JPS63304231A - Acoustooptic switch - Google Patents

Acoustooptic switch

Info

Publication number
JPS63304231A
JPS63304231A JP13895087A JP13895087A JPS63304231A JP S63304231 A JPS63304231 A JP S63304231A JP 13895087 A JP13895087 A JP 13895087A JP 13895087 A JP13895087 A JP 13895087A JP S63304231 A JPS63304231 A JP S63304231A
Authority
JP
Japan
Prior art keywords
acousto
light
fiber
optic
optic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13895087A
Other languages
Japanese (ja)
Inventor
Masayuki Fujita
藤田 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13895087A priority Critical patent/JPS63304231A/en
Publication of JPS63304231A publication Critical patent/JPS63304231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate preshooting and overshooting in the waveform of the diffracted light to be emitted by setting an acoustooptic element in such a manner that the once diffracted light in the element is diffracted to the transducer side of the acoustooptic element and guiding the twice diffracted light to a 3rd fiber. CONSTITUTION:The 1st fiber 10 and 2nd fiber 20 are coupled with good optical efficiency via a near parabolic rod lens 41 which is a 1st lens and a near parabolic rod lens 42 which is a 2nd lens. The acoustooptic element 50 formed by using As2Se3 is provided on the optical axis between the near parabolic rod lenses 41 and 42. The light which is emitted from the 2nd fiber 20 and is diffracted twice by the acoustooptic element 50 is changed in the optical path by a prism 70 and is entered via a near parabolic rod lens 43 which is a 3rd lens to the 3rd fiber 30. The preshooting and overshooting in the waveform of the diffracted light are eliminated without depending on the input power of the driving electricity into the acoustooptic element by diffracting the light twice in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光・譬ルス試験器等に適した音響光学スイッチ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an acousto-optic switch suitable for optical/lux testers and the like.

〔従来の技術〕[Conventional technology]

光フアイバ通信技術の進歩は著しいものがあり。 There has been remarkable progress in optical fiber communication technology.

多くの光フアイバ通信システムが実用に供されている。Many optical fiber communication systems are in use.

これらの光フアイバ通信の伝送品質を維持していくため
に9種々の測定器が用いられているが、特に光ケーブル
の破断点や不連続点などを標定する障害点探策、光の伝
搬損失、接続点状態などを測定する光/?ルス試験器は
重要な測定器である。この種の光ノ9ルス試験器は、/
4ルス発生器によシ駆動された半導体レーデからの光パ
ルスを。
Nine different measuring instruments are used to maintain the transmission quality of these optical fiber communications, but they are particularly useful for detecting failure points to locate breaks and discontinuities in optical cables, optical propagation loss, Light to measure connection point status etc./? Lux tester is an important measuring instrument. This kind of optical 9 Luss tester is /
4 optical pulses from a semiconductor radar driven by a pulse generator.

光方向性結合器を介して、被測定光ファイバに入射させ
、光フアイバ内で生じた後方散乱光または。
The backscattered light or light generated within the optical fiber is incident on the optical fiber to be measured through the optical directional coupler.

光フアイバ端面で生じたフレネル反射光を、再び光方向
性結合器を介して、検出器に入射させて。
The Fresnel reflected light generated at the end face of the optical fiber is made incident on the detector via the optical directional coupler again.

電気パルスに変換する方式を用いていた。It used a method of converting it into electrical pulses.

しかし、この方式は特に被測定ファイバが単一モードの
場合、後方散乱光のレベルが小さく、フレネル反射光レ
ベルとの差が大きくなシ、ダイナミックレンジが低下す
るため、不観測領域が広がって分解能が悪化するという
問題点を有していた。
However, with this method, especially when the fiber under test is single mode, the level of backscattered light is small and the difference between it and the Fresnel reflected light level is large, and the dynamic range is reduced, which increases the unobservable region and reduces the resolution. The problem was that it worsened.

また、光源から光ファイバへの入射光と後方散乱光を分
離するために低損失で低漏話の光方向性結合器が必要と
なる問題点も有していた。
Another problem is that an optical directional coupler with low loss and low crosstalk is required to separate the light incident on the optical fiber from the light source and the backscattered light.

