JPS63304135A - Brittle fracture test piece for hybrid esso and hybrid double tension test - Google Patents

Brittle fracture test piece for hybrid esso and hybrid double tension test

Info

Publication number
JPS63304135A
JPS63304135A JP13985187A JP13985187A JPS63304135A JP S63304135 A JPS63304135 A JP S63304135A JP 13985187 A JP13985187 A JP 13985187A JP 13985187 A JP13985187 A JP 13985187A JP S63304135 A JPS63304135 A JP S63304135A
Authority
JP
Japan
Prior art keywords
plate
test
run
hybrid
brittle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13985187A
Other languages
Japanese (ja)
Inventor
Seinosuke Yano
矢野 清之助
Naoki Saito
直樹 斉藤
Kiyoshi Tanaka
潔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13985187A priority Critical patent/JPS63304135A/en
Publication of JPS63304135A publication Critical patent/JPS63304135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To surely test the brittle crack stop performance of a test plate in a brittle fracture test by using a steel plate having <=3.5kgf.m impact value at -170 deg.C and consisting of 0.1-0.3% C, 7.5-9.5% Ni and the balance Fe as an approach plate. CONSTITUTION:The steel plate having the chemical components (weight %) consisting of 0.1-0.3% carbon C, 7.5-9.5% nickel Ni, and the balance Fe and unavoidable impurities and having <=3.5kgf.m impact value at -170 deg.C is used as the approach plate 1 and the test plate 2 is butted and welded to this approach plate 1 to prepare the hybrid ESSO test piece and double tension test piece. The ramification of the brittle crack in the plate 1 is then prevented. The stepping which arises in the weld zone and the stop of the crack in the weld zone at the time of plunging-in of the test piece are thus prevented and the decrease in the brittle fracture speed is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、LNG等の極低温容器用構造物に使用される
9%Ni鋼等の鋼板において、鋼板の脆性破壊停止性能
を精度良くまた確実に求められる混成ESSOおよび二
重引張試験片に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention aims to improve the brittle fracture arresting performance of steel plates with high accuracy and accuracy in steel plates such as 9% Ni steel used in structures for cryogenic containers such as LNG. Concerning hybrid ESSO and double tensile test specimens that are reliably sought.

(従来の技術) 近年のエネルギー需要の増大から、安価でクリーンなエ
ネルギー源としてLNGの消費が急増しており、それに
つれてLNGの貯蔵に必要な低温容器用構造物の建設が
盛んになりつつある。それに伴い構造物の安全性の議論
も高まり、それらの構造物に使用される9%Nig等の
鋼板に対して、より優れた低温靭性が要求されるように
なってきた。
(Prior art) Due to the recent increase in energy demand, the consumption of LNG as a cheap and clean energy source is rapidly increasing, and as a result, the construction of low-temperature container structures necessary for storing LNG is becoming more popular. . Along with this, discussions about the safety of structures have increased, and steel plates such as 9% Nig used in these structures have come to be required to have better low-temperature toughness.

従来、このような鋼板に対する低温靭性の要求は、シャ
ルピー試験を中心とする脆性破壊発生特性に重点が置か
れていたが、最近の破壊力学の発達により、脆性亀裂停
止特性にも注目されるようになってきた。
Traditionally, the requirements for low-temperature toughness for steel sheets have focused on brittle fracture initiation characteristics, mainly in Charpy tests, but with recent developments in fracture mechanics, brittle crack arrest characteristics are also attracting attention. It has become.

一般に、鋼板の脆性亀裂停止特性を評価する試験法とし
て、良く知られているESSO試験および二重引張試験
が行なわれてきた。
Generally, the well-known ESSO test and double tension test have been used as test methods for evaluating the brittle crack arrest characteristics of steel sheets.

