JPS6330487B2 - - Google Patents

Info

Publication number
JPS6330487B2
JPS6330487B2 JP57233929A JP23392982A JPS6330487B2 JP S6330487 B2 JPS6330487 B2 JP S6330487B2 JP 57233929 A JP57233929 A JP 57233929A JP 23392982 A JP23392982 A JP 23392982A JP S6330487 B2 JPS6330487 B2 JP S6330487B2
Authority
JP
Japan
Prior art keywords
air
cooling
cylindrical casing
compressed air
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57233929A
Other languages
Japanese (ja)
Other versions
JPS59115431A (en
Inventor
Makoto Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57233929A priority Critical patent/JPS59115431A/en
Publication of JPS59115431A publication Critical patent/JPS59115431A/en
Publication of JPS6330487B2 publication Critical patent/JPS6330487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

【発明の詳細な説明】 この発明は空気熱タービンに関し、詳しくは圧
縮空気及びこの圧縮空気の有するポテンシヤル熱
エネルギをも駆動源とし得る空気熱タービンに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air heat turbine, and more particularly to an air heat turbine which can also use compressed air and the potential thermal energy of the compressed air as a driving source.

従来、動力源を圧縮空気とする空気タービンが
広く知られているが、この種駆動装置の動力源と
なる圧縮空気を作り出す際、空気圧縮により生じ
る熱、又は冷却熱などは全く利用されることなく
無駄に棄てられていた。
Conventionally, air turbines that use compressed air as a power source are widely known, but when producing the compressed air that is the power source for this type of drive device, the heat generated by air compression or cooling heat is not used at all. It was wasted and wasted.

従つて、いかに空気タービン自体の駆動効率を
良くしても圧縮空気を作り出す際に発生する熱を
有効に利用しなければ全体としての効率の良化は
一定限度以上は望めない。
Therefore, no matter how much the driving efficiency of the air turbine itself is improved, unless the heat generated when producing compressed air is effectively used, the overall efficiency cannot be improved beyond a certain limit.

この発明は上記に鑑み、圧縮空気を作り出す際
に発生する熱、冷却熱をも動力源として利用し
得、もつて非常に効率の良い空気熱タービンを提
供することを目的としてなされたものであつて、
二段のタービン羽根を有した回転軸を受容する円
筒形ケーシングの一端に、前記円筒形ケーシング
と同軸に円環形状をなす断熱熱膨脹室が設けら
れ、該断熱熱膨脹室内には加熱媒体管路が配設さ
れていると共に外周には冷却圧縮空気送入口及び
前記タービン羽根に対面する端面には空気噴出口
が複数個設けられており、前記円筒形ケーシング
内面には前記二段のタービン羽根間へ内径方向に
延出し、かつ、外部より加熱可能とされた固定羽
根が多数設けられ、さらに前記円筒形ケーシング
他端の開放面には冷却空気吹出口を有した冷却筒
が同軸状に延設されて成ることを特徴とするもの
である。
In view of the above, the present invention was made with the purpose of providing an extremely efficient air-thermal turbine that can utilize heat generated when compressed air is produced, as well as cooling heat, as a power source. hand,
An adiabatic thermal expansion chamber having an annular shape is provided coaxially with the cylindrical casing at one end of a cylindrical casing that receives a rotating shaft having two stages of turbine blades, and a heating medium pipe line is provided in the adiabatic thermal expansion chamber. A cooling compressed air inlet is provided on the outer periphery and a plurality of air jet ports are provided on the end face facing the turbine blade, and a plurality of air jet ports are provided on the inner surface of the cylindrical casing between the two stages of the turbine blades. A large number of fixed blades extending in the inner diameter direction and capable of being heated from the outside are provided, and a cooling tube having a cooling air outlet is coaxially extended from the open surface of the other end of the cylindrical casing. It is characterized by consisting of:

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

第1図はこの発明の実施例の断面図である。 FIG. 1 is a sectional view of an embodiment of the invention.