上記問題点を解決するため、光方向性結合器の代わシに
、音響光学スイッチを用いる方式が開発されている。こ
の場合、光スィッチによシフレネル反射をマスクするこ
とができるので、不観測領域が改善できることになる。
In order to solve the above problems, a system using an acousto-optic switch instead of an optical directional coupler has been developed. In this case, since the Schiffresnel reflection can be masked by the optical switch, the unobserved area can be improved.

従来のこの種の音響光学スイッチとしては、第2図に示
すようにs PbMo0aやToo□等の音響光学素子
50を挾んで対向する単一モードの第1及び第2の光フ
ァイバ(以下ファイバと略す)10゜20をそれぞれ第
1及び第2の集束性ロッドレンズ41.42によシ平行
ビーム系によって結合させ、音響光学素子50を動作さ
せることにより。
As shown in FIG. 2, a conventional acousto-optic switch of this type consists of single-mode first and second optical fibers (hereinafter referred to as fibers) that face each other with an acousto-optic element 50 such as sPbMo0a or Too□ in between. (abbreviated)) are coupled by a parallel beam system to the first and second focusing rod lenses 41 and 42, respectively, and the acousto-optic element 50 is operated.

第2のファイバ20からの入射光を1回回折させ。The incident light from the second fiber 20 is diffracted once.

第3のレンズ43を介して第3の集束型多モードファイ
バ30に光路を切替える構成となっていた(金山他、ナ
ショナル テクニカル レポート29巻第6号 100
頁(National Technieal Repo
rt。
The optical path was switched to the third focusing multimode fiber 30 via the third lens 43 (Kanayama et al., National Technical Report Vol. 29, No. 6, 100).
Page (National Technical Repo
rt.

Vol−29,46P−100) 、 1983年12
月参照) 〔発明が解決しようとする問題点〕 一般に、音響光学変調器に用いられる音響光学材料は第
3図に示すよう入射光の偏光方向によシその音響光学的
性能指数が異なるため、直交2偏光光に対する回折効率
が異なる。第3図は入射電力と回折効率との間の関係を
示す図で、(a)は超音波の進行方向の偏光、(b)は
進行方向と垂直方向の偏光である。このため音響光学変
調器の高周波入力電力に対する直交2偏光光の回折効率
曲線の交点Pに動作点を設定する必要がある。
Vol-29, 46P-100), December 1983
[Problems to be Solved by the Invention] In general, acousto-optic materials used in acousto-optic modulators have different acousto-optic figures of merit depending on the polarization direction of incident light, as shown in Figure 3. The diffraction efficiency for two orthogonal polarized lights is different. FIG. 3 is a diagram showing the relationship between incident power and diffraction efficiency, in which (a) shows polarized light in the direction of propagation of the ultrasonic wave, and (b) shows polarized light in a direction perpendicular to the direction of propagation. Therefore, it is necessary to set the operating point at the intersection point P of the diffraction efficiency curve of orthogonally bipolarized light with respect to the high-frequency input power of the acousto-optic modulator.

この場合1片方の偏光光に対しては高周波入力電力は最
大回折効率を与える電力値よシも大きいため第4図a)
yb)K示すように一度S1で回折した光P1..P1
bの一部が82で透過光の伝搬方向に向って再びpta
/ l Plb’に示すよう回折される。この2回回折
の光線幾何学的中心は、トランスデューサからの距離が
異なるため、トランスデ為−サから発生した超音波が各
回折中心に到達する時間は2片方が短かく、他方は長い
。従って前述した音響光学スイッチは音響光学素子内で
の1回回折光を用いるため、ノ母ルス駆動した場合第4
図C)。
In this case, for one polarized light, the high-frequency input power is larger than the power value that gives the maximum diffraction efficiency, so Figure 4a)
yb) As shown in K, the light P1. which has been once diffracted by S1. .. P1
A part of b becomes pta again at 82 toward the propagation direction of the transmitted light.
/ l Plb' is diffracted. Since the geometrical centers of the two diffraction beams are at different distances from the transducer, the time it takes for the ultrasonic waves generated from the transducer to reach each diffraction center is shorter for one and longer for the other. Therefore, since the acousto-optic switch described above uses the one-time diffracted light within the acousto-optic element, the fourth
Figure C).

d)に示すように回折光波形に立上シ時のオーバーシー
ートまたは立下シ時のプレシェードが発生するという欠
点がある。
As shown in d), the diffracted light waveform has the disadvantage that oversheeting occurs at the rising edge or pre-shading occurs at the falling edge.