しかしながら、9%Ni鋼のように液体窒素温度(−f
 96℃)でも高い靭性を示す材料では、通常のESS
O試験等では脆性亀裂の発生が得られず、脆性亀裂を伝
播させることができないため、第1図に示すように試験
板に脆性亀裂を伝播させることを目的として、助走板l
と試験板2を突き合わせ溶接3した混成ESSO試験ま
たは、それと類似の混成二重引張試験が現在まで行なわ
れてきている。
However, like 9% Ni steel, liquid nitrogen temperature (-f
For materials that exhibit high toughness even at 96°C, normal ESS
Since brittle cracks cannot be generated and propagated in the O test etc., we conducted a run-up plate l as shown in Figure 1 for the purpose of propagating brittle cracks in the test plate.
A hybrid ESSO test in which a test plate 2 and a test plate 2 are butt welded 3 or a similar hybrid double tensile test has been conducted to date.

すなわち、これらの試験法は、構造物の脆性破壊を模す
るために一様応力、温度下で助走板に脆性亀裂を発生、
伝播させ試験仮に突入させることにより、試験板の停止
特性を評価するもので、試験法の主旨から要求されるよ
うに、試験板2に突入させる脆性亀裂は、助走板1内で
の発生、伝播から試験板内への突入にいたるまで、一本
のまっすぐな脆性亀裂であること、またその脆性亀裂は
、実構造物における脆性破壊時の亀裂速度を考慮して、
700+/s以上の亀裂速度を持っているのが望ましい
In other words, these test methods generate brittle cracks in the run-up plate under uniform stress and temperature to simulate brittle fracture of a structure.
The purpose of this test is to evaluate the stopping characteristics of the test plate by causing it to propagate and temporarily enter the test plate. The brittle crack is a straight brittle crack from the moment it penetrates into the test plate.
It is desirable to have a cracking velocity of 700+/s or more.

しかしながら、現実には助走板の靭性等の問題により、
必ずしも上記の条件が満たされないことが多い。
However, in reality, due to problems such as the toughness of the run-up plate,
The above conditions are often not always met.

例えば、文献「9%N1tI!4板の脆性破壊特性に関
する研究 昭和44年5月、社団法人日本溶接協会鉄鋼
部会LT委員会 第16〜18頁」に、9%Ni鋼の混
成二重引張試験(板厚:20f1幅=500fi)とし
て助走仮に0.lO%C−0,22%5i−0,86%
Mn−0,017%P−0.019%S−0.07%C
u鋼を採用した試験片による試験を行なっている。
For example, in the document ``Study on the brittle fracture characteristics of 9%N1tI!4 plate, May 1960, Japan Welding Association Iron and Steel Subcommittee LT Committee, pp. 16-18'', there is a hybrid double tensile test of 9%Ni steel. (Plate thickness: 20f1 width = 500fi) and the run-up is tentatively 0. lO%C-0,22%5i-0,86%
Mn-0,017%P-0.019%S-0.07%C
Tests are being conducted using test pieces made of U steel.

試験は、試験温度ニー16O〜−196℃、負荷応カニ
10〜45 kgf/ was”の条件のもとでおこな
われているが、試験温度−180℃以下で負荷応力が3
5 kgf/ ts”以上の試験において、助走機内で
脆性亀裂の枝分かれの発生が数多く報告されている。
The test was conducted under the conditions of a test temperature of 16O to -196℃ and a load of 10 to 45 kgf/was, but the test temperature was -180℃ or lower and the load stress was 3
In tests of 5 kgf/ts" or higher, there have been many reports of branching brittle cracks occurring in the run-up.

このように助走機内で脆性亀裂が枝分かれをおこすと、
試験板の脆性亀裂停止性能の評価を正しく評価すること
ができない、また、最近、このような助走機内の脆性破
亀裂の枝分かれを避けるために、試験板と同じ9%N1
鋼に脆化処理を施したものを助走板として採用する傾向
が見られる。
When brittle cracks branch out in the run-up like this,
It is not possible to correctly evaluate the brittle crack arrest performance of the test plate, and recently, in order to avoid branching of brittle cracks in the run-up machine, the same 9%N1 as the test plate
There is a tendency to use steel that has been subjected to embrittlement treatment as the run-up plate.

