JPS63304631A - Photo-excitated dry etching and equipment therefor - Google Patents

Photo-excitated dry etching and equipment therefor

Info

Publication number
JPS63304631A
JPS63304631A JP13979887A JP13979887A JPS63304631A JP S63304631 A JPS63304631 A JP S63304631A JP 13979887 A JP13979887 A JP 13979887A JP 13979887 A JP13979887 A JP 13979887A JP S63304631 A JPS63304631 A JP S63304631A
Authority
JP
Japan
Prior art keywords
etching
reaction
substrate
gas
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13979887A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mochizuki
康弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13979887A priority Critical patent/JPS63304631A/en
Publication of JPS63304631A publication Critical patent/JPS63304631A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the highly precise anisotropic etching only with photo- excitation etching reaction, by making etching gas adsorbed by a substrate and the substrate react with each other by light irradiation. CONSTITUTION:A substrate 1 on which a prescribed mask pattern is formed is set in a reaction vessel, the inside of which is exhausted. Then etching gas 3 is introduced into the reaction vessel, and absorbed by an aperture part of the mask 2 on the substrate 1. The etching gas 3 in vapor phase is exhausted and eliminated, the substrate 1 is vertically irradiated with light, to make the absorbed etching gas 3 and the substrate 1 react with each other, and volatile reaction product is exhausted and eliminated. By repeating the reaction process between the etching gas 3 and the substrate 1, the etching is processed up to a specified depth. In this process, the substrate 1 is vertically irradiated with light. As the result, the bottom part only is etched, and the sidewall is not subjected to etching. Thereby, the anisotropic etching is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路や薄膜機能デバイス等の製造に
用いるドライエツチングに係り、特に異方性の精度の優
れた光励起ドライエツチング方法及びその装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to dry etching used in the production of semiconductor integrated circuits, thin film functional devices, etc., and particularly relates to a photoexcited dry etching method and apparatus with excellent anisotropy accuracy. Regarding.

〔従来の技術〕[Conventional technology]

光励起ドライエツチングは基本的にはラジカルの反応に
よるためエツチング形状は等方性であるが、微細パター
ンの形成のためには異方性エツチングが望まれている。
Although photo-excited dry etching basically relies on radical reactions, the etching shape is isotropic, but anisotropic etching is desired for forming fine patterns.

従来、光励起エツチングの異方性のため、側壁保護膜を
形成しながらエツチングする方法(特開昭61−755
29 、特開昭60−260131号、特開昭60=1
65724号、特開昭60−165725号)やプラズ
マ励起と光励起を併用する方法(特開昭61−1503
39号。
Conventionally, due to the anisotropy of photoexcited etching, a method of etching while forming a sidewall protective film (Japanese Patent Laid-Open No. 61-755
29, JP-A-60-260131, JP-A-60=1
65724, JP-A No. 60-165725) and a method using both plasma excitation and optical excitation (JP-A-61-1503).
No. 39.

特開昭60−253230号)等が知られている。JP-A No. 60-253230) and the like are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術の側壁保護膜を形成しながらエツチングす
る方法は成膜反応とエツチング反応の競争のバランスを
取るのが難しい。特に基板内に島状や穴状の各種の大き
さのパターンがある場合には、競争反応が局部的に不均
衡となり精度よく異方性エツチングすることが困難であ
る。またプラズマ励起と光励起を併用する方法において
も上記と同様にパターンサイズ間に不均衡が生ずる問題
がある。
In the prior art method of etching while forming a sidewall protective film, it is difficult to balance the competition between the film forming reaction and the etching reaction. Particularly when there are island-like or hole-like patterns of various sizes in the substrate, the competitive reactions become locally unbalanced, making it difficult to perform accurate anisotropic etching. Also, in the method of using plasma excitation and optical excitation in combination, there is a problem in that the pattern sizes are unbalanced, similar to the above.

本発明の目的は、競争反応の制御やパターンサイズによ
る差異の発生しない、光励起エツチング反応のみによる
高精度の異方性エツチング方法及びその装置を提供する
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate anisotropic etching method and apparatus using only a photoexcited etching reaction, which does not involve controlling competitive reactions or causing differences due to pattern size.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、基板に吸着したエツチングガスと基板とを
光照射して反応させることにより達成される。具体的に
は、 (1)所定のマスクパターンの形成された基板を反応容
器内に設置し、反応容器内を排気する。
The above object is achieved by irradiating the substrate with light and causing the etching gas adsorbed on the substrate to react. Specifically, (1) A substrate on which a predetermined mask pattern is formed is placed in a reaction container, and the inside of the reaction container is evacuated.