即ち、第4図a)の場合には、音響光学素子の駆動開始
時は、まず1回目の回折中心S1がオン罠なって回折光
パワーが増加し、続いて2回目の回折中心S2がオンと
なり # Slに於ける回折光パワーのうちSlに於け
る回折光パワーP1.′が失なわれる。
That is, in the case of FIG. 4a), when the acousto-optic element starts to be driven, the first diffraction center S1 turns on and the power of the diffracted light increases, and then the second diffraction center S2 turns on. # The diffracted light power at Sl among the diffracted light powers at Sl is P1. ' is lost.

従って音響光学素子から出射する回折光p1.の波形は
第4図C)の様に立上シ時にP18′のオーバシ二一ト
が発生する。但し、音響光学素子の駆動終了時はSlが
82よシ先にオフになるためPl、の波形瓦れが無い。
Therefore, the diffracted light p1. emitted from the acousto-optic element. As shown in FIG. 4C, the waveform of P18' is over-done at startup. However, when the drive of the acousto-optic element ends, Sl is turned off before 82, so there is no waveform distortion of Pl.

これに対し第4図b)の場合には、音響光学素子の駆動
開始時は1回目の回折中心S1がオンになって2回折光
が2回目の回折中心S2に到達するときには、 82は
すでにオンになっているため、音響光学素子から出射す
る回折光P1bの波形瓦れは無いが、駆動終了時はSl
が81より先にオフになるため、2回回折によって失な
われていた回折光ijクワ−1b′がPlbに重なりP
lbの立下シ波形にP1b’のプレシェードが発生する
という問題点がある。
On the other hand, in the case of FIG. 4 b), when the acousto-optic element starts to be driven, the first diffraction center S1 is turned on, and by the time the second diffraction light reaches the second diffraction center S2, 82 has already been turned on. Since it is turned on, there is no waveform distortion of the diffracted light P1b emitted from the acousto-optic element, but at the end of driving, Sl
Since 81 turns off before 81, the diffracted light ij 1b', which was lost due to the second diffraction, overlaps Plb and becomes P
There is a problem in that a pre-shade of P1b' occurs in the falling waveform of lb.

本発明は従来のもののこのような問題点を解決しようと
するもので、出射する回折光の波形にゾレジーート及ヒ
オーパシーートのない音響光学スイッチを提供するもの
である。
The present invention aims to solve these problems of the conventional switch, and provides an acousto-optic switch in which the waveform of emitted diffracted light is free of solezite and hypersheet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によると対向して配置された第1及び第2のファ
イバと、該第1及び第2のファイバを光学的に結合する
第1及び第2のレンズと、該第1及び第2のレンズ間に
設けられた1個又は2個の音響光学素子と、前記第2の
7アイパから入射して前記音響光学素子内で偏向した光
ビームを受ける第3のレンズ及び第3のファイバと、前
記音響光学素子を動作させるための駆動回路とを含んで
構成され、前記第2のファイバから第1のファイバへの
光路を第2のファイバから第3のファイバへの光路に切
替える音響光学スイッチに於て、前記第2のファイバか
ら入射する光の入射角を前記音響光学素子内での1回回
折光が前記音響光学素子のトランスデューサ側へ回折さ
れるよう設定し前記音響光学素子内で2回回折させた光
を前記第3のファイバへ導くことを特徴とする音響光学
スイッチが得られる。
According to the present invention, first and second fibers are arranged to face each other, first and second lenses optically couple the first and second fibers, and first and second lenses. one or two acousto-optic elements provided between, a third lens and a third fiber that receive a light beam incident from the second seven-eyeper and deflected within the acousto-optic element; an acousto-optic switch configured to include a drive circuit for operating an acousto-optic element, and for switching an optical path from the second fiber to the first fiber to an optical path from the second fiber to the third fiber; The incident angle of the light incident from the second fiber is set so that the light diffracted once within the acousto-optic element is diffracted to the transducer side of the acousto-optic element, and the light is diffracted twice within the acousto-optic element. An acousto-optic switch is obtained, which is characterized in that the light is guided to the third fiber.

〔実施例〕〔Example〕

以下1本発明について図面を参照して説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例を示す平面図である。FIG. 1 is a plan view showing one embodiment of the present invention.