しかしながら、この方法では、確かに助走機内での枝分
かれの発生は防止できるものの、脆化処理条件すなわち
、助走板の靭性によっては突入時の脆性亀裂速度が70
0m/sに低下することが起ると同時に、脆性亀裂が試
験板突入時に溶接部(助走板側)でまっすぐに突入せず
、第2図で示すような段がつくような現象が生じること
があり、やはり脆性亀裂停止特性評価としては好ましく
ない。
However, although this method can certainly prevent the occurrence of branching within the run-up plate, depending on the embrittlement treatment conditions, that is, the toughness of the run-up plate, the brittle crack speed at the time of entry may be 70%.
At the same time, when the brittle crack enters the test plate, it does not enter straight at the welded part (on the run-up plate side), and a phenomenon occurs in which it forms steps as shown in Figure 2. However, this is not preferable for evaluating brittle crack arrest characteristics.

また、後者の現象が激しくなると、試験板に突入する前
に溶接部で亀裂が停止することも発生し、このような現
象は脆性破壊試験を行なう上で、鋼板の停止特性の精度
の良い評価を損なうばかりでなく、手間のかかる再試験
の増加によって経済的な不利益を生じせしめる。
In addition, when the latter phenomenon becomes severe, the crack may stop at the weld before entering the test plate, and this phenomenon is difficult to accurately evaluate the stopping characteristics of the steel plate when performing brittle fracture tests. This not only impairs the quality of the test, but also causes an economic disadvantage due to the increase in the number of time-consuming retests.

(発明が解決しようとする問題点) 以上のことをまとめると、9%Ni鋼等の混成ESSO
試験および混成二重引張試験における問題点として、1
)助走機内での脆性亀裂の枝分かれの発生、2)試験板
突入時の溶接部(助走板側)おける段付きおよび溶接部
での停止、3)脆性亀裂速度の低下が挙げられる。
(Problems to be solved by the invention) To summarize the above, hybrid ESSO such as 9% Ni steel
As problems in the test and hybrid double tensile test, 1.
) Branching of brittle cracks in the run-up machine, 2) Stepping and stopping at the welded part (on the run-up plate side) when entering the test plate, and 3) Decrease in the brittle crack speed.

本発明は、これらの問題点を解決し、混成ESSO試験
および混成二重引張試験における確実で精度の良い試験
を達成するための試験片を提供するものである。
The present invention solves these problems and provides a test piece for achieving reliable and accurate tests in the hybrid ESSO test and the hybrid double tensile test.

(問題点を解決するための手段) 本発明が上記の問題点を解決するための手段は、以下に
説明するように、化学成分(重量%)として、C:0.
1〜0.3% Ni:7.5〜9.5%および残部がF
eおよび不可避的不純物からなり、かつ−170℃にお
ける衝撃値が、3.5kgf−醗以下なる鋼板を、助走
板として試験板と突き合わせ溶接することにより、脆性
破壊試験における試験板の脆性亀裂停止性能を確実にま
た精度良く求められることを特徴とする脆性破壊試験片
を提供することである。
(Means for Solving the Problems) The means for the present invention to solve the above problems is as described below, in which C:0.
1-0.3% Ni: 7.5-9.5% and the balance is F
The brittle crack arresting performance of the test plate in the brittle fracture test was improved by butt welding a steel plate containing e and unavoidable impurities and having an impact value of 3.5 kgf-2 or less at -170°C as a run-up plate to the test plate. It is an object of the present invention to provide a brittle fracture test piece which is characterized in that the following properties can be determined reliably and accurately.

以下、本発明を前記した3つの問題点の解決と対応させ
ながら詳細に説明する。
Hereinafter, the present invention will be explained in detail in conjunction with solutions to the three problems mentioned above.

