, 3 is an ADC (analog-to-digital converter), 4 is a microprocessor, 5 is a CRT, 6 is a recorder, and 7 is a floppy disk. The detection section 1 is, for example, an integration of two detection sections having membrane systems with different oxygen gas diffusion resistances, and as shown in Fig. 2, it consists of two detection sections equipped with two types of membranes. , is attached to the skin to measure the amount of oxygen gas J, , J, flowing into the detection section.

マイクロプロセッサ4は、検出部1を皮膚に装着し医用
質量分析計により交互に測定された酸素ガス量J+ 、
J2から皮膚組織の酸素ガス透過係数1/Rtを算出し
、酸素ガス分圧を求めるものであり、そのデータを出力
するのがCRT5、記録計6、フロッピーディスク7で
ある。
The microprocessor 4 detects the amount of oxygen gas J+, which is alternately measured by a medical mass spectrometer with the detection unit 1 attached to the skin.
The oxygen gas permeability coefficient 1/Rt of the skin tissue is calculated from J2 to determine the oxygen gas partial pressure, and the CRT 5, recorder 6, and floppy disk 7 output the data.

本発明の動脈血酸素ガス分圧測定法は、上記の如く酸素
ガス拡散抵抗の異なる2種類の膜システムをもつ2個の
検出部を一体化して皮膚に装着し、これらの酸素ガス分
圧値の違いを測定することによって動脈血酸素ガス分圧
Paを測定するものであるが、次にその原理を説明する
The arterial blood oxygen gas partial pressure measurement method of the present invention integrates two detection units having two types of membrane systems with different oxygen gas diffusion resistances as described above and attaches them to the skin, and measures these oxygen gas partial pressure values. Arterial blood oxygen gas partial pressure Pa is measured by measuring the difference, and the principle thereof will be explained next.

まず2種類の膜システムの拡散抵抗値をRm+、Rmz
とすると、それぞれの検出部に流入する酸素ガス量J+
 1J2は、 (Rm + + Rt ) (Rmz+Rt) と与えられる。ここで−ΔPtは、皮膚組織の代謝によ
って生ずる酸素ガス分圧の降下を示す。両式から組織の
拡散抵抗は、 Rm、    (Jz  /J+  )Rmzとなり、
流入ガス量の比と膜システムの拡散抵抗によって求めら
れる。
First, the diffusion resistance values of the two types of membrane systems are Rm+ and Rmz.
Then, the amount of oxygen gas flowing into each detection part J+
1J2 is given as (Rm + + Rt) (Rmz+Rt). Here, -ΔPt indicates a drop in oxygen gas partial pressure caused by skin tissue metabolism. From both equations, the tissue diffusion resistance is Rm, (Jz /J+)Rmz,
It is determined by the ratio of inflow gas volume and the diffusion resistance of the membrane system.

このようにして皮膚組織の拡散抵抗Rtが与えられると
、動脈血酸素ガス分圧Paは(1)式又は(2)式で次
のように算出される。
When the diffusion resistance Rt of the skin tissue is given in this way, the arterial blood oxygen gas partial pressure Pa is calculated as follows using equation (1) or equation (2).

Pa=J+  (Rm、 十Rt)+Δpt・・・・・
・(4) ここで、酸素ガス分圧の降下Δptには一般に大きな変
動はないと考えてよいので一定値を前辺って設定してお
くことが可能である。従って、酸素ガス分圧の降下ΔP
t、膜システムの拡散抵抗値Rm1、Rm2は、既知の
値となるので、これらの値が予め設定されてマイクロプ
ロセッサ4での演算に使用される。
Pa=J+ (Rm, 10Rt)+Δpt・・・・・・
- (4) Here, it can be considered that there is generally no large variation in the drop Δpt of the oxygen gas partial pressure, so it is possible to set a constant value in advance. Therefore, the drop in oxygen gas partial pressure ΔP
Since the diffusion resistance values Rm1 and Rm2 of the membrane system are known values, these values are set in advance and used for calculations in the microprocessor 4.