第1のファイバ10と第2のファイバ20は第1のレン
ズである集束性ロッドレンズ41と第2のレンズである
集束性ロッドレンズ42を介して光学的に効率良く結合
されている。集束性ロッドレンズ41.42間の光軸上
には、 As□S e sを用いた音響光学素子50が
設けられている。また、第2のファイバ20から出射し
音響光学素子50で2回回折した光は、プリズム70で
光路が変えられ第3のレンズである集束性ロッドレンズ
43を介して第3のファイバ30に入射する。
The first fiber 10 and the second fiber 20 are optically efficiently coupled via a focusing rod lens 41 that is a first lens and a focusing rod lens 42 that is a second lens. On the optical axis between the focusing rod lenses 41 and 42, an acousto-optic element 50 using As□Se s is provided. Further, the light emitted from the second fiber 20 and diffracted twice by the acousto-optic element 50 has its optical path changed by the prism 70 and enters the third fiber 30 via the converging rod lens 43 which is the third lens. do.

今、第5図に示すように第2のファイバ20から前記音
響光学素子50に入射する光の入射角を前記音響光学素
子内での1回回折光が前記音響光学素子のトランスデュ
ーサ側へ回折されるように設定すると、2回回折光の回
折中心S2は1回回折中心S1よりもトランスデ−サ側
に寄っているため、前記音響光学素子50の駆動開始時
は1回目の回折が起こる時点ですでに2回目の回折中心
S2位置での超音波が定常状態にあり、第3のファイバ
への入射光波形のオーバシェードは発生しない。
Now, as shown in FIG. 5, the incident angle of the light incident on the acousto-optic element 50 from the second fiber 20 is such that the one-time diffracted light within the acousto-optic element is diffracted toward the transducer side of the acousto-optic element. Since the diffraction center S2 of the second diffraction light is closer to the transducer than the first diffraction center S1, the first time the acousto-optic element 50 starts to be driven is the point at which the first diffraction occurs. The ultrasonic wave at the second diffraction center S2 position is already in a steady state, and overshading of the waveform of the light incident on the third fiber does not occur.

即ち第4図d)の立上シ波形と同等となる。一方。That is, it becomes equivalent to the rising waveform of FIG. 4d). on the other hand.

前記音響光学素子の駆動終了時は、2回目の回折S2が
1回目の回折S1よシも先に終了するため。
This is because the second diffraction S2 ends before the first diffraction S1 when the driving of the acousto-optic element ends.

第3のファイバへの入射光波形は立下シ時の!レシーー
トが無い。即ち第4図C)の立下シ波形と同等となる。
The waveform of the light incident on the third fiber is at the falling edge! I don't have a receipt. In other words, it is equivalent to the falling waveform of FIG. 4C).

この現象は、2つの回折中心の空間的位置の違いに依る
ものであシ、前記音響光学素子への駆動・4ワーに依存
しない。従って、前記音響光学素子の回折効率が第2の
ファイバから入射する光の偏光方向に依存しないように
駆動パワーを設定しても1回折光波形のオーバシェード
、プレシュートは発生しない。また、1回目の回折が起
ってから2回目の回折が起こるまでに必要な音響光学素
子内での光と超音波の相互作用距離は音響光学素子の駆
動パワーに依存するため、駆動ノ9ワーによって透過光
と2回回折光との距離を変えることができる。従って回
折効率の偏光依存性の無い音響光学材料を用いるか1回
折効率の偏向依存性を考慮する必要の無い場合には、第
1のファイバ及び第1のレンズの光軸と第3のファイバ
及び第3のレンズの光軸との距離精度を緩和することが
できる。
This phenomenon is due to the difference in the spatial positions of the two diffraction centers and is not dependent on the drive force applied to the acousto-optic element. Therefore, even if the driving power is set so that the diffraction efficiency of the acousto-optic element does not depend on the polarization direction of the light incident from the second fiber, overshading and preshoot of the first diffracted light waveform will not occur. In addition, since the interaction distance between light and ultrasound within the acousto-optic element required from the first diffraction to the second diffraction depends on the driving power of the acousto-optic element, the driving The distance between the transmitted light and the twice-diffracted light can be changed by adjusting the power. Therefore, if an acousto-optic material with no polarization dependence of diffraction efficiency is used or if there is no need to consider the polarization dependence of diffraction efficiency, the optical axis of the first fiber and first lens and the third fiber and The accuracy of the distance between the third lens and the optical axis can be relaxed.