助走機内で脆性亀裂が枝分かれを起こす現象は、助走板
として用いられる鋼板の試験温度における靭性が問題と
なる。
The phenomenon in which brittle cracks branch out in the run-up plane is caused by the toughness of the steel plate used as the run-up plate at the test temperature.

すなわち、脆性亀裂のもつエネルギーよりも鋼板の脆性
破面を形成する表面エネルギーが著しく小さいと、枝分
かれが発生し易くなると考えられるため、助走板として
使用する鋼板の脆性破壊特性、特に停止特性を考慮する
必要がある。
In other words, if the surface energy that forms the brittle fracture surface of a steel plate is significantly lower than the energy of a brittle crack, it is thought that branching will occur more easily. There is a need to.

そこで、本発明者らは、9zNi鋼を脆化処理して作成
した助走板では、技分かれ現象が全(見られないのに着
目し、枝分かれの防止には、7.5〜9.5%のNi添
加が有効であることを知見した。
Therefore, the present inventors focused on the fact that in the run-up plate made by embrittling 9zNi steel, the branching phenomenon was not observed at all. It was found that the addition of Ni was effective.

すなわち、7.5%未満の含有量では助走機内で脆性亀
裂が枝分かれを起こし易くなり、9.5%を超える含有
量ではその効果が飽和になり、経済的にも添加の有効性
が見られなくなるため7.5〜9.5%の範囲とした。
In other words, if the content is less than 7.5%, brittle cracks are likely to branch in the run-up machine, and if the content is more than 9.5%, the effect becomes saturated, and the effectiveness of addition can be seen economically. Therefore, the range was set at 7.5% to 9.5%.

本発明が解決しようとする問題点の2番目は、試験板に
突入する脆性亀裂の速度を700mb以上にすることで
ある。
The second problem to be solved by the present invention is to increase the speed of brittle cracks entering the test plate to 700 mb or more.

第3図は助走機内での脆性亀裂速度(Crack Ve
locity)と助走板(0,05%C−9,1〜9.
2%Ni)の−170℃における衝撃値の関係を示した
ものである。
Figure 3 shows the brittle crack velocity (Crack Ve
locity) and run-up plate (0.05%C-9.1~9.
2%Ni) at -170°C.

すなわち、助走板の衝撃値が低下するに従い、脆性亀裂
速度は上昇するのが分かる。したがって、助走機内での
脆性亀裂速度を700m/s以上を達成するためには、
−170℃での助走板の衝撃値を3.5kgf・−以下
にすることが必要である。
That is, it can be seen that as the impact value of the run-up plate decreases, the brittle crack speed increases. Therefore, in order to achieve a brittle crack speed of 700 m/s or more in the run-up machine,
It is necessary to keep the impact value of the run-up plate at -170°C to 3.5 kgf·- or less.

なお、−170℃という温度を選択した理由は下記の通
りである。
The reason why the temperature of -170°C was selected is as follows.

通常9%Ni鋼等の低温用鋼は、その最低使用温度で使
用性能評価されるため、脆性亀裂停止性能等もLNG温
度(−162℃)近傍で試験が行なわれる。したがって
、実際に破壊試験が行なわれる温度で助走板の靭性を評
価するのが最も適当である。
Normally, low-temperature steel such as 9% Ni steel is evaluated for service performance at its lowest service temperature, so tests such as brittle crack stopping performance are also conducted near the LNG temperature (-162°C). Therefore, it is most appropriate to evaluate the toughness of the run-up plate at the temperature at which the destructive test is actually performed.

以上、前記した2つの問題点を解決することで、助走機
内で枝分かれのない脆性亀裂を700m/s以上の速度
で突入させることが可能となるが、第3図に示すように
溶接部における段付きおよび溶接部停止現象については
、助走板の衝′撃値に関係なく発生する。
By solving the above two problems, it becomes possible to cause a brittle crack without branches to enter the run-up machine at a speed of 700 m/s or more, but as shown in Fig. The phenomenon of sticking and stopping of the weld occurs regardless of the impact value of the run-up plate.