(2)反応容器にエツチングガスを流入し、基板上のマ
スクの開口部にエツチングガスを吸着させる。
(2) Etching gas is introduced into the reaction vessel, and the etching gas is adsorbed into the opening of the mask on the substrate.

(3)気相中のエツチングガスを排気除去する。(3) Evacuation and removal of etching gas in the gas phase.

(4)基板に垂直に光照射し、吸着しているエツチング
ガスと基板とを反応させ、揮発性反応生成物を排気除去
する。
(4) The substrate is irradiated with light perpendicularly to cause the adsorbed etching gas to react with the substrate, and volatile reaction products are removed by exhaust.

(5)上記(2)〜(4)の工程を繰返して、所定の深
さまでエツチングする。
(5) Repeat steps (2) to (4) above to etch to a predetermined depth.

ことにより達成される。This is achieved by

〔作用〕[Effect]

従来、光励起ドライエツチングは気相中のエラチングガ
スを励起することにより基板と反応させている。このた
め、光照射により励起されたエツチングガスは気相中を
拡散して基板と衡突するためエツチングは等方性となる
Conventionally, photo-excited dry etching involves exciting an etching gas in a gas phase to cause it to react with a substrate. Therefore, the etching gas excited by the light irradiation diffuses in the gas phase and collides with the substrate, so that the etching becomes isotropic.

一方、本発明では、光照射時には気相中にエツチングガ
スはなく、エツチングに寄与する分子は基板に吸着した
エツチングガス分子のみである。
On the other hand, in the present invention, there is no etching gas in the gas phase during light irradiation, and the only molecules contributing to etching are the etching gas molecules adsorbed on the substrate.

このため基板に光照射することにより、吸着分子と基板
が反応してエツチングされるが、この時光照射を基板に
垂直にすることにより底面のみがエツチングされ側壁部
はエツチングされることなく異方性エツチングが可能と
なる。
For this reason, when the substrate is irradiated with light, the adsorbed molecules and the substrate react and are etched. At this time, by directing the light irradiation perpendicular to the substrate, only the bottom surface is etched and the side walls are not etched, resulting in anisotropic etching. Etching is possible.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明に用いた光励起ドライエツチング装置を
示す。装置は反応容器系、励起光源9反応ガス供給系、
排気系より成る。反応容器系は反応室11とゲートバル
ブ12を介したロードロック室13から成り、反応室1
1は合成石英製の光入射窓14を有する。励起光源20
は低圧水銀ランプ(波長λ=185nm及び254 n
 m 、試料表面の照度60mW/al、λ=254n
m)、水銀−キャノンランプ(波長220nm以上の連
続スペクトル、照度300mW/aA(λく32゜nm
)、エキシマレーザ(A r F  λ=193nm。
FIG. 2 shows a photoexcited dry etching apparatus used in the present invention. The equipment includes a reaction container system, an excitation light source 9 reaction gas supply system,
Consists of exhaust system. The reaction vessel system consists of a reaction chamber 11 and a load lock chamber 13 via a gate valve 12.
1 has a light entrance window 14 made of synthetic quartz. Excitation light source 20
is a low-pressure mercury lamp (wavelength λ = 185 nm and 254 n
m, illuminance of sample surface 60mW/al, λ=254n
m), mercury-cannon lamp (continuous spectrum with wavelength of 220 nm or more, illumination intensity of 300 mW/aA (λ × 32゜nm)
), excimer laser (A r F λ=193 nm.