第1図の実施例において駆動回路9oの高周波出力電力
を0.4W、周波数を300 MHz 、音響光学素子
50のトランスデューサ長を30gとしたとき、透過光
と2回回折光の分離距離は1.3 mmである。本実施
例でのファイバ1oから20への挿入損失は1.2 d
B 、ファイバ20から30への挿入損失は3.5dB
、;yアイパ20から30への挿入損失の偏光依存度は
0.04 dB 、/4ルス駆動時のファイバ30から
の光出力波形のオーバシュート、7゜レシーートは共に
〜OdBであった。これに対し。
In the embodiment of FIG. 1, when the high-frequency output power of the drive circuit 9o is 0.4 W, the frequency is 300 MHz, and the transducer length of the acousto-optic element 50 is 30 g, the separation distance between the transmitted light and the second diffracted light is 1. It is 3 mm. In this example, the insertion loss from fiber 1o to fiber 20 is 1.2 d
B, insertion loss from fiber 20 to 30 is 3.5 dB
The polarization dependence of the insertion loss from the y eyeers 20 to 30 was 0.04 dB, and the overshoot and 7° receipt of the optical output waveform from the fiber 30 during /4 Luss driving were both ~OdB. Against this.

1回回折による回折光出力波形のプレシュートは〜0.
1dBである。
The preshoot of the diffracted light output waveform due to one-time diffraction is ~0.
It is 1 dB.

本実施例では、1個の音響光学素子内で2回回折を行わ
せたが、2個の音響光学素子を用いて1回ずつ回折を行
っても、同様の波形異常低減効果を得ることができる。
In this example, diffraction was performed twice within one acousto-optic element, but it is also possible to obtain the same waveform abnormality reduction effect even if diffraction is performed once using two acousto-optic elements. can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明による音響光学スイッチは
、音響光学素子内で回折を2回行わせることによシ、音
響光学素子内への駆動電気入力・ぐワーに依らず1回折
光波形のプレシーート及びオーハシーートを解消するこ
とができる。従っテ音響光学素子の入射光の偏光方向に
よる音響光学的性能指数の違いによる回折効率の偏光依
存性を補償するように駆動電力パワーを設定しても回折
光波形異常が発生しない。また2回折効率の偏光依存性
を考慮しなくても良い場合には、駆動電力パワーによシ
透過光と回折光との距離を調整し得るため、光入出力フ
ァイバの位置精度を緩和でき。
As explained above, the acousto-optic switch according to the present invention allows the diffraction to occur twice within the acousto-optic element, so that the waveform of the diffracted light can be changed once without depending on the drive electric input or the It is possible to eliminate pre-sheets and over-sheets. Therefore, even if the driving power is set to compensate for the polarization dependence of the diffraction efficiency due to the difference in the acousto-optic figure of merit depending on the polarization direction of the incident light on the acousto-optic element, an abnormality in the waveform of the diffracted light does not occur. Furthermore, if the polarization dependence of the two-diffraction efficiency does not need to be taken into account, the distance between the transmitted light and the diffracted light can be adjusted depending on the driving power, so the positional accuracy of the optical input/output fiber can be relaxed.

光学系を保持する部品の機構精度及びレンズの光軸調整
精度が緩和されるという効果もある。
This also has the effect of reducing the mechanical accuracy of the parts that hold the optical system and the optical axis adjustment accuracy of the lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の音響光学スイッチの一実施例の構成を
示す平面図、第2図は従来の音響光学スイッチの構成を
示す平面図、第3図は音響光学スイッチ内部に用いられ
る音響光学素子の特性曲線図、第4図は従来の音響光学
スイッチの光出力波形瓦れの原理を示す原理説明図、第
5図は本発明の音響光学スイッチの動作原理を示す原理
説明図である。 10.20,30・・・ファイバ、41,42゜43・
・・集束性ロッドレンズ、50・・・音響光学素子。 60・・・マツチング回路、70・・・プリズム、90
・・・駆動回路。 第1図 集束性ロッドレンズ43 第2図 50音響光学素子 第3図 P。 入射電力 第5図 (G)
FIG. 1 is a plan view showing the configuration of an embodiment of the acousto-optic switch of the present invention, FIG. 2 is a plan view showing the configuration of a conventional acousto-optic switch, and FIG. 3 is an acousto-optic switch used inside the acousto-optic switch. A characteristic curve diagram of the element, FIG. 4 is a principle explanatory diagram showing the principle of optical output waveform distortion of a conventional acousto-optic switch, and FIG. 5 is a principle explanatory diagram showing the operating principle of the acousto-optic switch of the present invention. 10.20,30...Fiber, 41,42°43.
... Focusing rod lens, 50... Acousto-optic element. 60... Matching circuit, 70... Prism, 90
...Drive circuit. Fig. 1 Focusing rod lens 43 Fig. 2 50 Acousto-optic element Fig. 3 P. Incident power Figure 5 (G)