すなわち、3番目の問題点として述べた脆性亀裂が試験
板に突入する時に、溶接部で起る段付きおよび溶接部で
の亀裂が停止する現象を防止することが必要である。
That is, it is necessary to prevent the phenomena of stepping occurring at the welded portion and stopping of the cracking at the welded portion when the brittle crack enters the test plate as described in the third problem.

伜 この現象は、脆性処理を施こされて一170℃の衝撃値
が3.5kgf−以下に低下した助走板の靭性が、助走
板と試験板の溶接時の溶接熱により再加熱されるために
、靭性の著しい回復が起ることによる。
This phenomenon occurs because the toughness of the run-up plate, which has been subjected to brittle treatment and whose impact value at -170°C has decreased to 3.5 kgf or less, is reheated by the welding heat during welding of the run-up plate and the test plate. This is due to the fact that a significant recovery of toughness occurs.

すなわち、脆性亀裂が助走機内を高速で伝播してきても
試験板に突入する時に、この靭性回復部で影響をうけ、
段付きや助走機内停止が発生してしまう。
In other words, even if a brittle crack propagates at high speed in the run-up machine, when it enters the test plate, it is affected by this toughness recovery part,
Stepping or stoppage inside the run-up machine may occur.

したがって、溶接熱影響部の靭性を低くするここ とが必須+なるが、本発明者らはいままで靭性回復部の
靭性を劣化させるために、熱影響部の局部的な再脆化処
理等の試み等を行なったが、これらの方法では、試験の
効率を阻害するだけでなく、再脆化処理が試験板の靭性
にまで影響をあたえる可能性があるため、簡便で確実な
方法が望まれていた。
Therefore, it is essential to lower the toughness of the weld heat-affected zone, but the present inventors have so far attempted to reduce the toughness of the heat-affected zone by localized re-embrittlement treatment, etc. of the heat-affected zone. However, these methods not only impede the efficiency of the test, but the re-embrittlement treatment may also affect the toughness of the test plate, so a simple and reliable method is desired. was.

このような経緯から、本発明者らは溶接部の靭性を劣化
させる手段として、助走板の成分に着目し、実験を重ね
た結果、第4図(a)で示すようにC添加が有効である
ことを見出した。
Based on this background, the present inventors focused on the components of the run-up plate as a means of degrading the toughness of the weld, and as a result of repeated experiments, as shown in Figure 4 (a), the addition of C was found to be effective. I discovered something.

通常の9%Ni鋼のC量である0、05%C@では、図
で示すように脆化処理を施しても溶接熱により再加熱さ
れるため、靭性の著しい回復が見られる。これに対し、
0.1%以上のCを含有する鋼では、C量の増加に伴い
溶接部の靭性回復が軽減され、−170℃の衝撃値も3
.5kgF一層以下にできるため、試験に好ましくない
影響をあたえる段付きや助走板肉停止等現象を防ぐこと
ができる。
At 0.05% C@, which is the C content of ordinary 9% Ni steel, as shown in the figure, even after embrittlement treatment, the steel is reheated by welding heat, so a remarkable recovery in toughness is observed. In contrast,
In steel containing 0.1% or more of C, the toughness recovery of the weld is reduced as the amount of C increases, and the impact value at -170°C also decreases to 3.
.. Since the pressure can be lowered to 5 kgF or less, it is possible to prevent phenomena such as step formation and stoppage of run-up plate thickness that have an unfavorable effect on the test.

助走板は8.0〜9.2%Ni、溶接材料3.5%Ni
、入熱30kj/cn、開先形状は第4図(b)に示す
Run-up plate: 8.0-9.2% Ni, welding material: 3.5% Ni
, the heat input was 30 kj/cn, and the groove shape is shown in FIG. 4(b).

