JPS63305296A - Tritium remover - Google Patents

Tritium remover

Info

Publication number
JPS63305296A
JPS63305296A JP14143087A JP14143087A JPS63305296A JP S63305296 A JPS63305296 A JP S63305296A JP 14143087 A JP14143087 A JP 14143087A JP 14143087 A JP14143087 A JP 14143087A JP S63305296 A JPS63305296 A JP S63305296A
Authority
JP
Japan
Prior art keywords
tritium
secondary system
hydrogen storage
cold trap
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14143087A
Other languages
Japanese (ja)
Inventor
Tetsurou Uno
宇野 哲老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14143087A priority Critical patent/JPS63305296A/en
Publication of JPS63305296A publication Critical patent/JPS63305296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the obtaining of a reliable tritium remover with a simple handling, by using a hydrogen occlusion alloy to remove tritium as radiation element. CONSTITUTION:A primary system coolant of a nuclear reactor 1 exchanges heat with a secondary system coolant by an intermediate heat exchanger 2 and the secondary system coolant exchanges heat with steam by a steam generator 3. In this system, tritium existing in a primary system shifts to a cover gas system of the nuclear reactor 1 to be removed with a primary system cold trap 5 provided on an overflow tank 4. Tritium existing in a secondary system is removed with a secondary system cold trap 6. Then, H2 and tritium are introduced to a liquefaction distiller 7 by heating the cold traps 5 and 6 and after the separation of isotope, tritium is introduced to a stainless container 8 holding a sponge of Zr as hydrogen occlusion alloy to remove.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉で発生する1〜リチウム除去装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a device for removing lithium generated in a fast breeder reactor.

(従来の技術) トリチウムによる汚染が核実験や原子力発電所や使用演
核燃料再処理tM設からの放出により問題になりつつあ
る。トリチウムで問題になるのは、トリチウム水(Hl
 O)として容易に人体にとり込まれて内部被曝の線源
となるためである。
(Prior Art) Tritium contamination is becoming a problem due to nuclear tests and releases from nuclear power plants and nuclear fuel reprocessing facilities. The problem with tritium is tritium water (Hl).
This is because it is easily taken into the human body as O) and becomes a source of internal radiation exposure.

高速増殖炉においても、トリチウムは燃料の三重核分裂
反応、制御棒内のボロンの中性子反応。
In fast breeder reactors, tritium is also produced by the triple nuclear fission reaction in the fuel and the neutron reaction in boron in the control rods.

燃料および冷却材中に含まれるリチウムの中性子反応に
より生成する。これらの反応により生じたトリチウムは
燃利捧、制御棒を拡散して一次系内に移行する。そして
その1部は中間熱交!fji器を拡散して2次系に移行
する。
Produced by neutron reactions of lithium contained in fuels and coolants. The tritium produced by these reactions diffuses through the fuel rods and control rods and moves into the primary system. And the first part is mid-term heat exchange! The fji unit is diffused and transferred to a secondary system.

1次系内に存在するトリチウムはカバーガス系へ移行す
るもの、コールドトラップより除去されるもの、ナトリ
ウムやガス系配管を拡散して外へ出るもの等がある。2
次系内に存在するトリチウムはカバーガス系へ移行する
もの、コールドトラップにより除去されるもの、ナトリ
ウムやガス系配管を通って外へ出るもの、蒸気発生器伝
熱管を拡散して環境中へ出るもの等がある。
Tritium present in the primary system may be transferred to the cover gas system, removed from a cold trap, or diffused through sodium or gas pipes to exit. 2
The tritium present in the next system migrates to the cover gas system, is removed by a cold trap, goes out through the sodium and gas system piping, and diffuses through the steam generator heat exchanger tube and exits into the environment. There are things etc.

(発明が解決しようとする問題点) しかして生成したうちの90%は1次系、2次系のコー
ルドトラップで捕獲される。したがってコールドトラッ
プ再生の際には水素とともにトリチウムが発生するので
、このまま大気中へ放出しないようにする工夫が必要で
ある。通常は]−ルドトラップ再生04に1〜リブ・ク
ムを除去する。菖通はガス状のトリチウムを酸化し、1
〜リブウム水として回収する方法か行なわれているが、
ざらに取扱いが簡1iで信頼性のある方法が望まれてい
た。
(Problems to be Solved by the Invention) However, 90% of the generated gas is captured by the primary and secondary cold traps. Therefore, since tritium is generated along with hydrogen during cold trap regeneration, it is necessary to take measures to prevent it from being released into the atmosphere. Normally]-Remove 1~Rib Kumu in Rudo Trap Regeneration 04. Iris oxidizes gaseous tritium and produces 1
~ There is a method of recovering it as ribum water, but
A method that is easy to handle and reliable has been desired.

