JPS63304174A - Zero-phase current detecting method - Google Patents

Zero-phase current detecting method

Info

Publication number
JPS63304174A
JPS63304174A JP62140450A JP14045087A JPS63304174A JP S63304174 A JPS63304174 A JP S63304174A JP 62140450 A JP62140450 A JP 62140450A JP 14045087 A JP14045087 A JP 14045087A JP S63304174 A JPS63304174 A JP S63304174A
Authority
JP
Japan
Prior art keywords
zero
current
sequence
phase
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140450A
Other languages
Japanese (ja)
Inventor
Atsushi Nishidai
西台 惇
Taketo Saito
斎藤 建人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62140450A priority Critical patent/JPS63304174A/en
Publication of JPS63304174A publication Critical patent/JPS63304174A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a zero-phase current without being influenced by a zero- phase residual current, by obtaining the third zero-phase current by subtracting from the first zero-phase current of a zero-phase current transformer, the second zero-phase current which is delayed by a prescribed time from the first zero- phase current. CONSTITUTION:A zero-phase current 3i0 detected by a current transformer flows into a resistance R1 from an input terminal 10, and converted to a voltage Vi0. The input voltage Vi0 inputted to an amplifier 12 is multiplied by R5/R4 and outputted, and it is supplied to a CCD1 13, and brought to sampling successively. As for outputs of the CCD1 13, one of them is provided directly to a positive input terminal of a subtracter 15, and the other is delayed by a prescribed time through a CCD2 14, and thereafter, provided to a negative input terminal of the subtracter 15, in which a difference of the output of the CCD1 13 and the output of the CCD2 14 is calculated. Unless there is a variation in the zero-phase current 3i0, an output of the subtracter 15 is '0'. If a sudden variation is generated in the zero-phase current 3i0, a variation portion of an output current of the CCD1 13 appears in the output of the subtracter 15 within a prescribed time.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、交流電路の零相電流を検出するものに関し
、詳しくは定常状態で存在する交流電路の零相回路の不
平衡によって生ずる零相残留電流や、変流器の特性差に
よって生ずる零相残留1互流の影響を排除した零相m流
を検出しようとするものに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to detecting zero-sequence current in an AC line, and more specifically, detects zero-sequence current caused by unbalance in a zero-sequence circuit of an AC line that exists in a steady state. This invention relates to detecting a zero-phase m current that eliminates the effects of residual current and zero-phase residual one-current mutual current caused by differences in characteristics of current transformers.

〈従来の技術〉 たとえば三相交流電路においては、電路の地絡事故など
のときに発生する零相電流を、従来より第3図(イ)、
(ロ)の方法により検出していた。すなわち同図(その
場合は同一定格の6個の変流器(以下CTという) (
52)を用いて、各CT (52)の2次(あるいは6
次)コイルをそれぞれ並列に接続し、図において、各C
T(52)の2次電流をそれぞれja、 ib。
<Prior art> For example, in a three-phase AC line, the zero-sequence current that occurs in the event of a ground fault in the line has been conventionally measured as shown in Figure 3 (a).
It was detected using method (b). In other words, the same figure (in that case, six current transformers (hereinafter referred to as CT) with the same rating) (
52), the quadratic (or 6
Next) Connect the coils in parallel, and in the figure, each C
The secondary currents of T(52) are ja and ib, respectively.

lcとすれば is + ib +ic = 3 i。If it is lc is + ib + ic = 3 i.

として零相電流を検出しようとするものである。The aim is to detect the zero-sequence current.

この原理は、三相電路(51)が正常に運用されている
ときは3io=Oであるが電路のたとえばa相に地絡事
故が発生したとすると、a相のCT2次電流jaはi嘔
(= ia 十ia )に変化し、3 jo = i’
a + ib + lc = leとして零相電流が得
られることに基いたものである。なお54はたとえば電
流計などによる三相各相電流計測装置を示す。
This principle states that when the three-phase electric circuit (51) is operating normally, 3io=O, but if a ground fault occurs in the a-phase of the electric circuit, for example, the CT secondary current ja of the a-phase becomes (= ia 1 ia ), 3 jo = i'
This is based on the fact that a zero-sequence current can be obtained as a + ib + lc = le. Note that 54 indicates a three-phase current measuring device using, for example, an ammeter.