しかしながら、多量の添加では、かえって溶接性をそこ
ない溶接割れ等により試験に悪影響をあたえるため0.
3%を上限とし、ctは0.1〜0.3%の範囲とした
However, if a large amount is added, it may actually impair weldability and adversely affect the test due to weld cracking, etc.
The upper limit was 3%, and the ct was in the range of 0.1 to 0.3%.

第1表は0.11%C−8,28%Niを助走板として
用いて混成ESSO試験を行ない、助走板と試験板の溶
接部(助走板側)の衝撃値の最大値と段突き等の試験板
突入時の異常の発生率を調べたものである。
Table 1 shows the maximum impact value of the welded part of the run-up plate and the test plate (run-up plate side) and the step impact etc. after performing a hybrid ESSO test using 0.11%C-8,28%Ni as the run-up plate. This study investigated the incidence of abnormalities when entering the test plate.

第  1  表 この結果をみても分かるように、−170℃の衝撃値が
3.5kgf・−以下のものでは、これら脆性亀裂伝播
時の異常が全く見られないのに対し、衝撃値が3.5k
gf・−を超えるものでは25%と異常の発生率が高く
なる傾同がある。
Table 1 As can be seen from the results, those with an impact value of 3.5 kgf·- or less at -170°C do not exhibit any abnormality during brittle crack propagation, whereas those with an impact value of 3.5 kgf. 5k
If the value exceeds gf.-, the incidence of abnormality tends to be as high as 25%.

したがって、溶接部の靭性回復を妨げ、段付き等の異常
を防止するには、助走板として用いる鋼のCMを0.1
%以上にすることが非常に有効であることが確かめられ
た。
Therefore, in order to prevent the recovery of the toughness of the weld and to prevent abnormalities such as stepping, the CM of the steel used as the run-up plate should be set to 0.1
% or more was confirmed to be very effective.

ところで、このような低温靭性に対する要求を満たすた
めの助走板の製造法としては、例えば650〜800℃
に加熱後水冷、空冷及び除冷等が考えられる。
By the way, as a method for manufacturing a run-up plate to meet such requirements for low-temperature toughness, for example, 650 to 800°C
Possible methods include water cooling, air cooling, and gradual cooling after heating.

このようにして製造された助走板を試験仮に突き合わせ
溶接し、従来行なわれてきた混成ESSO試験片および
混成二重引張試験片として実験に供する。付は加えるな
らば、このときの溶接に際しては、−170℃でも脆性
破壊しない溶接材料を用いる必要があり一般に、3.5
%Ni系の材料が用いられる。
The run-up plates manufactured in this way were temporarily butt-welded for testing and used as hybrid ESSO test specimens and hybrid double tension test specimens, which have been conventionally conducted. In addition, when welding at this time, it is necessary to use a welding material that does not break brittle even at -170°C, and generally, 3.5
%Ni-based material is used.

(実施例) 第2表に示す成分の鋼を、第3表に示す熱処理条件で脆
化させた鋼板を助走板として用い、先に第1図に示した
混成ESSO試験片(助走板の寸法:150mX50Q
m、試験板の寸法:350mX50Qm)により試験を
行なって、助走板の靭性と混成ESSO試験結果との関
係を調べた。
(Example) A steel plate having the composition shown in Table 2 and made embrittled under the heat treatment conditions shown in Table 3 was used as the run-up plate. :150mX50Q
The relationship between the toughness of the run-up plate and the hybrid ESSO test results was investigated by conducting a test using a test plate with dimensions of 350 m x 50 Q m.

本発明に基づいて製造された助走板を用いた混成ESS
O試験では、いずれの場合も好ましい脆性亀裂が助走板
から試験板へと文人伝播しているのに対し、本発明を逸
脱するものは、助走機内で枝分かれや段付き、助走機内
停止等が生じたり、試験板に突入する際の脆性亀裂速度
が所定の700麟ハ以下であるような不確実な試験とな
っている。
Hybrid ESS using a run-up plate manufactured based on the present invention
In the O test, brittle cracks, which are preferable in any case, propagate from the run-up plate to the test plate, whereas those that deviate from the present invention result in branching, stepping, stopping in the run-up, etc. It is an uncertain test in which the brittle crack speed when entering the test plate is less than the predetermined 700 mm.

