JPS633051B2 - - Google Patents

Info

Publication number
JPS633051B2
JPS633051B2 JP57072660A JP7266082A JPS633051B2 JP S633051 B2 JPS633051 B2 JP S633051B2 JP 57072660 A JP57072660 A JP 57072660A JP 7266082 A JP7266082 A JP 7266082A JP S633051 B2 JPS633051 B2 JP S633051B2
Authority
JP
Japan
Prior art keywords
pitch
derivatives
spinning
solvent
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57072660A
Other languages
Japanese (ja)
Other versions
JPS58191222A (en
Inventor
Tadashi Ito
Motoyasu Kunugiza
Kazutoshi Haraguchi
Yoshio Takezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP7266082A priority Critical patent/JPS58191222A/en
Publication of JPS58191222A publication Critical patent/JPS58191222A/en
Publication of JPS633051B2 publication Critical patent/JPS633051B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は還元性溶剤で還元されたピツチ状物質
から炭素繊を製造する方法に関するものであり、
特に還元ピツチを紡糸用ピツチへと熱重縮合する
方法を改良した炭素繊維の製造法に関する。 ピツチ状物質を原料とし炭素繊維を製造する方
法は原料が安価で炭化収率が高く経済的である。 しかし、光学的に等方性のピツチから紡糸し、
その後不融化及び炭化して得られる繊維は引張強
度が100Kg/mm2程度で低い。一方、光学的に異方
性のピツチから成る繊維は引張強度は300Kg/mm2
と大きいが、紡糸時の熱圧条件が極めて厳しく、
生産性が低い欠点がある。 最近、ピツチ状物質を一旦テトラヒドロキノリ
ンの如き還元剤でありかつピツチの良好な溶剤中
で熱処理して還元分解したいわゆる還元ピツチ溶
液を、溶剤を回収した後に低沸点成分を留去しつ
つ熱重縮合して紡糸用ピツチとなし、次に紡糸、
不融化、炭化、場合によつては黒鉛化する炭素繊
維の製造方法が注目されている。 この方法で得られる炭素繊維は引張強度も300
Kg/cm2以上であり、しかも製造法としても紡糸条
件が厳しくなり、生産性も高い。 しかし、かかる方法を工業化するには解決しな
ければならない多くの問題がある。その一つは還
元ピツチを紡糸用ピツチとなす熱重縮合の工程で
ある。この工程では還元ピツチ中に含まれていて
熱重合させる温度に達するまで気化する低沸点物
を留去すると共に、熱重合温度でベンゼン縮合環
上の長側鎖を熱分解して副生した低沸点成分をも
留去しつつ熱重縮合を進めて、高分子化してい
る。この際、熱分解及び熱重縮合を惹起させるた
めに500℃もの高温で還元ピツチを処理するが、
熱重縮合により分子量が増大すると共に光学異方
性の液晶が成長する。この液晶はピツチの非晶部
分と相溶せず、極めて高融点を持つため紡糸条件
を厳しくしなければならず、工程を迅速に行う必
要がある。したがつて、かかる工程に於ては高度
に減圧(30mmHg以下)蒸留しながら加熱する方
法が提案されている。 しかし、減圧下では時として装置のすき間から
空気が入り込み、還元ピツチが酸化され不酸化す
るとか、気化する成分の量が少なくなると蒸気圧
が不足し、装置外に留去せず、装置の壁上で炭化
して不融化し、紡糸ノズルの目詰りの原因にな
る。また、そのため炭素繊維の強度も収率も低下
する欠点がある。 本発明者らは本還元ピツチを紡糸用ピツチとな
す熱重縮合の工程を改善すべく鋭意検討した結
果、本発明に致つた。 即ち、本発明は原料のピツチ状物質を還元性溶
剤で熱処理し、溶剤を回収して得られた還元ピツ
チ中に非環式炭化水素、環式炭化水素芳香族炭化
水素、複素環式化合物、ハロゲン誘導体、ヒドロ
キシ誘導体、エーテル誘導体、ケトン誘導体、窒
素又はイオウ誘導体及びアンモニアから選ばれる