この発明の空気熱タービンAは、二段にわたつ
てタービン羽根1A,1Bが設けられた回転軸2
を受容する円筒形ケーシング3の一端3Aに、前
記円筒形ケーシング3と同軸に円環形状をなす断
熱熱膨脹室4が一体的に設けられ、この断熱熱膨
脹室4内には加熱媒体管路5がコイル状に配設さ
れていると共に、外周には冷却圧縮空気送入口
6、及び前記タービン羽根1Aに対面する端面4
Aには空気噴出口7,7が円周状に配列されて複
数個設けられており、前記円筒形ケーシング3内
面3Bには二段のタービン羽根1A,1B間へ内
径方向に延出して、外部より加熱可能とされた固
定羽根8が多数設けられ、さらに前記円筒形ケー
シング他端3Cの開放面には冷却空気吹出口9,
9を有した冷却筒10が同軸状に延設されて構成
されている。
The air heat turbine A of the present invention has a rotating shaft 2 on which turbine blades 1A and 1B are provided in two stages.
An adiabatic thermal expansion chamber 4 having an annular shape is integrally provided coaxially with the cylindrical casing 3 at one end 3A of the cylindrical casing 3 that receives the cylindrical casing 3, and a heating medium conduit 5 is provided in the adiabatic thermal expansion chamber 4. It is arranged in a coil shape, and has a cooling compressed air inlet 6 on the outer periphery and an end face 4 facing the turbine blade 1A.
A is provided with a plurality of air jet ports 7, 7 arranged circumferentially, and on the inner surface 3B of the cylindrical casing 3, extending in the inner radial direction between the two stages of turbine blades 1A, 1B, A large number of fixed blades 8 which can be heated from the outside are provided, and cooling air outlets 9 are provided on the open surface of the other end 3C of the cylindrical casing.
A cooling cylinder 10 having a cooling cylinder 9 is configured to extend coaxially.

上記冷却筒10内には、同心状に冷却空気室1
01が設けられており、冷却空気吹出口9,9は
冷却空気室101外周に設けられ、かつ、該冷却
空気室101に冷却空気を送入する管102には
図示を省略したが逆止弁が設けられている。
Inside the cooling cylinder 10, a cooling air chamber 1 is arranged concentrically.
01, cooling air outlets 9, 9 are provided on the outer periphery of the cooling air chamber 101, and a check valve (not shown) is provided in the pipe 102 that feeds cooling air into the cooling air chamber 101. is provided.

上記実施例において、図中11は熱媒通路であ
り、固定羽根8を加熱するために設けられたもの
であつて、固定羽根8取付面以外の他の面は断熱
材12……12により熱的に保護されている。
In the above embodiment, reference numeral 11 in the figure is a heat medium passage, which is provided to heat the fixed blade 8, and the surface other than the mounting surface of the fixed blade 8 is heated by heat insulating material 12...12. protected.

又、断熱熱膨脹室4における冷却圧縮空気送入
口6の有効開口断面積Aと、空気噴出口7の有効
開口断面積aとは、空気噴出口7の総数をnとす
るとA≧naの関係とされ、A>naの場合は、冷
却圧縮空気送入口6に、図示は省略したが逆止弁
が設けられる。
In addition, the effective opening cross-sectional area A of the cooling compressed air inlet 6 in the adiabatic thermal expansion chamber 4 and the effective opening cross-sectional area a of the air outlet 7 have a relationship of A≧na, where n is the total number of air outlets 7. If A>na, the cooling compressed air inlet 6 is provided with a check valve (not shown).

又、固定羽根8は、図示のように、第2段目の
タービン羽根1Bに臨ませて配置することが望ま
しい。
Further, it is desirable that the fixed blade 8 be disposed so as to face the second stage turbine blade 1B as shown in the figure.

尚、図中13,13はベアリング、14は熱媒
体管路5の外部断熱材である。
In the figure, 13 and 13 are bearings, and 14 is an external heat insulating material for the heat medium pipe line 5.

次に、この発明の空気熱タービンAの作動につ
いて説明する。
Next, the operation of the air heat turbine A of the present invention will be explained.

まず、熱媒体管路5に加熱水、又は高温水蒸気
などの熱媒が流通され、同時に断熱熱膨脹室4に
は冷却圧縮空気が冷却圧縮空気送入口6より送入
される。
First, a heat medium such as heated water or high-temperature steam is passed through the heat medium pipe 5, and at the same time, cooled compressed air is introduced into the adiabatic thermal expansion chamber 4 from the cooled compressed air inlet 6.