本発明の動脈血酸素ガス分圧測定法により検出部に流入
する酸素ガス量J+ 、Jzを測定して算出した皮膚m
織の酸素ガス透過係数1/Rtを文献報告値と比較して
みたのが第3図である。従来は適当な測定方法がなかっ
たためにバラツキが大きく比較が困難ではあるが、本発
明の動脈血酸素ガス分圧測定法によれば、第4図の皮膚
加温による皮膚温度との相関関係から明らかなように信
軌性の高い測定値を得ることができる。
Skin m calculated by measuring the amount of oxygen gas J+, Jz flowing into the detection part by the arterial blood oxygen gas partial pressure measurement method of the present invention
Figure 3 shows a comparison of the oxygen gas permeability coefficient 1/Rt of the fabric with values reported in literature. Conventionally, there was no suitable measurement method, so it was difficult to compare due to large variations, but according to the method of measuring arterial blood oxygen gas partial pressure of the present invention, it is clear from the correlation with skin temperature due to skin heating shown in Figure 4. It is possible to obtain measurement values with high reliability.

なお、本発明は、上記の実施例に限定されるものではな
く、種々の変形が可能である。
Note that the present invention is not limited to the above embodiments, and various modifications are possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、低い
皮膚加温で得られる経皮酸素ガス分圧tcPo□に2個
の検出部を使用して算出できるRtを用いて精度の高い
補正を行い、動脈血酸素ガス分圧Paを求めるので、従
来の経皮酸素ガス分圧tcPozを動脈血酸素ガス分圧
Paに近づけるために必要とされた摂氏約44度の高い
皮膚加温が不要となり、低温やけどのおそれがなく、な
った。
As is clear from the above description, according to the present invention, the transcutaneous oxygen gas partial pressure tcPo□ obtained by low skin heating is corrected with high precision using Rt that can be calculated using two detection units. is performed to determine the arterial blood oxygen gas partial pressure Pa, so the high skin heating of about 44 degrees Celsius, which was required to bring the conventional transcutaneous oxygen gas partial pressure tcPoz close to the arterial blood oxygen gas partial pressure Pa, is no longer necessary. There is no risk of low-temperature burns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動脈血酸素ガス分圧測定法の1実施例
を説明するための図、第2図は検出部の構成例を示す図
、第3図は酸素ガス透過係数の比較例を示す図、第4図
は皮膚加温による皮膚温度の相関を示す図、第5図は経
皮的酸素ガス分圧の測定におけるガス拡散モデルを示す
図である。 1・・・検出部、2・・・2チャンネル酸素ガス分圧計
、3・・・ADC(アナログ−デジタル・コンバーター
)、4・・・マイクロプロセッサ、5・・・CRT、6
・・・記録計、7・・・フロッピーディスク。
Fig. 1 is a diagram for explaining one embodiment of the arterial blood oxygen gas partial pressure measuring method of the present invention, Fig. 2 is a diagram showing an example of the configuration of the detection section, and Fig. 3 is a diagram showing a comparative example of the oxygen gas permeability coefficient. FIG. 4 is a diagram showing the correlation of skin temperature due to skin warming, and FIG. 5 is a diagram showing a gas diffusion model in measurement of transcutaneous oxygen gas partial pressure. DESCRIPTION OF SYMBOLS 1...Detection part, 2...2 channel oxygen gas partial pressure meter, 3...ADC (analog-digital converter), 4...Microprocessor, 5...CRT, 6
...recorder, 7...floppy disk.

Claims (4)