常圧で400℃以下の沸点を有する非酸化性化合物
(以下、単に非酸化性化合物と略す)を吹き込み
ながら低沸点成分を留去し、熱重縮合を進め紡糸
用ピツチを得、次いで紡糸、不融化、炭化、場合
によつてはさらに黒鉛化することを特徴とする炭
素繊維の製造方法に関する。 本発明に云うピツチ状物質とは、石油ピツチ、
石炭タールピツチ、天然アスフアルトおよび工業
生産に際して副成されるピツチ状物質の総称を云
うが、本発明では石炭タールピツチが特に好まし
い。 本発明にいう還元性溶剤とは、ピツチ類を良く
溶解させると同時に300℃以上の温度で、水素
を出して芳香族縮合体間の架橋基、長い側鎖ある
いは芳香環を分解する。または熱分解したラジ
カル基に水素を付与し過度の熱分解を抑制する溶
剤を言い、水素を出した後は自ずからやはり良溶
剤である二重結合を持つ化合物へと酸化されるも
のである。本溶剤の沸点は常圧で200℃以上が望
ましい。具体的には下記の如きものがあげられ
る。 テトラヒドロナフタレン テトラヒドロキノリン 水素化パイレン 水素化フエナンスレン 水素化したウオツシユオイル 水素化したアンスラセン油 もちろん、これらの混合物でも良いし、例えば
テトラヒドロキノリンとキノリンのような水素化
する前の溶剤との混合物であつても構まわない。
この中でテトラヒドロキノリンが最も好ましい。 原料ピツチの還元性溶剤中での熱処理は、かか
る溶剤100重量部に対しピツチ10〜500重量部を配
分し、300〜550℃に加熱して行う。加熱温度が
300℃未満だと反応が極めて遅くなり経済性を損
ない、550℃を越えると反応が制御できない。反
応系の圧力は常圧で良いが、溶剤の沸点が熱分解
温度より低い場合には、しばしば耐圧缶中で行わ
れる。もちろん、還元性溶剤の存在下に水素ガス
で加圧して反応を行つても構わない。 本発明では還元性溶剤は多くは本反応系から減
圧下に加熱して留去させ回収するが、この温度条
件下に原料ピツチ中の油状物質や熱分解した低分
子の低沸点成分が留出することもある。このよう
な低沸点成分を留去させる温度は一般に常圧で
200〜450℃である。 こうした一連の熱処理の後ピツチ類はかなり芳
香族性は高いが、分子量が低く(数平均分子量
(200〜500)、かつ融点の低い(20〜100℃)、いわ
ゆる還元ピツチへと変化している。 本発明の還元ピツチから紡糸ピツチを製造する
工程で用いられる非酸化性化合物は、熱重合温度
以下で気化し、低沸点成分の蒸気圧を補い低沸点
成分の留去を促進するとか、共沸や気液同判によ
つて低沸点成分の留去を促進る化合物で、ピツチ
を酸化する作用のない化合物であり、500℃付近
の高温下で爆発したり、紡糸用ピツチ成分と酸化
ではなくとも不都合な反応を生起したりしない化
合物である。かかる非酸化性化合物の具体的なも
のとしては、n―ブタン、プロピレン、ヘキサン
などの非環式炭化水素;シクロヘキサン、1,3
―シクロヘキサジエンなどの環式炭化水素;ベン
ゼン、トルエン、キシレンなどの芳香族炭化水
素;キノリン、ピリジン、ジオキサンなどの複素
環式化合物;ジクロルエタン、モノクロルベンゼ
ンなどのハロゲン誘導体;メタノール、n―ブタ
ノールなどのヒドロキシ誘導体;イソプロピルエ
ーテル、アニソールなどのエーテル誘導体;メチ
ルエチルケトン、メチルイソブチルケトンなどの
ケトン誘導体;ジメチルスルホキサイド、ジメチ
ルホルムアミドなどの窒素又はイオウ誘導体;ア
ンモニアが挙げられる。 かかる化合物は装置内へガス状および液状のい
ずれでも吹き込まれるが、一般にはガス状にし、
できるだけ高温に加熱して吹き込むのが良い。装
置内へ吹き込まれるかかる化合物の量は反応缶の
サイズ、化合物の種類、期待する反応速度あるい
は分子量によつて自由に変えられ得るが、量が過
大であればともすれば内容物が突沸する危険があ
り、過少であれば低沸点成分の留出ができない。 又、かかる化合物は当然反応缶内より高い圧で
吹き込まれる。反応缶内は前述した如き大気の流
入が起らない程度に、わずかに減圧にしてもさし
つかえない。吹き込み口は内容物の液面下に設置
して液を泡立たせても、液面上に設置して反応缶
内のガスを流し出させてもよい。 かかる方法で製造された紡糸用ピツチは、低沸
点成分が迅速に留去されるので熱重縮合も容易で
あり、光学異方性の液晶が生長しないうちに高分
子量となつているので、次いで行われる紡糸工程
も容易であり、かつ最終的に得られる炭素繊維の
強度も大きい。 本発明に云う紡糸、不融化、炭化、場合によつ
てはさらに黒鉛化は、ピツチより炭素繊維となす
従来公知の通常の製造条件で良く、特別に制限さ
れるものではない。例えば、不融化は通常、空気
中で130〜400℃の加熱により行われる。又、炭化