このとき断熱熱膨脹室4内においては冷却圧縮
空気が熱媒体管路5により急激に熱せられ、この
結果、圧力が急激に上昇する。そして、空気噴出
口7,7より噴出し、この衝動によりタービン羽
根1Aが回転する。
At this time, the cooled compressed air is rapidly heated in the adiabatic thermal expansion chamber 4 by the heat medium pipe 5, and as a result, the pressure rises rapidly. Then, air is ejected from the air ejection ports 7, 7, and the turbine blade 1A rotates due to this impulse.

第1段目のタービン羽根1Aにある程度の仕事
量をうばわれた圧縮空気はさらに第2段目のター
ビン羽根1Bへと固定羽根8で整流されて流れる
が、このとき固定羽根8より加熱され再び圧力を
増し、第2段目のタービン羽根1Bに衝動を与
え、円筒形ケーシング3の開放面へと放出され
る。
The compressed air that has been subjected to a certain amount of work by the first-stage turbine blade 1A further flows to the second-stage turbine blade 1B after being rectified by the fixed blade 8, but at this time, it is heated by the fixed blade 8 and re-circulated. It increases the pressure, imparts an impulse to the second stage turbine blade 1B, and is ejected into the open surface of the cylindrical casing 3.

このとき、円筒形ケーシング3の開放面3Cに
は冷却空気吹出口9,9を有した冷却筒10が延
設されているため、冷却筒10内は低温化され、
円筒形ケーシング3内との圧力差を生じ、背圧を
生じさせるから円筒形ケーシング3内の空気流を
付勢する作用を行うのである。
At this time, since a cooling cylinder 10 having cooling air outlets 9, 9 is extended to the open surface 3C of the cylindrical casing 3, the temperature inside the cooling cylinder 10 is reduced.
This creates a pressure difference with the inside of the cylindrical casing 3 and generates back pressure, which acts to bias the airflow inside the cylindrical casing 3.

尚、上記において、冷却空気は冷却空気送入口
102を経て冷却空気室101に入り、冷却筒1
0内を通過する空気から熱を奪つて膨脹し、吹出
口9から噴出されるのである。
In the above, cooling air enters the cooling air chamber 101 through the cooling air inlet 102 and enters the cooling cylinder 1.
The air absorbs heat from the air passing through it, expands, and is ejected from the air outlet 9.

上記全体の作用における冷却圧縮空気は、空気
圧縮機により作られる圧縮空気から発熱熱量をう
ばつてできるものであり、かつ、加熱熱媒は上記
圧縮空気からうばつた熱を利用して加熱されたも
のが用いられる。
The cooling compressed air in the above-mentioned overall operation is produced by extracting the calorific value from the compressed air produced by the air compressor, and the heating heat medium is heated using the heat extracted from the compressed air. is used.

尚、冷却圧縮空気及び断熱膨脹用熱媒の発生装
置として、第2図に示すような風力システム装置
Bを利用すれば、自然エネルギの有効利用ともな
り、又無公害の動力源となつて非常に都合が良
い。
In addition, if a wind power system device B as shown in Fig. 2 is used as a generator of cooling compressed air and a heat medium for adiabatic expansion, it will be possible to effectively utilize natural energy and become a pollution-free power source. It is convenient for

この第2図における風力システム装置Bは、風
車20及びこの風車20によつて駆動される第
1、第2の圧縮機21,22を有し、第1の圧縮
機21により空気圧縮を行い圧縮空気タンク23
に圧縮空気を蓄積すると共に、第1の圧縮機21
より圧縮空気タンク23に至る管路24に第2の
圧縮機22により駆動される熱媒回路26を設け
熱交換器25で第1の圧縮機21により圧縮され
た空気の熱量を例えば貯水槽27内の水に熱交換
させ熱水として蓄えておく構成とされたものであ
る。
The wind power system device B in FIG. 2 includes a wind turbine 20 and first and second compressors 21 and 22 driven by the wind turbine 20. air tank 23
The compressed air is stored in the first compressor 21.
A heat medium circuit 26 driven by a second compressor 22 is provided in a pipe line 24 leading to a compressed air tank 23, and a heat exchanger 25 transfers the amount of heat of the air compressed by the first compressor 21 to a water storage tank 27. It is designed to exchange heat with the water inside and store it as hot water.

そして、本発明の空気熱タービンAの駆動源と
しての冷却圧縮空気を上記システム装置Bの圧縮
タンク23より取り出し、又、熱媒としての熱水
を上記システム装置Bの貯水槽27より取り出し
て利用するのである。
Cooled compressed air as a driving source for the air-thermal turbine A of the present invention is taken out from the compression tank 23 of the system device B, and hot water as a heat medium is taken out from the water storage tank 27 of the system device B and used. That's what I do.