また同図(ロ)の場合は1個の環状鉄心(66)に2次
コイル(64)をトロイダル状に形成したいわゆる零相
変流器と称するCT (62)に三相電路(51)の6
本の導体(61)を貫通させたもので、三相電路の各相
電流をIa、 Ib、 Icとすると、これらによって
生ずる磁束を鉄心(63)内で合成し、結果的にN:2
次コイルの巻数 として零相電流3ioを得ようとするものであるが、原
理的には前述(イ)の場合と略同−である。
In addition, in the case of the same figure (b), a three-phase electric line (51) is connected to a so-called zero-phase current transformer (CT (62)) in which a secondary coil (64) is formed in a toroidal shape around one annular core (66). 6
If the currents of each phase of the three-phase circuit are Ia, Ib, and Ic, the magnetic fluxes generated by these are combined in the iron core (63), and as a result, N:2
The aim is to obtain a zero-phase current of 3io as the number of turns of the next coil, but the principle is almost the same as the case (a) above.

〈発明が解決しようとする問題点〉 上記従来の方法のうち第3図(イ)の方法は、標準的な
CTを6個用いて、これらの2次(あるいは6次)コイ
ルを並列に接続するだけの簡単な方法によって零相電流
を得ることができる。しかし、CTの比誤差(5)や位
相誤差(のはたとえば第7図のようにCTの1次電流の
大きさによって変化する。このため三相電路に零相1流
が発生していない場合でも各相の電流値に差があるとき
三相各相のCTの比誤差および位相誤差が同一でなく、
シたがって各瞬時値の総和が零にならないことに起因し
て零相残留電流を生ずるほか、三相各CT間に特性(比
誤差および位相誤差)のバラツキが存在する場合は、こ
れに起因する零相残留電流も生じ、しかもこれらの零相
残留電流は三相各相の通′r!Lm流(CTの1次電流
)の値の増減に伴なって増減するといった厄介な問題が
ある。
<Problems to be solved by the invention> Among the above conventional methods, the method shown in Figure 3 (a) uses six standard CTs and connects these secondary (or sixth) coils in parallel. Zero-sequence current can be obtained by a simple method. However, the CT's ratio error (5) and phase error (for example, as shown in Figure 7, change depending on the magnitude of the CT's primary current. For this reason, if a zero-phase single current is not generated in a three-phase circuit) However, when there is a difference in the current value of each phase, the ratio error and phase error of CT of each phase are not the same,
Therefore, in addition to producing a zero-sequence residual current due to the fact that the sum of each instantaneous value does not become zero, if there are variations in characteristics (ratio error and phase error) among the three-phase CTs, this may occur. A zero-sequence residual current also occurs, and these zero-sequence residual currents flow through each of the three phases. There is a troublesome problem that the current increases or decreases as the value of the Lm current (the primary current of the CT) increases or decreases.

次に第3図(05に示す零相変流器(62)を用いるも
のについて説明する。この方法では前述のような各CT
の特性のバラツキによる零相残留電流は抑えられるが、
環状鉄心(63) (一般に方向性珪素鋼板を用い巻鉄
心構造となっている)の製作加工時のストレスおよびシ
ョック等による特性の不均一や、三相導体(61)の幾
何学的配置の非対象などの要因により、やはり三相電路
の各相電流値(零相1流は含まない)の増減に伴なって
増減する残留電流゛を生ずるといった問題点がある。
Next, a method using a zero-phase current transformer (62) shown in FIG. 3 (05) will be explained. In this method, each CT
Although the zero-sequence residual current due to variations in the characteristics of is suppressed,
Nonuniformity in characteristics due to stress and shock during manufacturing of the annular core (63) (which generally has a wound core structure using grain-oriented silicon steel plates) and nonuniformity in the geometrical arrangement of the three-phase conductor (61) Depending on the object and other factors, there is still a problem in that a residual current is generated which increases or decreases with the increase or decrease in each phase current value (not including the zero-phase one current) of the three-phase circuit.