出力200mJ、KrF  λ= 249 n m 、
出力250mJ、XeCQ  λ= 308 n m 
、出力150mJ)を用い、光照射のオン・オフはシャ
ッタ21を用いた。反応ガス供給系は、塩化水素及び塩
素ガスを用い、バルブ31のオン・オフ速度は10 m
 sである。シャッタ21とバルブ31の作動タイミン
グはコントローラ22で制御している。排気系はターボ
分子ポンプ41(排気速度150(Ml/s)とターボ
型粗引ポンプ42(排気速度6000 Q /m1n)
より成り、到達圧力はIX 10−7Torrである。
Output 200mJ, KrF λ = 249 nm,
Output 250mJ, XeCQ λ = 308nm
, output 150 mJ), and a shutter 21 was used to turn on and off the light irradiation. The reaction gas supply system uses hydrogen chloride and chlorine gas, and the on/off speed of the valve 31 is 10 m.
It is s. The operating timing of the shutter 21 and the valve 31 is controlled by a controller 22. The exhaust system includes a turbo molecular pump 41 (pumping speed 150 (Ml/s)) and a turbo roughing pump 42 (pumping speed 6000 Q/m1n).
The ultimate pressure is IX 10-7 Torr.

第1図は本発明の工程を示す試料の断面模式図である。FIG. 1 is a schematic cross-sectional view of a sample showing the process of the present invention.

(a)所定のパターンのエツチングマスク2が形成され
た基板1を前記光励起エツチング装置の反応室に設置し
、反応室を真空排気後、エツチングガス3を導入して基
板1にエツチングガスが吸着された状態4を示す。
(a) A substrate 1 on which an etching mask 2 of a predetermined pattern is formed is placed in a reaction chamber of the photoexcited etching apparatus, and after the reaction chamber is evacuated, an etching gas 3 is introduced so that the etching gas is adsorbed onto the substrate 1. State 4 is shown.

(b)気相のエツチングガスを排気除去後、基板1表面
に吸着されたエツチングガス4に励起光5を照射して反
応を励起し、 (c)揮発性反応生成物6を排気除去して、基板1にエ
ツチング溝を形成し、 上記工程を繰返すことにより所定の深さのエツチング溝
を形成することができる。
(b) After exhausting and removing the etching gas in the gas phase, the etching gas 4 adsorbed on the surface of the substrate 1 is irradiated with excitation light 5 to excite the reaction; (c) Volatile reaction products 6 are exhausted and removed; , an etching groove is formed in the substrate 1, and by repeating the above steps, an etching groove of a predetermined depth can be formed.

失庭析よ リン拡散した多結晶シリコンのホトレジストマスクを用
いた異方性エツチング。
Anisotropic etching using a photoresist mask of phosphorus-diffused polycrystalline silicon.

基板1はリン拡散した厚さ500nm、シート抵抗13
Ω/口の多結晶シリコン膜で、ポジ型ホトレジスト2に
より1.0 μmライン状パターンを形成した。エツチ
ングガスとして塩化水素(HCρ)を10Torrに供
給して基板に吸着させた後、10−3Torrはで排気
した。励起光として低圧水銀ランプからの紫外光(λ=
185nm。
Substrate 1 has a thickness of 500 nm with phosphorus diffused, and a sheet resistance of 13
A 1.0 μm line pattern was formed using positive photoresist 2 on a polycrystalline silicon film of Ω/hole. Hydrogen chloride (HCρ) was supplied as an etching gas at 10 Torr and adsorbed onto the substrate, and then evacuated at 10 −3 Torr. Ultraviolet light (λ=
185nm.

254nm)を照射して反応を励起してエツチングした
。光照射はシャッタを開閉して2秒間照射した。その後
再びHCQガスを10Torrまで供給し、10”−8
Torrまで排気し、光照射を繰返した。
254 nm) to excite the reaction and perform etching. Light irradiation was performed for 2 seconds by opening and closing the shutter. After that, HCQ gas was supplied again to 10 Torr, and 10"-8
The chamber was evacuated to Torr and light irradiation was repeated.

毎分20回上記繰返を繰返し、40分間の反応で300
0人のシリコン膜がエツチングできた。エツチングの断
面形状は基板表面に対してほぼ垂直となり、サイドエツ
チングは見られない。
Repeat the above steps 20 times per minute, and a reaction time of 40 minutes will result in 300
The silicon film of 0 people could be etched. The cross-sectional shape of the etching is almost perpendicular to the substrate surface, and no side etching is observed.

実施例2 ノンドープ多結晶シリコン膜のホトレジストマスク異方
性エツチング。
Example 2 Photoresist mask anisotropic etching of non-doped polycrystalline silicon film.