尚、熱媒は、主として空気熱タービンAの断熱
熱膨脹室4内の加熱用として用いられ、固定羽根
8の加熱には、熱媒回路26の一部に再熱回路2
6′を設け、この回路の熱が利用される。
The heat medium is mainly used for heating the adiabatic thermal expansion chamber 4 of the air-thermal turbine A, and a reheat circuit 2 is provided in a part of the heat medium circuit 26 to heat the fixed blades 8.
6' is provided, and the heat of this circuit is utilized.

尚、上記風力システム装置Bにより蓄積される
冷却圧縮空気の最大蓄積圧力は30Kg/cm2及び温度
が−30℃まで可能であり、又、熱交換により得ら
れる熱媒温度は最高200℃まで高めることができ、
従つて蓄熱体を水とすれば水温を100℃まで上昇
させることが可能である。
Furthermore, the maximum accumulated pressure of the cooling compressed air accumulated by the above-mentioned wind power system equipment B is 30 kg/cm 2 and the temperature can be up to -30℃, and the temperature of the heating medium obtained by heat exchange can be increased to a maximum of 200℃. It is possible,
Therefore, if the heat storage body is water, it is possible to raise the water temperature to 100°C.

この場合、上記システム装置Bより定常的に取
り出し得る冷却圧縮空気として、圧力10Kg/cm2
−20℃とし、熱媒体の熱水温度を90℃とすれば、
この発明における空気熱タービンAの断熱熱膨脹
室4内での冷却圧縮空気の圧力膨脹率は約3倍強
に達し、駆動源となる空気噴出圧がいちじるしく
増幅され効率の良化が図れるのである。
In this case, the cooling compressed air that can be taken out regularly from the system device B has a pressure of 10 kg/cm 2 ,
If the temperature is −20℃ and the hot water temperature of the heat medium is 90℃,
In this invention, the pressure expansion rate of the cooled compressed air in the adiabatic thermal expansion chamber 4 of the air-thermal turbine A reaches approximately three times or more, and the air jet pressure serving as the driving source is significantly amplified, thereby improving efficiency.

この発明は以上のように構成され、空気の有す
るポテンシヤルエネルギを圧力と熱とに分離し、
しかもこれらを有効に利用するので、非常に効率
が良く、かつ、電力、風力、水力、蒸気力、圧縮
ガス力のいずれをも増強することができる。
This invention is configured as described above, and separates the potential energy of air into pressure and heat.
Moreover, since these are used effectively, it is extremely efficient and can enhance any of electric power, wind power, water power, steam power, and compressed gas power.