は通常、金属炉または耐火レンガ炉等の中で窒
素、ヘリウム、アルゴン等の不活性ガス雰囲気
下、約800〜1500℃、5〜60分間の条件により行
われる。更に、必要により行われる黒鉛化は通
常、黒鉛炉中でアルゴン又はヘリウムの雰囲気
下、約1500〜3000℃、5〜60分間の条件により行
われる。 次いで本発明を以下に示す実施例等で更に説明
する。 〔参考例〕(還元ピツチの製造) 軟化点86℃、固定炭素含有率56%、キノリン不
溶分6%、ベンゼン不溶分38%のタールピツチ
450gとテトラヒドロキノリン450gを混ぜ、200
℃付近に加熱撹拌すると均一なスラリー状となつ
た。これをG―3のグラスフイルターで熱時濾過
し、新に加熱した100gのテトラヒドロキノリン
で不溶解分を洗つた。全濾液を1オートクレー
プに入れ、430℃で60分加熱撹拌し、25mmHg減圧
下に200℃まで加熱し、テトラヒドロキノリンお
よびその程度の沸点を有する還元分解生成物およ
び原料ピツチ中に含まれている低沸点成分がもは
や留出しなくなるまで続けた。この還元ピツチは
融点42℃でキノリン不溶分0.7%、ベンゼン不溶
分は2.9%しかなく、ゲルパーミエーシヨンクロ
マトグラフの結果、分子量が220〜320であり、明
らに原料ピツチが還元分解していることが判つ
た。 〔実施例 1〜3〕 200ml2口摺合せ石英ナスフラスコに参考例の
還元ピツチ70gを採り、一方の口にガス導入管
を、他方の口に一枝リーピツヒ冷却器に付けた。
塩浴でピツチを表―1に示す還元ピツチ欄の加熱
温度及び加熱時間で、又表―1に示す非酸化性化
合物及びその吹き込み量で導入しつつ熱重縮合を
続けた。得られた紡糸用ピツチの性状を表―1に
示す。尚、実施例2及び3では非酸化性化合物を
液状で圧入した。 次いで、ピツチを直径0.5mmの一口ノズルより
290℃、1.5窒素ガス圧で延伸しながら紡糸し、空
気中250℃まで昇温して不融化、さらに1400℃ま
で窒素中で昇温して炭化して直径11〜18ミクロン
の繊維を得た。得られた繊維の引張強度を表―1
に示す。 〔比較例1及び2〕 参考例の還元ピツチを200mlの2口摺合せ石英
ナスフラスコ70g計り採り、一方の口にキヤピラ
リー、他方の口に枝付連結管を介してリービツヒ
冷却器をつけ、アダプターは油回転ポンプで吸引
できるようセツトした。 比較例1では、27mmHgの減圧下、510℃で18分
間加熱したが、キヤピラリーからは何も導入しな
かつた。 又、比較例2ではキヤピラリーから少量窒素ガ
スを導入しつつ31mmHgの減圧下、510℃で15分間
加熱した。 両比較例共にガラス器壁に不融化した粉状体が
観察され、繊維にした後も凸部が形成され、引張
るとこの前後部分で切断してしまい、強度が低い
原因となつた。尚結果は表―1に併記した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fiber from a pitch-like substance reduced with a reducing solvent,
In particular, the present invention relates to a method for producing carbon fibers that is an improved method of thermally polycondensing reduced pitch into spinning pitch. The method of producing carbon fiber using a pitch-like material as a raw material is economical because the raw material is inexpensive and the carbonization yield is high. However, spinning from optically isotropic pitch,
The fibers obtained by subsequent infusibility and carbonization have a low tensile strength of about 100 Kg/mm 2 . On the other hand, fibers made of optically anisotropic pitches have a tensile strength of 300 kg/mm 2
However, the heat and pressure conditions during spinning are extremely severe.