また零相変流器は、前述のように一つの鉄心の限られた
窓部分に主回路導体を6本まとめて貫通させているため
主回路導体の絶縁強度を大きくとらねばならず、また屋
外用としては取付場所が限定されるといった問題点もあ
る。さらに、これはCTの特性の問題ではないが、定常
状態における三相電路の零相回路にわずかな不平衡が存
在する場合は、これに起因する零相残留電流を生ずる。
In addition, as mentioned above, zero-phase current transformers have six main circuit conductors all passing through the limited window part of one iron core, so the insulation strength of the main circuit conductors must be high, and There is also the problem that mounting locations are limited for practical use. Furthermore, although this is not a problem with the characteristics of the CT, if there is a slight unbalance in the zero-sequence circuit of the three-phase electric circuit in a steady state, a zero-sequence residual current is generated due to this.

しかも電路の地絡事故による零相電流を検出しようとす
る場合、検出できる最小値は当然これら零相残留電流よ
り大きくなければならず、零相残留電流分だけ零相電流
検出感度が低下するといった問題がある。
Moreover, when trying to detect zero-sequence current due to a ground fault in an electrical circuit, the minimum value that can be detected must naturally be larger than these zero-sequence residual currents, and the zero-sequence current detection sensitivity will decrease by the zero-sequence residual current. There's a problem.

以上は三相電路について説明したが、他の一般の電路(
単相および多相電路)においても同様の問題点を有する
ことは明らかである。
The above explanation was about three-phase electric circuits, but other general electric circuits (
It is clear that similar problems exist in single-phase and polyphase circuits.

〈問題点を解決するための手段〉 この発明は上記事項に鑑みてなされたもので、零相残留
電流の影響が排除された零相電流を検出するものを提供
することにある。
<Means for Solving the Problems> The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a device for detecting zero-sequence current in which the influence of zero-sequence residual current is eliminated.

上記目的のためにこの発明は第1図のような構成をとる
。すなわちCTによって検出された第1の零相電流(3
)(3io)を遅れ要素(1)を通すことによって、第
1の零相電流(3)を一定時間(たとえば零相電流の周
波数の整数倍)遅らせた第2の零相電流(4)を得、前
記第1、第2の零相電流を減算器(2)に入力し、この
減算器(2)で、前記第1の零相電流から前記第2の零
相電流を差し引いた第3の零相電流(5)を得るよう構
成したものである。なお前記第1、第2の零相電流は交
流信号を直接用いてもよく、また単に大きさだけを検出
すればよい場合には、整流して得られた直流信号を用い
てもよい。
For the above purpose, the present invention has a configuration as shown in FIG. That is, the first zero-sequence current (3
)(3io) through the delay element (1) to generate a second zero-sequence current (4) that delays the first zero-sequence current (3) by a certain period of time (for example, an integral multiple of the frequency of the zero-sequence current). The first and second zero-sequence currents are input to a subtracter (2), and the third zero-sequence current is obtained by subtracting the second zero-sequence current from the first zero-sequence current. The configuration is such that a zero-sequence current (5) of . Note that for the first and second zero-sequence currents, alternating current signals may be used directly, or if only the magnitude needs to be detected, a direct current signal obtained by rectification may be used.

く作 用〉 この発明の構成によれば、電路が平常状態のときで、電
路の通tta流が一定不変の場合は零相残留電流も一定
不変である。したがって前記第1および、第2の零相電
流(3)、 (4)は同一値となり、減算器(2)の出
力である第3の零相電流(5)は0(ゼロ)となる。ま
た定常状態での電路の通電電流は必ずしも一定ではなく
時間と共に増減するが、その変化は非常にゆるやかで、
徐々に増減するので、これに伴なって零相残留電流も徐
々に増減する。しかし、ここで遅れ要素(2)の遅れ時
間を電路の通電電流の増減周期より十分短かくがっ地絡
事故時の零相電流の変化時間よりは十分長い時間(たと
えば1〜2秒程度)に設定しておけば、ゆるやかに増減
する零相残留電流に対しては、前記第1および第2の零
相電流(3)、 (4)は略々同一となるため減算器(
2)の出力である第3の零相電流(5)は略々0(ゼロ
)となる。
According to the configuration of the present invention, when the electric circuit is in a normal state and the tta current in the electric circuit is constant and unchanged, the zero-sequence residual current is also constant and unchanged. Therefore, the first and second zero-sequence currents (3) and (4) have the same value, and the third zero-sequence current (5), which is the output of the subtracter (2), becomes 0 (zero). Furthermore, the current flowing through the circuit in a steady state is not necessarily constant, but increases and decreases over time, but the changes are very gradual.
Since it gradually increases and decreases, the zero-sequence residual current also gradually increases and decreases accordingly. However, here, the delay time of delay element (2) is sufficiently shorter than the increase/decrease cycle of the current flowing through the circuit, but is sufficiently longer than the change time of the zero-sequence current at the time of a ground fault (for example, about 1 to 2 seconds). If set to , the subtracter (
The third zero-sequence current (5), which is the output of step 2), becomes approximately 0 (zero).