水ざで明の目的は、敢qLJ線元累であるトリチウムの
除去に水素吸蔵合金を用いる1〜リブウム除去技首を捉
供することにある。
The purpose of Mizuzadeaki is to develop a technique for removing tritium, which is the source of the qLJ line, using a hydrogen storage alloy.

[発明の構成1 (問題点を解決するための手段) 本発明のトリチウム除去装置は、水素吸蔵合金を用いた
トリチウム除去系統を15徴とりる。
[Configuration 1 of the Invention (Means for Solving Problems) The tritium removal device of the present invention includes 15 tritium removal systems using hydrogen storage alloys.

(作 用) 水素吸蔵合金は可逆反応によって金属水素化物の形で1
−12 、 D2 、 T2を吸蔵し、放出する。水素
吸蔵合金は低温に保つと発熱しなから水素分圧に対応し
た水素吸蔵圧ツノに達するまで1−12ガスを吸蔵し、
高温に保つと吸熱しなからl−12を放出する。
(Function) Hydrogen storage alloys undergo a reversible reaction in the form of metal hydrides.
-12, D2, and T2 are occluded and released. When kept at a low temperature, hydrogen storage alloys do not generate heat and store 1-12 gases until the hydrogen storage pressure peak corresponding to the hydrogen partial pressure is reached.
When kept at a high temperature, it absorbs heat and releases l-12.

したがって、ト12の代りに]−ルドトラップ再生時に
低温に保ちながら水素吸蔵合金へトリチウムを々くこと
によってトリチウムを除去することができる。
Therefore, instead of using the metal trap 12, tritium can be removed by pouring tritium into the hydrogen storage alloy while keeping the temperature at a low temperature during regeneration of the hydrogen storage alloy.

本発明においては、取(及いか簡1iU’ j寵預1’
lの11゛hい装置を構成することかできる。
In the present invention,
It is possible to construct a device as long as 11 ゛h.

(実施例) 以下本発明を第1図おJ、び第2図を用いて説明する。(Example) The present invention will be explained below with reference to FIGS. 1 and 2.

まず高速増+il′j炉の系統図を承り第2図にJ3い
−で、原子炉1の一次系冷五〇材は、中間熱交換器2で
二次系冷却材と熱交換され、その二次系冷7JI材は蒸
気発生器3で蒸気と熱交換されぞの発生熱気)は蒸気タ
ービンへ送られる。
First, we received the system diagram of the high-speed increase reactor. The secondary cold 7JI material exchanges heat with steam in the steam generator 3, and the generated hot air is sent to the steam turbine.

この系統内において、1次系内に存在する1〜リチウム
は、原子炉1のカバーガス系へ移行し、A−バーフロー
タンク4に設けた一次系コールト1〜ラップ5で除去さ
れる。また2次系内に存在するトリチウムは、2次系に
設けた2次系コールドトラップ6で除去される。
In this system, lithium present in the primary system moves to the cover gas system of the reactor 1 and is removed by the primary system coult 1 to lap 5 provided in the A-bar flow tank 4. Further, tritium present in the secondary system is removed by a secondary system cold trap 6 provided in the secondary system.

本発明においては、これらのコールドトラップ5.6で
の再生時にトリチウムを除去するトリチウム除去装置に
関するものである。すなわら本発明のトリチウム除去装
置は、第1図に示すようにコールドトラップ5,6、液
化蒸溜器7および水素吸蔵合金であるZiのスポンジか
入った5US304製のトリチウムトラップ8の組合せ
系統で構成されている。
The present invention relates to a tritium removal device that removes tritium during regeneration in these cold traps 5 and 6. In other words, the tritium removal device of the present invention is a combination system of cold traps 5 and 6, a liquefaction distiller 7, and a tritium trap 8 made of 5US304 containing a sponge of Zi, which is a hydrogen storage alloy, as shown in FIG. It is configured.

本発明のi〜リチウム除去装首は、水素吸蔵合金の次の
性質を利用する。ずなわち水素吸蔵合金は次の可逆式で
示されるように金属水素化物の形で1−12 、 D2
 、 T2を吸蔵、放出する[1質を持っている。
The i~ lithium removal device of the present invention utilizes the following properties of the hydrogen storage alloy. In other words, the hydrogen storage alloy is a metal hydride in the form of 1-12, D2, as shown by the following reversible equation.
, occludes and releases T2 [1 quality].