又、この発明の空気熱タービンは、動力源に空
気を利用するので無公害であり、かつ、エネルギ
資源の枯渇のおそれも全くないなど種々の効果を
有する。
Furthermore, since the air-thermal turbine of the present invention uses air as a power source, it is non-polluting and has various effects such as no fear of depletion of energy resources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の断面図、第2図は
この発明の駆動システムの一例を示す説明図であ
る。 A……空気熱タービン、1A,1B……タービ
ン羽根、2……回転軸、3……円筒形ケーシン
グ、3A……円筒形ケーシング一端、3B……円
筒形ケーシング内面、4……断熱熱膨脹室、4A
……断熱熱膨脹室端面、5……加熱媒体管路、6
……冷却圧縮空気送入口、7……空気噴出口、8
……固定羽根、9……冷却空気吹出口、10……
冷却筒、102……背圧低下用冷却圧縮空気送入
口、101……冷却空気室。
FIG. 1 is a sectional view of an embodiment of the invention, and FIG. 2 is an explanatory diagram showing an example of a drive system of the invention. A... Air heat turbine, 1A, 1B... Turbine blade, 2... Rotating shaft, 3... Cylindrical casing, 3A... One end of cylindrical casing, 3B... Inner surface of cylindrical casing, 4... Adiabatic thermal expansion chamber , 4A
...Adiabatic thermal expansion chamber end surface, 5...Heating medium pipe line, 6
...Cooling compressed air inlet, 7...Air jet port, 8
... Fixed vane, 9 ... Cooling air outlet, 10 ...
Cooling cylinder, 102... Cooling compressed air inlet for reducing back pressure, 101... Cooling air chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 二段のタービン羽根を有した回転軸を受容す
る円筒形ケーシングの一端に、前記円筒形ケーシ
ングと同軸に円環形状をなす断熱熱膨脹室が設け
られ、該断熱熱膨脹室内には加熱媒体管路が配設
されていると共に外周には冷却圧縮空気送入口及
び前記タービン羽根に対面する端面には空気噴出
口が複数個設けられており、前記円筒形ケーシン
グ内面には前記二段のタービン羽根間へ内径方向
に延出し、かつ、外部より加熱可能とされた固定
羽根が多数設けられ、さらに前記円筒形ケーシン
グ他端の開放面には冷却空気吹出口を有した冷却
筒が同軸状に延設されて成ることを特徴とする空
気熱タービン。
1. An adiabatic thermal expansion chamber having an annular shape is provided coaxially with the cylindrical casing at one end of a cylindrical casing that receives a rotating shaft having two stages of turbine blades, and a heating medium pipe is installed in the adiabatic thermal expansion chamber. A cooling compressed air inlet is provided on the outer periphery and a plurality of air jet ports are provided on the end face facing the turbine blade, and a cooling compressed air inlet is provided on the outer periphery, and a plurality of air jet ports are provided on the end face facing the turbine blade, and the inner surface of the cylindrical casing is provided with a cooling compressed air inlet and a plurality of air jet ports are provided on the inner surface of the cylindrical casing. A large number of fixed blades are provided that extend in the inner diameter direction and can be heated from the outside, and a cooling cylinder having a cooling air outlet is coaxially extended on the open surface of the other end of the cylindrical casing. An air heat turbine characterized by comprising:
JP57233929A 1982-12-22 1982-12-22 Air heat turbine Granted JPS59115431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233929A JPS59115431A (en) 1982-12-22 1982-12-22 Air heat turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233929A JPS59115431A (en) 1982-12-22 1982-12-22 Air heat turbine

Publications (2)

Publication Number Publication Date
JPS59115431A JPS59115431A (en) 1984-07-03
JPS6330487B2 true JPS6330487B2 (en) 1988-06-17

Family

ID=16962813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233929A Granted JPS59115431A (en) 1982-12-22 1982-12-22 Air heat turbine

Country Status (1)

Country Link
JP (1) JPS59115431A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000029366A1 (en) * 2020-12-02 2022-06-02 Be Initia S R L TURBOGAS GROUP WITH ELECTROMAGNETIC INDUCTION AND AEROSPACE THRUSTERS INCLUDING THE SAID TURBOGAS GROUP

Also Published As

Publication number Publication date
JPS59115431A (en) 1984-07-03

Similar Documents

Publication Publication Date Title
US5722241A (en) Integrally intercooled axial compressor and its application to power plants
US9797310B2 (en) Heat pipe temperature management system for a turbomachine
US7600382B2 (en) Turbine engine with interstage heat transfer
US6295803B1 (en) Gas turbine cooling system
US5678401A (en) Energy supply system utilizing gas and steam turbines
US4991391A (en) System for cooling in a gas turbine
EP2971737B1 (en) Intercooled gas turbine with closed combined power cycle
JP5916053B2 (en) System with feed water heater that extracts heat from a low pressure steam turbine
US20110103939A1 (en) Turbine rotor blade tip and shroud clearance control
US20160290234A1 (en) Heat pipe temperature management system for wheels and buckets in a turbomachine
US2280585A (en) Expansion turbine for low temperature plants
US4663939A (en) Closed cycle external combustion engine
US20160290231A1 (en) Heat pipe intercooling system for a turbomachine
US4431371A (en) Gas turbine with blade temperature control
US10228125B2 (en) System for generating electrical power from low temperature steam
JPS6330487B2 (en)
GB577017A (en) Improvements in turbines
JPS5781104A (en) Composite cycle plant
US2453938A (en) Turbine thermal power plant using hot air as motivating fluid
JP2002242700A (en) Ultra-turbine
CN208010410U (en) The cooling device of steam turbine
GB740944A (en) Improvements in and relating to thermal turbines
JPS59126005A (en) Power generating system supplying heat energy simultaneously
CN113047919A (en) Multi-backpressure gas-steam combined cycle power generation system
SU1557341A1 (en) Self-sufficient power plant