一方電路に地絡事故が発生するなどして前記第1の零相
電流が急激に変化した場合、前記第2の零相電流は遅れ
要素(2)の遅れ時間の間は、それ以前の状態を維持し
ているため変化なく、シたがって減算器(2)の出力の
第3の零相電流(5)は地絡事故等によって発生した零
相電流となる。
On the other hand, if the first zero-sequence current suddenly changes due to a ground fault occurring in the electrical circuit, the second zero-sequence current will remain in the previous state for the delay time of delay element (2). is maintained, so there is no change, and therefore the third zero-sequence current (5) output from the subtracter (2) becomes a zero-sequence current generated due to a ground fault or the like.

第2図および第3図は本発明の作用を示す図であり、こ
れについて説明すれば、まず第2図において(イ)は、
地絡事故等により事故点に流れる事故電流(a)で常時
の零相残留電流と同位相で発生した場合である。(ロ)
は第1の零相電流(b)で地絡事故等の発生点Aまでは
常時発生している零相残留電流を示し、A点以降は(イ
)の事故電流(a)との合成電流(C)であり、(c)
>(b)となっている。(ハ)は(ロ)の第1の零相電
流(b)を遅れ要素で一定時間Tだけ遅らせた第2の零
相電流(b’)、および合成電流(C′)であり、同図
に)は減算器の出力波形(d)を示したものである。
FIG. 2 and FIG. 3 are diagrams showing the operation of the present invention. To explain this, first of all, (a) in FIG.
This is a case where the fault current (a) flowing to the fault point due to a ground fault or the like occurs in the same phase as the normal zero-sequence residual current. (B)
is the first zero-sequence current (b), which is the zero-sequence residual current that always occurs up to the point A where an earth fault occurs, and after point A, it is the composite current with the fault current (a) in (a). (C) and (c)
>(b). (c) is the second zero-sequence current (b') obtained by delaying the first zero-sequence current (b) in (b) by a certain time T using a delay element, and the composite current (C'); (a) shows the output waveform (d) of the subtracter.

このように減算器の出力波形(cl)は遅れ要素の遅れ
時間Tの間だけ現れ、かつ、事故電流(a)に等しい。
In this way, the output waveform (cl) of the subtracter appears only during the delay time T of the delay element, and is equal to the fault current (a).

ところで零相残留電流が、前述(考案が解決しようとす
る問題点の項)の原因により発生するので、零相残留電
流(′b)と事故電流(a)の位相関係は、各CTの組
合せや、零相変流器側々に対して一定ではなく、まった
く不定である。したがって事故電流(a)と零相残留電
流(b)との関係が第3図のように逆位相となり、その
結果合成電流(C)が零相残留電流(b)より小さくな
る場合があるが、本発明によれば第3図に)に示すよう
に、遅れ要素の遅れ時間Tの間は事故電流(a)と同じ
信号が得られるといった作用を呈する。
By the way, since the zero-sequence residual current is generated due to the cause mentioned above (the problem that the invention aims to solve), the phase relationship between the zero-sequence residual current ('b) and the fault current (a) is determined by the combination of each CT. In addition, it is not constant for each side of the zero-phase current transformer, and is completely indeterminate. Therefore, the relationship between the fault current (a) and the zero-sequence residual current (b) will be in opposite phase as shown in Figure 3, and as a result, the composite current (C) may become smaller than the zero-sequence residual current (b). According to the present invention, as shown in FIG. 3), the same signal as the fault current (a) is obtained during the delay time T of the delay element.