以下、1−12で説明する。This will be explained below in sections 1-12.

〜1−ト H2M ト1   +△Q        
  ・・・(1)ここで、 M:水素吸蔵合金 MHx:金属水素化物 △Q:反応熱 このとき平衡解離圧と温度との間に RTen  PH27△ト1−  T−△S    −
(2)が成立する。
~1-t H2M to1 +△Q
... (1) Here, M: Hydrogen storage alloy MHx: Metal hydride △Q: Heat of reaction At this time, between the equilibrium dissociation pressure and the temperature, RTen PH27△T1-T-△S-
(2) holds true.

ここでPH2:平衡解離圧 △[−1:金属水素化物の生成 エンタルピー ΔS:エントロピー R:ガス定数 T:温度 水素吸蔵合金では△H<O,△S>Oなので、合金を低
温に保つと発熱しなから水素分圧に対応した水素吸蔵圧
力に達するまでl−+2刀スを吸蔵し高温にすると吸熱
しながらト12ガスを放出する。
Here, PH2: Equilibrium dissociation pressure △[-1: Enthalpy of formation of metal hydride ΔS: Entropy R: Gas constant T: Temperature In hydrogen storage alloys, △H<O, △S>O, so if the alloy is kept at a low temperature, it generates heat. From then on, it stores l-+2 gas until it reaches a hydrogen storage pressure corresponding to the hydrogen partial pressure, and when the temperature is raised, it absorbs heat and releases 12 gas.

例えば水素吸蔵合金としてウランを使う場合2U+3T
2 2UT3 j!n P(atm) =−4,537/T+7.03
   =13)再び第1図において、コールドトラップ
5.6を加熱することにより、ト12,1〜リチウムを
液化蒸溜器7に導き、同位体分離した後にトリチウムを
水素吸蔵合金であるZrのスポンジが入っているS U
 S 304製容器8に導く。この容器8では(3)式
よりU 、T 3の至温での平衡解離圧が6x1o−b
atmと非常に小さいので、tiIlrJJ線管理上か
らT2を保管するのに望ましい。またUT3は杓500
°Cで1気圧のトリチウムをjqることかできるため回
収に1−リチウムを気にしなくてもよい。
For example, when using uranium as a hydrogen storage alloy, 2U + 3T
2 2UT3 j! n P(atm) =-4,537/T+7.03
=13) In Fig. 1 again, by heating the cold trap 5.6, tritium 12,1~lithium is introduced into the liquefaction distiller 7, and after isotope separation, tritium is transferred to a Zr sponge, which is a hydrogen storage alloy. Included S U
It is led to a container 8 made of S 304. In this container 8, the equilibrium dissociation pressure of U and T3 at the highest temperature is 6x1o-b from equation (3).
Since it is very small atm, it is desirable to store T2 from the point of view of tiIlrJJ line management. Also, UT3 is 500 yen
Since tritium can be extracted at 1 atm at °C, there is no need to worry about 1-lithium during recovery.

水素吸蔵合金としてT; 、;lr 、Zl−(N; 
XMr+ 1−X ) 2を用いることもてきる。トリ
チウムを吸収さける温度はUよりら高くなる。例えば7
1−の場合には600°C以上必要となる。
As hydrogen storage alloys, T; , ;lr , Zl-(N;
XMr+ 1-X ) 2 can also be used. The temperature at which tritium is absorbed is higher than U. For example 7
In the case of 1-, a temperature of 600°C or more is required.