基板1はシリコン酸化膜上に堆積した厚さ500nmの
多結晶シリコン膜で、ポジ型ホトレジスト2により、1
.0  μmのライン&スペースのパターンを形成した
。まず通常の反応性プラズマエツチングで約450nm
の深さまで異方性エツチングした。この状態で光励起エ
ツチング装置に設置し、反応ガスとして塩素、励起光源
として水銀−キャノンランプを用いた。実施例1と同様
の操作を毎分20回、30分間繰返した。その結果、下
地のシリコン膜はエツチングされることなく、多結晶シ
リコン膜のみが選択的にエツチングでき、その断面形状
は基板の表面に対してほぼ垂直となった。さらにオーバ
ーエツチングしてもその断面形状は変化せず、はぼ垂直
な断面が保持されていることが判った。
The substrate 1 is a polycrystalline silicon film with a thickness of 500 nm deposited on a silicon oxide film.
.. A line and space pattern of 0 μm was formed. First, about 450nm is etched using normal reactive plasma etching.
Anisotropically etched to a depth of . In this state, it was installed in a photo-excited etching apparatus, using chlorine as a reactive gas and a mercury-cannon lamp as an excitation light source. The same operation as in Example 1 was repeated 20 times per minute for 30 minutes. As a result, only the polycrystalline silicon film could be selectively etched without etching the underlying silicon film, and its cross-sectional shape became almost perpendicular to the surface of the substrate. Furthermore, it was found that the cross-sectional shape did not change even after over-etching, and a nearly vertical cross-section was maintained.

実施例3 リン拡散多結晶シリコン膜のシリコン酸化膜マスクを用
いた異方性エツチング。
Example 3 Anisotropic etching of a phosphorus-diffused polycrystalline silicon film using a silicon oxide film mask.

基板1はリン拡散した厚み500nm、シート抵抗13
Ω/口の多結晶シリコン膜で、その上に0.8〜2μm
の島状パターンのシリコン酸化膜マスク2が形成しであ
る。エツチングガスとして塩化水素、励起光としてエキ
シマレーザ(ArFλ=193nm)を用いた。排気し
ながら、試料表面にエツチングガスをパルス的に噴射供
給して、試料表面にエツチングガスを吸着させるととも
にレーザ光を基板に垂直に照射した。レーザの発光周波
数は200 Hzである。レーザ光を走査することによ
り基板全面に4パルスずつ照射した。反応ガスの導入、
吸着と光照射のパルスを交互に繰返した。30分間のエ
ツチングの結果、多結晶シリコン膜は選択的にエツチン
グされ、その断面形状は基板表面に対してほぼ垂直とな
り、サイドエツチングは見られなかった、更にオーバー
エツチングでも断面形状は影響を受けないことが判った
Substrate 1 has a thickness of 500 nm with phosphorus diffusion, and a sheet resistance of 13
A polycrystalline silicon film of Ω/mouth, with a thickness of 0.8 to 2 μm on top of it.
A silicon oxide film mask 2 having an island-like pattern is then formed. Hydrogen chloride was used as the etching gas, and excimer laser (ArFλ=193 nm) was used as the excitation light. While evacuating the sample, etching gas was injected in pulses onto the sample surface to adsorb the etching gas onto the sample surface, and the substrate was irradiated with laser light perpendicularly. The emission frequency of the laser is 200 Hz. By scanning the laser beam, the entire surface of the substrate was irradiated with four pulses each. introduction of reaction gas,
Adsorption and light irradiation pulses were alternately repeated. As a result of etching for 30 minutes, the polycrystalline silicon film was selectively etched, and its cross-sectional shape was almost perpendicular to the substrate surface, with no side etching observed. Furthermore, the cross-sectional shape was not affected by over-etching. It turned out that.

第3図は上記実施例における反応ガス導入バルブの開閉
状況とそれに伴う反応室内の試料表面近傍の圧力変化及
び光照射のタイムシーケンスを示す。
FIG. 3 shows the opening/closing status of the reaction gas introduction valve in the above embodiment, the accompanying pressure change near the sample surface in the reaction chamber, and the time sequence of light irradiation.