Claims (1)

【特許請求の範囲】[Claims] 1、対向して配置された第1及び第2の光ファイバと、
該第1及び第2の光ファイバを光学的に結合する第1及
び第2のレンズと、該第1及び第2のレンズ間に設けら
れた音響光学素子と、前記第2の光ファイバから入射し
て前記音響光学素子内で偏向した光ビームを受ける第3
のレンズ及び第3の光ファイバと、前記音響光学素子を
動作させるための駆動回路とを含んで構成され、前記第
2の光ファイバから第1の光ファイバへの光路を第2の
光ファイバから第3の光ファイバへの光路に切替える音
響光学スイッチに於て、前記第2の光ファイバから入射
する光の入射角を前記音響光学素子内での1回回折光が
前記音響光学素子のトランスデューサ側へ回折させるよ
う設定し前記音響光学素子内で2回回折させた光を前記
第3の光ファイバへ導くことを特徴とする音響光学スイ
ッチ。
1. first and second optical fibers arranged oppositely;
first and second lenses that optically couple the first and second optical fibers; an acousto-optic element provided between the first and second lenses; a third light beam which is deflected within the acousto-optic element;
a lens, a third optical fiber, and a drive circuit for operating the acousto-optic element, and the optical path from the second optical fiber to the first optical fiber is connected from the second optical fiber to the first optical fiber. In an acousto-optic switch that switches the optical path to a third optical fiber, the incident angle of the light incident from the second optical fiber is changed so that the one-time diffracted light within the acousto-optic element is on the transducer side of the acousto-optic element. An acousto-optic switch characterized in that the light is set to be diffracted twice within the acousto-optic element and guided to the third optical fiber.
JP13895087A 1987-06-04 1987-06-04 Acoustooptic switch Pending JPS63304231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13895087A JPS63304231A (en) 1987-06-04 1987-06-04 Acoustooptic switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13895087A JPS63304231A (en) 1987-06-04 1987-06-04 Acoustooptic switch

Publications (1)

Publication Number Publication Date
JPS63304231A true JPS63304231A (en) 1988-12-12

Family

ID=15233945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13895087A Pending JPS63304231A (en) 1987-06-04 1987-06-04 Acoustooptic switch

Country Status (1)

Country Link
JP (1) JPS63304231A (en)

Similar Documents

Publication Publication Date Title
CN111007483B (en) Laser radar based on silicon optical chip
US6539132B2 (en) Acousto-optical switch for fiber optic lines
US4995693A (en) Multi-position opto-electronic switch
JPS58132731A (en) Binary luminous flux deflector
JPS63304231A (en) Acoustooptic switch
JP2538569B2 (en) Acousto-optic switch
JPS63307434A (en) Acoustooptic switch
JP2002287044A (en) Optical path switching device
US4704031A (en) Rotation rate measuring device
JPS63115143A (en) Acoustooptic switch
JPS63313030A (en) Optical fiber testing device
CN116908814B (en) Laser radar and mobile device
GB2181539A (en) Fibre optic scanning system
CN212918054U (en) Marking device and laser marking machine
SU667940A1 (en) Acoustooptic filter
JPS62246017A (en) Acoustooptic switch
JPS63115144A (en) Acoustooptic switch
JPS63161434A (en) Acoustooptic optical switch
JPS6282338A (en) Optical fiber testing device
JPH0533736B2 (en)
JPS63144328A (en) Acoustooptic switch
JP2511265B2 (en) Optical transmission equipment test circuit
JPH0240631A (en) Acoustooptic switch
JPH02251937A (en) Acoustooptic switch
JPH1062827A (en) Acousto-optic switch