[発明の効果] 以上のように本発明にJ3いては、放射線元素であるト
リヂ1クムの除去に水素吸蔵含金を用いたことにより、
取り扱いか簡単で信頼性のあるトリチウム除去装置を冑
ることかできる。
[Effects of the Invention] As described above, in J3 of the present invention, by using a hydrogen-absorbing metal to remove tridicum, which is a radioactive element,
You can use tritium removal equipment, which is easy to handle and reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトリヂウム除去装首の一実施例を示す
ブロック構成図、第2図は高速増殖炉の系統図である。 1・・・原子炉、    2・・・中間熱交換器3・・
・蒸気発生装置 4・・・オーバーフロータンク 5・・・−次系コールドトラップ 6・・・二次系]−ルトトラップ 7・・・液化前溜器 ε3・・・トリチウムトラップ 代理人 弁理士 則 近 憲 佑 同  第子丸 健 5.6 第1図 第2図
FIG. 1 is a block diagram showing an embodiment of the tridium removal head according to the present invention, and FIG. 2 is a system diagram of a fast breeder reactor. 1... Nuclear reactor, 2... Intermediate heat exchanger 3...
・Steam generator 4...Overflow tank 5...-Secondary system cold trap 6...Secondary system] - Ruto trap 7...Liquification pre-reservoir ε3...Tritium trap Agent Patent attorney Nori Chika Yudo Ken Daishimaru Ken 5.6 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉の一次および二次冷却材系につながるコー
ルドトラップ再生時にトリチウムを除去するのに水素吸
蔵合金を用いることを特徴とするトリチウム除去装置。
(1) A tritium removal device characterized in that a hydrogen storage alloy is used to remove tritium during cold trap regeneration connected to the primary and secondary coolant systems of a nuclear reactor.
JP14143087A 1987-06-08 1987-06-08 Tritium remover Pending JPS63305296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14143087A JPS63305296A (en) 1987-06-08 1987-06-08 Tritium remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14143087A JPS63305296A (en) 1987-06-08 1987-06-08 Tritium remover

Publications (1)

Publication Number Publication Date
JPS63305296A true JPS63305296A (en) 1988-12-13

Family

ID=15291790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14143087A Pending JPS63305296A (en) 1987-06-08 1987-06-08 Tritium remover

Country Status (1)

Country Link
JP (1) JPS63305296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068683A (en) * 1993-05-20 2000-05-30 The Regents Of The University Of California Apparatus for separating and collecting hydrogen gas
WO2013018421A1 (en) * 2011-08-04 2013-02-07 助川電気工業株式会社 Tritium removal device for lithium loop

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068683A (en) * 1993-05-20 2000-05-30 The Regents Of The University Of California Apparatus for separating and collecting hydrogen gas
WO2013018421A1 (en) * 2011-08-04 2013-02-07 助川電気工業株式会社 Tritium removal device for lithium loop
JP2013037792A (en) * 2011-08-04 2013-02-21 Sukegawa Electric Co Ltd Tritium removing device of lithium loop
US9666320B2 (en) 2011-08-04 2017-05-30 Sukegawa Electric Co., Ltd. Tritium removal device for lithium loop
DE112012003229B4 (en) 2011-08-04 2022-01-13 Kyoto University Device for removing tritium from a lithium loop

Similar Documents

Publication Publication Date Title
US11257600B2 (en) Sodium-cesium vapor trap system and method
US11842819B2 (en) Method for replacing a cesium trap and cesium trap assembly thereof
Powell Preliminary reference design of a fusion reactor blanket exhibiting very low residual radioactivity
US4075060A (en) Method for removing fission products from a nuclear reactor coolant
JPS63305296A (en) Tritium remover
EP0360240B1 (en) Method of restraining diffusion of tritium and apparatus for same
Ignat’ev et al. Accident resistance of molten-salt nuclear reactor
Watson SUMMARY OF TRITIUM HANDLING PROBLEMS IN FUSION REACTORS.
Finn et al. Tritium technology review
Nishikawa et al. Titanium-sponge bed to scavenge tritium from inert gases
McPheeters et al. Experiments on cold-trap regeneration by NaH decomposition
Latgé Sodium coolant: activation, contamination and coolant processing
JPH02129598A (en) Fuel storage rack
Natesan et al. Calculations on the compatibility of refractory metals in a tritium environment and cold trapping method for tritium removal from a lithium blanket
Latge A new process for the removal of impurities in the cold traps of Liquid Metal Fast Reactors
Kim et al. Current Status on Development of Integrated Sodium Purification System
JPH03269399A (en) Fast breeder
Jerden et al. Full-Scale Testing of the Ambient Pressure, Acid-Dissolution Front-End Process for the Current Mo-99 Recovery Processes
Gobrecht Progress on the cold neutron source of the Garching Neutron Research Facility FRM-II
JPS6154846B2 (en)
Wong et al. Tritium control in helium-cooled blankets
Chassery et al. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis
Sroelov et al. Thermohydraulic testing of a model of a sodium-water counter-current steam generator
Masse et al. KUTIM: an efficient approach for tritium balances in fast breeder and fusion reactors
JPS63156507A (en) Hydrogen trap device