〈実施例〉 本発明の一実施例を第3図、第4図により説明する。第
4図は遅れ要素に電荷転送デバイス(以下CCDという
)を使用した場合の回路を示したものであり、以下この
回路の動作を説明する。変流器によって検出された零相
電流3ioは入力端子αGから抵抗R1に流入し、ここ
で3ioに比例した電圧Vioに変換される。
<Example> An example of the present invention will be described with reference to FIGS. 3 and 4. FIG. 4 shows a circuit in which a charge transfer device (hereinafter referred to as CCD) is used as a delay element, and the operation of this circuit will be explained below. The zero-sequence current 3io detected by the current transformer flows into the resistor R1 from the input terminal αG, where it is converted into a voltage Vio proportional to 3io.

入力電圧Vioは直流阻止コンデンサo1)を介してバ
イアス抵抗R2,R3の接続点に供給され、直流信号と
して、入力抵抗R4を介して増幅器0の正入力端子(ト
)に入力される。−力負入力端子←)はアースE(ゼロ
ボルト)に接続されている。R5はフィードバック抵抗
で、入力抵抗R4とともにこの増幅器0つの増幅率を決
定するものである。なお+VCC,−Vccは、アース
Eをゼロボルトとする直流!源で、回路の動作電源であ
る。増幅器(2)に入力された入力電圧VioはR54
゜(増幅器@の増幅率)倍されて出力され、これをCC
D1Q3に供給し、ここで端子2Dに与えられるクロッ
クパルスによって順次サンプリングし、出力する。CC
D+(13は第5図(イ)に示すような一種のサンプル
ホールド回路で、1つのクロックパルスで入力電圧(V
io)をサンプリング記憶し次のクロックパルスで曲回
のサンプリング値を出力するとともに新たな入力電圧を
サンプリング記憶する機能を有し、記憶素子に)とヴア
ッファ回路翰で構成されている。CCD1a3の出力は
一方は直接減算器α0の正入力端子(ト)へ、他方はC
CD204)を介し、一定時間遅延させた後減算器α9
の負入力端子(→へ与え、ここでCCD1Q3の出力と
CCD2α→の出力の差を演算するが、零相電流3io
に変化がなければCCD2α→の出力は、CCD1(至
)の出力と、大きさ、位相がともに同一であり、減算器
09の出力は0(ゼロ)である。もし零相電流3ioに
急激な変化が生じた場合はCCD1α3の出力は変化す
るが、CCD2Q4)の出力は一定時間変化は表われず
、したがって一定時間内では減算器0eの出力(端子Q
fll)はCCD1(13の出力電流の変化分が表われ
ることになる。また零相電流3ioがCCD2Q4)の
遅れ時間よりはるかに長い時間周期でゆっくり変化した
場合はCCD1α3の出力も、CCD2α養の出力も実
質的にははマ同じ変化となり、減算器0υの出力ははマ
0(ゼロ)となる。第5図(ロ)はCCD2α養の構成
の一例で、m相のCCD c3υとヴアッファ回路(6
)直列接続したものをn個直列に接続し、全体でmxn
桁のシフトレジスタを構成している。そして端子c2℃
に加几られたクロックパルス毎の出力はn個目のヴアツ
ファ回路から得るようにしであるので、入力端子に加え
られたCCD1Q3の出力信号はクロックパルス周期x
 m x nだけ遅れて出力されることになるっCCD
2 Q(4)のCCDの相数mおよび直列接続数nは必
要とする遅れ時間の値によって適宜決定すればよい。
The input voltage Vio is supplied to the connection point between the bias resistors R2 and R3 via the DC blocking capacitor o1), and is input as a DC signal to the positive input terminal (G) of the amplifier 0 via the input resistor R4. -The negative input terminal ←) is connected to earth E (zero volts). R5 is a feedback resistor, which together with input resistor R4 determines the amplification factor of this amplifier. Note that +VCC and -Vcc are direct currents with earth E as zero volts! This is the power supply for circuit operation. The input voltage Vio input to the amplifier (2) is R54
It is multiplied by ゜(amplification factor of amplifier @) and output, and this is CC
The signal is supplied to D1Q3, where it is sequentially sampled by the clock pulse applied to terminal 2D, and output. C.C.
D+ (13 is a kind of sample and hold circuit as shown in Fig. 5 (a), which detects the input voltage (V
It has a function of sampling and storing io) and outputting the sampled value of the music cycle with the next clock pulse, as well as sampling and storing a new input voltage, and is composed of a memory element) and a Vaffa circuit. One of the outputs of CCD1a3 goes directly to the positive input terminal (G) of subtractor α0, and the other goes to C
CD204), and after a certain time delay, the subtractor α9
is applied to the negative input terminal (→), and the difference between the output of CCD 1Q3 and the output of CCD 2
If there is no change, the output of CCD2α→ is the same in magnitude and phase as the output of CCD1 (to), and the output of subtractor 09 is 0 (zero). If a sudden change occurs in the zero-sequence current 3io, the output of CCD1α3 changes, but the output of CCD2Q4) does not change for a certain period of time. Therefore, within a certain period of time, the output of subtractor 0e (terminal Q
fll) will represent the change in the output current of CCD1 (13).Also, if the zero-sequence current 3io changes slowly over a much longer time period than the delay time of CCD2Q4), the output of CCD1α3 will also change due to the change in the output current of CCD2α. The output also changes substantially in the same way, and the output of the subtracter 0υ becomes 0 (zero). Figure 5 (b) shows an example of the configuration of CCD2α feeding, which includes an m-phase CCD c3υ and a Vaffa circuit (6
) are connected in series, and the total is mxn.
It constitutes a digit shift register. and terminal c2℃
Since the output for each clock pulse added to is obtained from the n-th buffer circuit, the output signal of CCD1Q3 applied to the input terminal has a clock pulse period x
The output will be delayed by m x n CCD
The number m of phases and the number n of series connections of the 2Q(4) CCDs may be appropriately determined depending on the value of the required delay time.