(以下余白、次頁へつづく) (発明の効果) 上記のように本発明によれば、9%Nl鋼等の脆性破壊
停止性能を確実にしかも精度よく求めることができ、再
試験等の増加による経済的な不利益を改善し、低温用鋼
材の経済的な評価方法として有用である。
(The following margins continue on the next page) (Effects of the invention) As described above, according to the present invention, the brittle fracture arresting performance of 9%Nl steel etc. can be determined reliably and accurately, increasing the number of re-tests, etc. This method is useful as an economic evaluation method for low-temperature steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は標準的な混成ESSO試験の試験片形状を示す
説明図、第2図は混成ESSO試験において助走機内を
伝播してきた脆性亀裂が溶接継手部で段付きを起こして
いる状況を示す説明図、第3図は試験板に突入する直前
の脆性亀裂速度と助走板の一170℃における衝撃値の
関係を示す図表および第4図(a)は助走板と試験板の
溶接部熱影響部(助走板側)の−170℃における衝撃
値におよぼす助走板のC量の影響を示す図表、第4図(
b)は開先形状の説明図である。 代理人 弁理士 茶 野 木 立 夫 第1図 第2図 第3図 vE470 (K9f−yn) 第41図(d) (b) (翼な) 手続補正書(自発) 昭和62年11月6日
Figure 1 is an explanatory diagram showing the specimen shape of a standard hybrid ESSO test, and Figure 2 is an explanatory diagram showing a situation where brittle cracks propagating in the run-up machine are stepped at the welded joint in a hybrid ESSO test. Figure 3 is a chart showing the relationship between the brittle crack velocity immediately before entering the test plate and the impact value of the run-up plate at 170°C, and Figure 4 (a) is the heat-affected zone of the weld between the run-up plate and the test plate. Figure 4 (
b) is an explanatory diagram of the groove shape. Agent Patent Attorney Tatsuo Chanoki Figure 1 Figure 2 Figure 3 vE470 (K9f-yn) Figure 41 (d) (b) (Tsubasa) Procedural amendment (voluntary) November 6, 1988

Claims (1)

【特許請求の範囲】[Claims] −170℃における衝撃値が3.5kgf・m以下で、
かつC:0.1〜0.3%、Ni:7.5〜9.5%お
よび残部がFeおよび不可避的不純物からなる鋼板を、
助走板として試験板と突き合わせ溶接したことを特徴と
する混成ESSOおよび混成二重引張試験用脆性破壊試
験片。
The impact value at -170℃ is 3.5kgf・m or less,
And a steel plate consisting of C: 0.1 to 0.3%, Ni: 7.5 to 9.5%, and the balance is Fe and inevitable impurities,
A brittle fracture test piece for hybrid ESSO and hybrid double tensile tests, characterized in that it is butt-welded to a test plate as a run-up plate.
JP13985187A 1987-06-05 1987-06-05 Brittle fracture test piece for hybrid esso and hybrid double tension test Pending JPS63304135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13985187A JPS63304135A (en) 1987-06-05 1987-06-05 Brittle fracture test piece for hybrid esso and hybrid double tension test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13985187A JPS63304135A (en) 1987-06-05 1987-06-05 Brittle fracture test piece for hybrid esso and hybrid double tension test

Publications (1)

Publication Number Publication Date
JPS63304135A true JPS63304135A (en) 1988-12-12

Family

ID=15255009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13985187A Pending JPS63304135A (en) 1987-06-05 1987-06-05 Brittle fracture test piece for hybrid esso and hybrid double tension test

Country Status (1)