(a)反応室11ヘロードロツク室13及びゲートバル
ブ12を介して試料を設置する操作(b)反応室11内
を排気して圧力を10””Torr以下に安定させる操
作 (C)反応ガス導入バルブ31を開けて試料表面に反応
ガス(HCQ)を噴出し、吸着させる操作(d)反応ガ
ス導入バルブ31を閉じ、反応容器11内の反応ガスを
排気除去する操作 (e)励起光源20(ArFエキシマレーザ λ=19
3nm、発光周波数200 Hz 、パルスエネルギー
200mJ、パルス幅l 6 n S +ビーム形状2
0X8mn)を動作させ、試料表面に光照射・走査する
操作 以下(c)、 (cl)、 (e)をそれぞれ0.5 
s 。
(a) Operation of installing a sample through the reaction chamber 11, the lock chamber 13 and the gate valve 12 (b) Operation of evacuating the reaction chamber 11 and stabilizing the pressure below 10'' Torr (C) Reaction gas introduction valve (d) Operation to close the reaction gas introduction valve 31 and exhaust and remove the reaction gas in the reaction vessel 11. (e) Operation to exhaust and remove the reaction gas in the reaction vessel 11 (e) Operation to open the reaction gas (HCQ) to the sample surface and adsorb it. Excimer laser λ=19
3 nm, emission frequency 200 Hz, pulse energy 200 mJ, pulse width l 6 n S + beam shape 2
0x8mn) and irradiate and scan the sample surface with light (c), (cl), and (e) each at 0.5
s.

is、is計2.5s周期で繰返す。is, is is repeated at a total cycle of 2.5 seconds.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光励起ドライエツチングの異方性エツ
チングが可能となり、微細パターンを所望の形状にエツ
チングすることができる。
According to the present invention, anisotropic etching using photoexcitation dry etching becomes possible, and a fine pattern can be etched into a desired shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の工程を示すための試料の断面模式口、
第2図及び第3図は本発明に用いた光励起ドライエツチ
ング装置の概略図及びそのタイムシーケンスを示す。 1・基板、2・・マスク、3・・・エツチングガス、4
・・・吸着エツチングガス、5・・・励起光、6・・揮
発性反応生成物、11・・・反応室、20・・・励起光
源、31・・・反応ガス導入バルブ、41.42・・・
排気ポンプ。 6−−−揮佃11手段尺生八官
FIG. 1 is a schematic cross-sectional view of a sample for illustrating the process of the present invention;
FIGS. 2 and 3 show a schematic diagram of a photoexcited dry etching apparatus used in the present invention and its time sequence. 1. Substrate, 2. Mask, 3. Etching gas, 4
... adsorption etching gas, 5 ... excitation light, 6 ... volatile reaction product, 11 ... reaction chamber, 20 ... excitation light source, 31 ... reaction gas introduction valve, 41.42.・・・
Exhaust pump. 6---Katsukuda 11 means Shakyu Hakkan

Claims (1)