It has the disadvantage of low productivity. Recently, a so-called reduced pitch solution, in which a pitch-like substance is once reductively decomposed by heat treatment in a reducing agent and a good pitch solvent such as tetrahydroquinoline, is produced by recovering the solvent and distilling off low-boiling components. Condensation to form spinning pitch, then spinning,
BACKGROUND ART A method for producing carbon fiber that is infusible, carbonized, and in some cases graphitized is attracting attention. The carbon fiber obtained by this method also has a tensile strength of 300
Kg/cm 2 or more, and the manufacturing method requires strict spinning conditions and high productivity. However, there are many problems that must be solved before such methods can be industrialized. One of them is a thermal polycondensation process in which a reduced pitch is used as a spinning pitch. In this process, low-boiling substances that are contained in the reduced pitch and vaporize until the temperature reaches the thermal polymerization temperature are distilled off, and the long side chains on the benzene condensed rings are thermally decomposed at the thermal polymerization temperature, resulting in by-product low-boiling substances. Thermal polycondensation is carried out while distilling off the boiling point components to form a polymer. At this time, the reduced pitch is treated at a high temperature of 500℃ to induce thermal decomposition and thermal polycondensation.
Through thermal polycondensation, the molecular weight increases and an optically anisotropic liquid crystal grows. Since this liquid crystal is not compatible with the amorphous portion of pitch and has an extremely high melting point, the spinning conditions must be strict and the process must be carried out quickly. Therefore, in such a process, a method of heating while distilling under highly reduced pressure (30 mmHg or less) has been proposed. However, under reduced pressure, air sometimes enters through the gaps in the equipment, causing the reduced pit to become oxidized and inoxidized, or when the amount of vaporized components decreases, the vapor pressure is insufficient and the components cannot be distilled out of the equipment, causing the walls of the equipment to evaporate. It carbonizes and becomes infusible at the top, causing clogging of the spinning nozzle. Furthermore, this has the disadvantage that the strength and yield of carbon fibers are reduced. The present inventors conducted intensive studies to improve the thermal polycondensation process for making the reduced pitch into a spinning pitch, and as a result, they arrived at the present invention. That is, the present invention heat-treats a pitch-like material as a raw material with a reducing solvent, recovers the solvent, and contains acyclic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, heterocyclic compounds, While blowing in a non-oxidizing compound selected from halogen derivatives, hydroxyl derivatives, ether derivatives, ketone derivatives, nitrogen or sulfur derivatives, and ammonia and having a boiling point of 400°C or less at normal pressure (hereinafter simply referred to as non-oxidizing compound), The present invention relates to a method for producing carbon fibers, which comprises distilling off boiling point components, proceeding with thermal polycondensation to obtain a spinning pitch, and then spinning, infusible, carbonized, and optionally further graphitized. The pitch-like substance referred to in the present invention is petroleum pitch,
This is a general term for coal tar pitch, natural asphalt, and pitch-like substances produced as by-products during industrial production, and coal tar pitch is particularly preferred in the present invention. The reducing solvent referred to in the present invention is a solvent that dissolves pitches well and at the same time releases hydrogen at a temperature of 300°C or higher to decompose crosslinking groups between aromatic condensates, long side chains, or aromatic rings. Alternatively, it refers to a solvent that adds hydrogen to thermally decomposed radical groups to suppress excessive thermal decomposition, and after releasing hydrogen, it is automatically oxidized to a compound with double bonds that is also a good solvent. The boiling point of this solvent is preferably 200°C or higher at normal pressure. Specifically, the following can be mentioned. TetrahydronaphthaleneTetrahydroquinolineHydrogenatedpyreneHydrogenatedphenanthreneHydrogenated wash oilHydrogenated anthracene oilOf course, a mixture of these may also be used, or a mixture of tetrahydroquinoline and a solvent before hydrogenation such as quinoline. I don't mind.