Country Link
JP (1) JPS63304135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation
JP2010236930A (en) * 2009-03-30 2010-10-21 Sumitomo Metal Ind Ltd Method of evaluating brittle crack propagation stop property
WO2019102912A1 (en) * 2017-11-22 2019-05-31 Jfeスチール株式会社 Method for evaluation of brittle crack propagation-stopping performance in thick steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation
JP2010236930A (en) * 2009-03-30 2010-10-21 Sumitomo Metal Ind Ltd Method of evaluating brittle crack propagation stop property
WO2019102912A1 (en) * 2017-11-22 2019-05-31 Jfeスチール株式会社 Method for evaluation of brittle crack propagation-stopping performance in thick steel plate
CN111433585A (en) * 2017-11-22 2020-07-17 杰富意钢铁株式会社 Method for evaluating brittle crack propagation stopping performance of thick steel plate
EP3715823A4 (en) * 2017-11-22 2021-01-20 JFE Steel Corporation Method for evaluation of brittle crack propagation-stopping performance in thick steel plate
US11313776B2 (en) 2017-11-22 2022-04-26 Jfe Steel Corporation Method for evaluating brittle crack arrestability of steel plate
CN111433585B (en) * 2017-11-22 2022-10-28 杰富意钢铁株式会社 Method for evaluating brittle crack propagation stopping performance of thick steel plate

Similar Documents

Publication Publication Date Title
TWI523953B (en) A method and a test apparatus for evaluating a growth performance of a brittle crack propagation in a thick steel sheet having a thickness of 50 mm or more and a method for manufacturing the same,
US9945015B2 (en) High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
EP1695785B1 (en) High heat input butt welded structure exhibiting excellent characteristics in resistance to occurrence of brittle fracture
KR102385019B1 (en) Evaluation method of brittle crack propagation stop performance of thick steel plate
Kimura et al. Sulfide stress corrosion cracking of line pipe
EP2111942A1 (en) Multipass butt-welded joint having excellent brittle crack propagation resistance, and welded structure
KR19980703593A (en) Welding coefficient with excellent fatigue strength
KR20060085641A (en) Weld structure having excellent brittle crack propagation resistance and method of welding the weld structure
KR20140127363A (en) Method for evaluating long brittle crack arresting ability in thick steel plate, and testing device and method for manufacturing thick steel plate using same
JPS63304135A (en) Brittle fracture test piece for hybrid esso and hybrid double tension test
Mohammadijoo et al. Influence of cold-wire submerged arc welding on the toughness of microalloyed steel
JP2006088184A (en) High heat input butt-welded joint having excellent brittle fracture generation resisting property and method for verifying brittle fracture generation resisting property of high heat input butt-welded joint
JP5060246B2 (en) Method for evaluating arrest properties of steel sheet and steel sheet for evaluating arrest characteristics
Baek et al. Effect of temperature on the charpy impact and CTOD values of type 304 stainless steel pipeline for LNG transmission
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
Furuya et al. Development of 6% nickel steel for LNG storage tanks
JP3795949B2 (en) Welded joint with excellent fatigue strength
Provost Effects of a stress relief heat treatment on the toughness of pressure vessel quality steels welded with high heat input processes
Kazasidis et al. Comparative study of toughness between the AH 40 fatigue crack arrester steel and its weld metal in the case of robotic metal-cored arc welding
Angeles-Herrera et al. Fracture-Toughness evaluation in submerged arc-welding seam welds in nonstandard curved SE (B) specimens in the short radial direction of API 5L Steel pipe
Jang et al. A study of fracture toughness and microstructures in the weld heat-affected zone of QLT-processed 9% Ni steel
Lee et al. Fatigue strength depending on position of tansverse cracks in FCAW process
Purazarang et al. Inclusion Induced Lamellar Tearing in Steel Pipe
Ishikawa et al. Near neutral pH SCC of grade X80 linepipe steels under cyclic loading