以上この実施例ではCCI)2Q4)を第5図(ロ)の
構成で説明したが同図(ハ)のような構成(シリアル−
パラレル−シリアル方式)でも同様の結果が魯られるし
、また遅れ要素としてCCD以外にたとえば遅延線と称
されるものを使用してもよく、さらにはマイクロコンピ
ュータを適用してデジタル的処理を施してもよいことは
勿論で、本発明の要旨に沿うものであれば他の如何なる
遅れ素子であってもよい。たゾ遅延線を用いる場合は、
第4図のCCD1α3のようなサンプルホールド回路は
不要であり省略される。
In this embodiment, CCI)2Q4) was explained using the configuration shown in FIG.
A similar result can be obtained with a parallel-serial system (parallel-serial system), and a so-called delay line may be used in addition to a CCD as a delay element, and furthermore, a microcomputer may be applied to perform digital processing. Of course, any other delay element may be used as long as it meets the gist of the present invention. When using a tazo delay line,
A sample and hold circuit such as the CCD1α3 in FIG. 4 is unnecessary and omitted.

〈発明の効果〉 本発明は変流器2次(あるいは6次)コイルの並列接続
や、零相変流器によって得られた第1の零相電流から、
該第1の零相電流を一定時間遅らせて得られる第2の零
相電流を差し引いて第3の零相電流を得るようにしたの
で、常時存在する零相残留電流の影響を受けることなく
零相電流(事故電流)を検出することができ、特に第3
図に示したように常時存在している零相残留電流に対し
、逆位相で零相電流(事故電流)が発生し、零相残留電
流との合成電流が常時の零相残留電流より小さくなった
場合でも零相電流(事故電流)検出が可能であるといっ
た従来の方法では得られない効果を得ることができる。
<Effects of the Invention> The present invention provides a method for connecting current transformer secondary (or sixth) coils in parallel or from the first zero-sequence current obtained by a zero-phase current transformer.
Since the third zero-sequence current is obtained by subtracting the second zero-sequence current obtained by delaying the first zero-sequence current for a certain period of time, the zero-sequence current is Phase current (fault current) can be detected, especially the 3rd phase current.
As shown in the figure, a zero-sequence current (fault current) occurs in the opposite phase to the zero-sequence residual current that always exists, and the combined current with the zero-sequence residual current becomes smaller than the normal zero-sequence residual current. It is possible to obtain effects that cannot be obtained with conventional methods, such as being able to detect zero-sequence current (fault current) even in cases where