Among these, tetrahydroquinoline is most preferred. The heat treatment of raw material pitch in a reducing solvent is carried out by distributing 10 to 500 parts by weight of pitch to 100 parts by weight of the solvent and heating it to 300 to 550°C. heating temperature
If the temperature is less than 300°C, the reaction will be extremely slow, impairing economic efficiency, and if it exceeds 550°C, the reaction cannot be controlled. The pressure of the reaction system may be normal pressure, but if the boiling point of the solvent is lower than the thermal decomposition temperature, the reaction is often carried out in a pressure vessel. Of course, the reaction may be carried out under pressure with hydrogen gas in the presence of a reducing solvent. In the present invention, most of the reducing solvent is distilled off and recovered from the reaction system by heating under reduced pressure. Under this temperature condition, oily substances in the raw material pitch and thermally decomposed low-boiling components of low molecules are distilled out. Sometimes I do. The temperature at which such low boiling point components are distilled off is generally normal pressure.
The temperature is 200-450℃. After a series of heat treatments, the pituti are highly aromatic, but have a low molecular weight (number average molecular weight (200 to 500) and a low melting point (20 to 100°C), so-called reduced pitch). The non-oxidizing compound used in the process of manufacturing the spinning pitch from the reduced pitch of the present invention vaporizes below the thermal polymerization temperature, compensates for the vapor pressure of the low-boiling component, and accelerates the distillation of the low-boiling component. It is a compound that promotes the distillation of low-boiling components by boiling or gas-liquid dosing, and does not have the effect of oxidizing pitch. At the very least, it is a compound that does not cause any undesirable reactions.Specific examples of such non-oxidizing compounds include acyclic hydrocarbons such as n-butane, propylene, and hexane; cyclohexane, 1,3
-Cyclic hydrocarbons such as cyclohexadiene; Aromatic hydrocarbons such as benzene, toluene, and xylene; Heterocyclic compounds such as quinoline, pyridine, and dioxane; Halogen derivatives such as dichloroethane and monochlorobenzene; Hydroxy derivatives; ether derivatives such as isopropyl ether and anisole; ketone derivatives such as methyl ethyl ketone and methyl isobutyl ketone; nitrogen or sulfur derivatives such as dimethyl sulfoxide and dimethyl formamide; and ammonia. Such compounds are injected into the device in either gaseous or liquid form, but generally they are in gaseous form;
It is best to heat it to as high a temperature as possible and blow into it. The amount of such compound injected into the apparatus can be freely varied depending on the size of the reactor, the type of compound, the expected reaction rate or molecular weight, but if the amount is too large, there is a risk of bumping of the contents. If the amount is too low, low-boiling components cannot be distilled. Also, such compounds are naturally blown into the reactor at a higher pressure. The inside of the reactor may be slightly depressurized to the extent that the above-mentioned inflow of air does not occur. The blowing port may be installed below the liquid level of the contents to cause the liquid to bubble, or it may be installed above the liquid level to allow the gas in the reaction vessel to flow out. In the spinning pitch produced by this method, thermal polycondensation is easy because low-boiling components are quickly distilled off, and the molecular weight has reached a high molecular weight before the optically anisotropic liquid crystal grows. The spinning process performed is easy, and the strength of the carbon fibers finally obtained is high. The spinning, infusibility, carbonization, and optionally graphitization mentioned in the present invention may be carried out under conventional conventional manufacturing conditions for producing carbon fibers from pitch, and are not particularly limited. For example, infusibility is usually performed in air by heating at 130 to 400°C. Carbonization is usually carried out in a metal furnace or refractory brick furnace under an atmosphere of an inert gas such as nitrogen, helium, or argon at about 800 to 1500° C. for 5 to 60 minutes. Further, graphitization, if necessary, is usually carried out in a graphite furnace under an atmosphere of argon or helium at about 1500 to 3000°C for 5 to 60 minutes. Next, the present invention will be further explained with reference to Examples shown below. [Reference example] (Production of reduced pitch) Tar pitch with a softening point of 86°C, fixed carbon content of 56%, quinoline insoluble content of 6%, and benzene insoluble content of 38%.