【特許請求の範囲】[Claims] (1)酸素ガス拡散抵抗の異なる膜システムをもつ2個
の検出部を一体化して検出部に流入する酸素ガス量を測
定し、それぞれの測定値から皮膚組織の酸素ガス拡散抵
抗を算出し、動脈血酸素ガス分圧を求めることを特徴と
する動脈血酸素ガス分圧測定法。
(1) Integrate two detection units with membrane systems with different oxygen gas diffusion resistances, measure the amount of oxygen gas flowing into the detection unit, calculate the oxygen gas diffusion resistance of the skin tissue from each measurement value, An arterial blood oxygen gas partial pressure measuring method characterized by determining the arterial blood oxygen gas partial pressure.
(2)各検出部に流入する酸素ガス量の比と膜システム
の各拡散抵抗値から皮膚組織の酸素ガス拡散抵抗を算出
することを特徴とする特許請求の範囲第1項記載の動脈
血酸素ガス分圧測定法。
(2) Arterial blood oxygen gas according to claim 1, characterized in that the oxygen gas diffusion resistance of the skin tissue is calculated from the ratio of the amount of oxygen gas flowing into each detection unit and each diffusion resistance value of the membrane system. Partial pressure measurement method.
(3)流入酸素ガス量と皮膚組織の酸素ガス拡散抵抗と
膜システムの拡散抵抗値と酸素ガス分圧の降下値から動
脈血酸素ガス分圧を求めることを特徴とする特許請求の
範囲第1項記載の動脈血酸素ガス分圧測定法。
(3) The arterial blood oxygen gas partial pressure is determined from the inflow oxygen gas amount, the oxygen gas diffusion resistance of the skin tissue, the diffusion resistance value of the membrane system, and the drop value of the oxygen gas partial pressure. Arterial blood oxygen gas partial pressure measurement method described.
(4)酸素ガス拡散抵抗の異なる膜システムをもつ2個
の検出部を一体化した検出手段、当該検出手段により検
出された酸素ガス量から動脈血酸素ガス分圧を求めるデ
ータ処理手段を備え、データ処理手段は、膜システムの
各拡散抵抗値と皮膚組織の代謝によって生ずる酸素ガス
分圧の降下値が予め入力されていることを特徴とする動
脈血酸素ガス分圧測定装置。
(4) A detection means that integrates two detection units having membrane systems with different oxygen gas diffusion resistances, and a data processing means for determining arterial blood oxygen gas partial pressure from the amount of oxygen gas detected by the detection means, 1. An arterial blood oxygen gas partial pressure measuring device, wherein the processing means is inputted in advance with each diffusion resistance value of the membrane system and a drop value of oxygen gas partial pressure caused by skin tissue metabolism.
JP62142871A 1987-06-08 1987-06-08 Arterial blood oxygen gas partial pressure measuring device Expired - Lifetime JP2554082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142871A JP2554082B2 (en) 1987-06-08 1987-06-08 Arterial blood oxygen gas partial pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142871A JP2554082B2 (en) 1987-06-08 1987-06-08 Arterial blood oxygen gas partial pressure measuring device

Publications (2)

Publication Number Publication Date
JPS63305844A true JPS63305844A (en) 1988-12-13
JP2554082B2 JP2554082B2 (en) 1996-11-13

Family

ID=15325538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142871A Expired - Lifetime JP2554082B2 (en) 1987-06-08 1987-06-08 Arterial blood oxygen gas partial pressure measuring device

Country Status (1)

Country Link
JP (1) JP2554082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116344A (en) * 2020-01-16 2021-07-16 华为技术有限公司 Blood oxygen monitoring method, medium and system based on electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116344A (en) * 2020-01-16 2021-07-16 华为技术有限公司 Blood oxygen monitoring method, medium and system based on electronic equipment
CN113116344B (en) * 2020-01-16 2022-12-27 华为技术有限公司 Blood oxygen monitoring method, medium and system based on electronic equipment

Also Published As

Publication number Publication date
JP2554082B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
Eberhard et al. Continuous pO 2 monitoring in the neonate by skin electrodes
CA1043125A (en) Measurement of partial pressure of gases diffusing through skin
US7766857B2 (en) Non-invasive determination of cardiac output, gas exchange and arterial blood gas concentration
JP2015007625A (en) Gas sensor with heater
WO2001030234A3 (en) Method and apparatus for determining cardiac output
EP3169232B1 (en) Intermittent measuring of the partial pressure of an analyte in the skin tissue
US5777206A (en) Method and measuring device for determining the water content of a gas
US10682073B2 (en) Measurement device and method for human respiratory system function
US20070123785A1 (en) Method and System of Measuring Blood Circulation Velocity
US4439679A (en) Transcutaneous gas tension measurement using a dual sampling chamber and gas analysis system
JP2015000349A (en) Gas sensor with heater
JPS63305844A (en) Method and apparatus for measuring oxygen partial pressure of arterial blood
Cuadras et al. Determination of heart rate using a high-resolution temperature measurement
Lanigan et al. Performance of transcutaneous PO2 and PCO2 dual electrodes in adults
Ogai et al. Development of a small wireless device for perspiration monitoring
US10835160B2 (en) Apparatus and method for non-invasively determining the concentration of an analyte
Turney et al. The continuous measurement of pulmonary gas exchange and mechanics
US20230255521A1 (en) Device for obtaining an indicator of a microcirculatory condition
CN111103158B (en) Calibration device and method for percutaneous partial pressure monitor
EP1790283A1 (en) Method and system of measuring blood circulation velocity
Lundsgaard et al. Transcutaneous measurement of arterialized capillary blood P co2 by a new mass spectrometer inlet system
Lübbers Microcirculation and O2 exchange through the skin surface: a theoretical analysis
Gøthgen et al. Fiber-optic chemical sensors (Gas-Stat®) for blood gas monitoring during hypothermic extracorporeal circulation
US20230263417A1 (en) Device for obtaining an indicator of a microcirculatory condition
JPS6142568Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11