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成、第2図および第3図は本
発明の作用および効果を示す波形図、第4図は本発明の
具体的実施例、第5図はサンプルホールド回路および遅
れ要素の構成例、第3図は従来の方法の説明図、第7図
は一般の変流器の電流特性の例をそれぞれ示す。 1・・・遅れ要素 2・・・減算器 3・・第1の零相電流 4・・・第2の零相電流 5・・第3の零相電流
FIG. 1 is the basic configuration of the present invention, FIGS. 2 and 3 are waveform diagrams showing the operation and effects of the present invention, FIG. 4 is a specific embodiment of the present invention, and FIG. 5 is a sample and hold circuit and An example of the configuration of a delay element, FIG. 3 is an explanatory diagram of a conventional method, and FIG. 7 shows an example of current characteristics of a general current transformer. 1... Delay element 2... Subtractor 3... First zero-sequence current 4... Second zero-sequence current 5... Third zero-sequence current

Claims (1)

【特許請求の範囲】[Claims] 1)交流電路に設けられた変流器によつて検出される第
1の零相電流と、この第1の零相電流を遅れ要素を通し
て得られる、前記第1の零相電流より一定時間遅れた第
2の零相電流とを、前記遅れ要素の後に設けた減算器に
入力し、前記第1の零相電流から前記第2の零相電流を
差し引いて得られる第3の零相電流を出力するようにし
た零相電流検出方法。
1) A first zero-sequence current detected by a current transformer installed in an AC line, and a delay of a certain time from the first zero-sequence current obtained by passing this first zero-sequence current through a delay element. A third zero-sequence current obtained by subtracting the second zero-sequence current from the first zero-sequence current is inputted into a subtracter provided after the delay element. Zero-sequence current detection method that outputs.
JP62140450A 1987-06-04 1987-06-04 Zero-phase current detecting method Pending JPS63304174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140450A JPS63304174A (en) 1987-06-04 1987-06-04 Zero-phase current detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140450A JPS63304174A (en) 1987-06-04 1987-06-04 Zero-phase current detecting method

Publications (1)

Publication Number Publication Date
JPS63304174A true JPS63304174A (en) 1988-12-12

Family

ID=15268902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140450A Pending JPS63304174A (en) 1987-06-04 1987-06-04 Zero-phase current detecting method

Country Status (1)

Country Link
JP (1) JPS63304174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830266A (en) * 2012-09-05 2012-12-19 德力西电气有限公司 Phase discriminating circuit of residual current phase
US11759203B2 (en) 2006-05-19 2023-09-19 Cilag Gmbh International Electrical surgical instrument with minimum closure distance for staple firing control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759203B2 (en) 2006-05-19 2023-09-19 Cilag Gmbh International Electrical surgical instrument with minimum closure distance for staple firing control
CN102830266A (en) * 2012-09-05 2012-12-19 德力西电气有限公司 Phase discriminating circuit of residual current phase

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
Douglass Potential transformer accuracy at 60Hz voltages above and below rating and at frequencies above 60 Hz
KR960011531B1 (en) Current sensor
US6611136B2 (en) Device for determining the primary current of a current transformer comprising saturation correction means
JP2002311061A (en) Processor for electric power
JPS63304174A (en) Zero-phase current detecting method
US6566895B2 (en) Unbalanced three phase delta power measurement apparatus and method
JP2774693B2 (en) Earth leakage breaker
JP2978637B2 (en) Quench detection device for superconducting winding
CA1040705A (en) Direct current measuring system for rectifiers
US1620126A (en) Electric measuring instrument
JPH0798337A (en) Current detector
Kennedy et al. New current transformer for bus differential protection
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP4943046B2 (en) Electricity meter testing equipment
JPH0782037B2 (en) Three-phase AC current detector
Korasli Line-current compensated single toroidal-core current transformer for three-phase current measurement
JPS61129582A (en) Measuring method of mutual inductance
SU1250973A1 (en) Method of measuring active power of three-phase a.c.network
JPH0365016A (en) Ground fault detector for distribution line
SU1078343A1 (en) Transformer bridge for measuring complex resistance parameters
JPH0519818Y2 (en)
JPH0222529B2 (en)
SU1525627A1 (en) Device for testing windings of short-circuited rotors
JPH037071B2 (en)