Mix 450g and 450g of tetrahydroquinoline, 200g
When heated and stirred at around ℃, it became a uniform slurry. This was filtered while hot using a G-3 glass filter, and insoluble matter was washed with 100 g of freshly heated tetrahydroquinoline. The entire filtrate was placed in an autoclave, heated and stirred at 430°C for 60 minutes, and then heated to 200°C under a 25mmHg vacuum to remove tetrahydroquinoline, reduced decomposition products with boiling points around that level, and the raw material contained in the pitch. This was continued until no more low-boiling components were distilled out. This reduced pitch has a melting point of 42°C, has a quinoline insoluble content of only 0.7%, and a benzene insoluble content of only 2.9%, and as a result of gel permeation chromatography, the molecular weight is 220 to 320, clearly indicating that the raw material pitch has been reductively decomposed. It turned out that there was. [Examples 1 to 3] 70 g of the reduced pitch of the reference example was placed in a 200 ml two-necked quartz eggplant flask, and a gas inlet tube was attached to one neck and a Liepitz condenser was attached to the other mouth.
Thermal polycondensation was continued while the pitch was heated in a salt bath at the heating temperature and heating time shown in the reduced pitch column shown in Table 1, and while introducing the non-oxidizing compound and its blown amount shown in Table 1. Table 1 shows the properties of the spinning pitch obtained. In Examples 2 and 3, the non-oxidizing compound was injected in liquid form. Next, pour the pitch through a 0.5mm diameter nozzle.
The fibers were spun while being stretched at 290°C and 1.5 nitrogen gas pressure, heated to 250°C in air to make them infusible, and further heated to 1400°C in nitrogen to carbonize to obtain fibers with a diameter of 11 to 18 microns. . Table 1 shows the tensile strength of the obtained fibers.
Shown below. [Comparative Examples 1 and 2] Weigh out 70 g of the reduced pitch of the reference example into a 200 ml two-necked quartz eggplant flask, attach a Liebig condenser via a capillary to one neck and a connecting pipe with a branch to the other neck, and attach an adapter. was set up so that it could be suctioned with an oil rotary pump. In Comparative Example 1, heating was performed at 510° C. for 18 minutes under a reduced pressure of 27 mmHg, but nothing was introduced from the capillary. In Comparative Example 2, heating was performed at 510° C. for 15 minutes under reduced pressure of 31 mmHg while introducing a small amount of nitrogen gas from the capillary. In both comparative examples, infusible powder was observed on the walls of the glassware, and convex portions were formed even after being made into fibers, and when pulled, the fibers were cut at the front and rear portions, which caused the fibers to have low strength. The results are also listed in Table-1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 原料のピツチ状物質を還元性溶剤で熱処理
し、溶剤を回収して得られた還元ピツチ中に非環
式炭化水素、環式炭化水素、芳香族炭化水素、複
素環式化合物、ハロゲン誘導体、ヒドロキシ誘導
体、エーテル誘導体、ケトン誘導体、窒素又はイ
オウ誘導体及びアンモニアから選ばれる常圧で
400℃以下の沸点を有する非酸化性化合物を吹き
込みながら低沸点成分を留去し、熱重縮合を進め
て紡糸用ピツチを得、次いで紡糸、不融化、炭
化、場合によつてはさらに黒鉛化することを特徴
とするピツチ系炭素繊維の製造法。
1 Heat-treating the raw material pitch-like substance with a reducing solvent and recovering the solvent.In the reduced pitch obtained, acyclic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, heterocyclic compounds, halogen derivatives, At normal pressure selected from hydroxy derivatives, ether derivatives, ketone derivatives, nitrogen or sulfur derivatives and ammonia