【特許請求の範囲】 1、試料をエッチングガスと光化学反応させることによ
りエッチングする方法において、(1)試料を反応容器
内に設置し、 (2)反応容器内をエッチングガスで置換し、試料表面
にエッチングガスを吸着させ、 (3)反応容器内の気相のエッチングガスを排気除去し
、 (4)試料表面に光照射することにより、吸着したエッ
チングガスと反応させて揮発性反応生成物を形成して試
料をエッチングし、 (5)上記(2)〜(3)の工程を繰返すことにより所
定の量をエッチングする 工程から成ることを特徴とする光励起ドライエッチング
方法。 2、試料を光化学反応によりドライエッチングするため
、反応容器、励起光源、反応ガス供給系、排気系より成
る装置において、試料を反応容器内に設置した後、 [1]反応ガスの導入、 [2]反応ガスの排気、 [3]試料表面への光照射を所定の回数繰返すシーケン
スを有することを特徴とする光励起ドライエッチング装
置。 3、特許請求の範囲第2項において、試料を反応容器内
に設置した後、反応容器内を排気しながら試料表面への
反応ガスのパルス噴射供給と励起光のパルス照射を交互
に繰返すシーケンスを有することを特徴とする光励起ド
ライエッチング装置。
[Claims] 1. A method of etching a sample by causing a photochemical reaction with an etching gas, in which: (1) the sample is placed in a reaction vessel; (2) the interior of the reaction vessel is replaced with an etching gas; (3) exhaust and remove the etching gas in the gas phase in the reaction vessel; (4) irradiate the sample surface with light to react with the adsorbed etching gas and generate volatile reaction products. (5) repeating the steps (2) to (3) above to etch a predetermined amount. 2. In order to dry-etch the sample by photochemical reaction, in an apparatus consisting of a reaction vessel, an excitation light source, a reaction gas supply system, and an exhaust system, after placing the sample in the reaction vessel, [1] introducing the reaction gas; [2] ] Exhaust of a reaction gas; [3] A photo-excited dry etching apparatus characterized by having a sequence of repeating light irradiation onto a sample surface a predetermined number of times. 3. Claim 2 provides a sequence in which, after a sample is placed in a reaction vessel, while the interior of the reaction vessel is evacuated, pulsed injection supply of reaction gas and pulsed irradiation of excitation light to the sample surface are alternately repeated. A photoexcited dry etching apparatus comprising:
JP13979887A 1987-06-05 1987-06-05 Photo-excitated dry etching and equipment therefor Pending JPS63304631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13979887A JPS63304631A (en) 1987-06-05 1987-06-05 Photo-excitated dry etching and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13979887A JPS63304631A (en) 1987-06-05 1987-06-05 Photo-excitated dry etching and equipment therefor

Publications (1)

Publication Number Publication Date
JPS63304631A true JPS63304631A (en) 1988-12-12

Family

ID=15253676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13979887A Pending JPS63304631A (en) 1987-06-05 1987-06-05 Photo-excitated dry etching and equipment therefor

Country Status (1)

Country Link
JP (1) JPS63304631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472722A (en) * 1990-07-13 1992-03-06 Nec Corp Electron beam excited dryetching process
JPH0484429A (en) * 1990-07-27 1992-03-17 Nec Corp Electron beam excitation dry etching and its device
US5318662A (en) * 1989-12-20 1994-06-07 Texas Instruments Incorporated Copper etch process using halides
WO2019035258A1 (en) * 2017-08-14 2019-02-21 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318662A (en) * 1989-12-20 1994-06-07 Texas Instruments Incorporated Copper etch process using halides
JPH0472722A (en) * 1990-07-13 1992-03-06 Nec Corp Electron beam excited dryetching process
JPH0484429A (en) * 1990-07-27 1992-03-17 Nec Corp Electron beam excitation dry etching and its device
WO2019035258A1 (en) * 2017-08-14 2019-02-21 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program
CN110832621A (en) * 2017-08-14 2020-02-21 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and program
JPWO2019035258A1 (en) * 2017-08-14 2020-03-26 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program
US11581200B2 (en) 2017-08-14 2023-02-14 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN110832621B (en) * 2017-08-14 2024-04-09 株式会社国际电气 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium

Similar Documents

Publication Publication Date Title
US4643799A (en) Method of dry etching
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
JPS61174639A (en) Method of photo etching
JPS61278146A (en) Optical treatment method
JPS63304631A (en) Photo-excitated dry etching and equipment therefor
US5741431A (en) Laser assisted cryoetching
JP3184988B2 (en) Crystal plane anisotropic dry etching method
JPH0831441B2 (en) Surface treatment method
JPH0779100B2 (en) Ashing method
JPS61177729A (en) Optically excited dry etching method
JPH0437129A (en) Etching and device thereof
JPH03131024A (en) Semiconductor etching
JPS6320833A (en) Ashing apparatus
JPS6197912A (en) Cvd equipment
JPS61150339A (en) Method for dry etching
JPS60165725A (en) Dry etching method
JPS60165723A (en) Forming method for fine pattern
JPH01278023A (en) Method and device for dry etching
KR100427998B1 (en) Method of removing photoresist pattern in the fabrication of integrated circuit using piezo-electric wafer
JPH0484429A (en) Electron beam excitation dry etching and its device
JPS6129129A (en) Dry etching method
JPH0388328A (en) Resist ashing method
JPS63260135A (en) Photo-excitation etching
JPS61161722A (en) Photoexcitation etching method and etching apparatus
JP4291193B2 (en) Optical processing apparatus and processing apparatus