While blowing in a non-oxidizing compound with a boiling point of 400℃ or less, low-boiling components are distilled off, thermal polycondensation is performed to obtain a spinning pitch, and then spinning, infusibility, carbonization, and in some cases further graphitization. A method for producing pitch-based carbon fiber, which is characterized by:
JP7266082A 1982-04-30 1982-04-30 Manufacture of pitch based carbon fiber Granted JPS58191222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266082A JPS58191222A (en) 1982-04-30 1982-04-30 Manufacture of pitch based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266082A JPS58191222A (en) 1982-04-30 1982-04-30 Manufacture of pitch based carbon fiber

Publications (2)

Publication Number Publication Date
JPS58191222A JPS58191222A (en) 1983-11-08
JPS633051B2 true JPS633051B2 (en) 1988-01-21

Family

ID=13495744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266082A Granted JPS58191222A (en) 1982-04-30 1982-04-30 Manufacture of pitch based carbon fiber

Country Status (1)

Country Link
JP (1) JPS58191222A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988923A (en) * 1982-11-12 1984-05-23 Agency Of Ind Science & Technol Manufacture of carbon fiber
CN106544758B (en) * 2016-10-21 2018-09-11 中国石油大学(华东) A kind of preparation method of high modulus pitch-based carbon fiber
CN110195272B (en) * 2019-05-21 2021-06-08 湖南东映碳材料科技有限公司 Method for oiling mesophase pitch fibers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089635A (en) * 1973-12-11 1975-07-18
JPS56165017A (en) * 1980-03-03 1981-12-18 Int Kooru Rifuainingu Co Production of carbon fiber
JPS5887187A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089635A (en) * 1973-12-11 1975-07-18
JPS56165017A (en) * 1980-03-03 1981-12-18 Int Kooru Rifuainingu Co Production of carbon fiber
JPS5887187A (en) * 1981-11-18 1983-05-24 Nippon Oil Co Ltd Raw pitch for carbon fiber

Also Published As

Publication number Publication date
JPS58191222A (en) 1983-11-08

Similar Documents

Publication Publication Date Title
JPH0437873B2 (en)
KR930005525B1 (en) Process for preparation of mesophase pitches
JPS6057478B2 (en) Manufacturing method of carbon fiber pitcher
JPS58185612A (en) Mesophase pitch with ellipsoidal molecule and manufacture
JPS61238885A (en) Method of refining raw material used for production of carbon product
US4596652A (en) Process for producing mesophase pitch
JPS633051B2 (en)
US4996037A (en) Processes for the manufacture of enriched pitches and carbon fibers
JPS6131157B2 (en)
JPH045710B2 (en)
JPH0150272B2 (en)
JPH0629435B2 (en) Low melting point intermediate phase pitches
JPS5938280A (en) Preparation of precursor pitch for carbon fiber
US5494567A (en) Process for producing carbon materials
US5316654A (en) Processes for the manufacture of enriched pitches and carbon fibers
JP2917486B2 (en) Mesoface pitch for carbon materials
JPS58101191A (en) Preparation of mesophase pitch and carbon fiber from said pitch
JP2931593B2 (en) Mesoface pitch for carbon materials
EP0456278B1 (en) Process for producing meso-carbon microbeads
JPH058238B2 (en)
JPH0430436B2 (en)
JPS6152244B2 (en)
EP0625178B1 (en) Improved processes for the manufacture of enriched pitches and carbon fibers
JPS58144126A (en) Preparation of carbon fiber
JPH04309596A (en) Production of optically isotropic pitch