JPS63304113A - Star sensor - Google Patents

Star sensor

Info

Publication number
JPS63304113A
JPS63304113A JP62140626A JP14062687A JPS63304113A JP S63304113 A JPS63304113 A JP S63304113A JP 62140626 A JP62140626 A JP 62140626A JP 14062687 A JP14062687 A JP 14062687A JP S63304113 A JPS63304113 A JP S63304113A
Authority
JP
Japan
Prior art keywords
signal
star
starlight
level
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140626A
Other languages
Japanese (ja)
Inventor
Tadashi Uo
卯尾 匡史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62140626A priority Critical patent/JPS63304113A/en
Publication of JPS63304113A publication Critical patent/JPS63304113A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7867Star trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To suppress in a small way an error at the time of conversion, and to calculate with high accuracy the incident direction of star light beams by amplifying a signal of a low level, and a signal of a high level, by a high gain and a low gain, respectively, and thereafter, bringing them to an A/D conversion, and executing a calculation processing containing a correction of a non-linear amplification effect. CONSTITUTION:A signal level of the peripheral part of a star image is small, therefore, in order to execute a calculation processing, the signal is quantized by an A/D converter 4. Therefore, before it is converted by the converter 4, an output signal from a star light detecting CCD 2 is received and amplified by a non-linear amplifier for amplifying a signal of a low level and a signal of a high level by a high gain and a low gain, respectively. In such a way, a signal of a low level of the periphery of a star image is amplified greatly, and an error which enters at the time of A/D conversion is suppressed in a small way. This A/D-converted signal is inputted to a star light incident direction calculating means, a calculation processing containing a correction for returning a non-linear effect given by the non-linear amplifier 9 to the original state is executed, and the incident direction of the star light beams is calculated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は三軸安定型人工衛星に搭載され星がらの光の入
射方向を検出し姿勢制御等に利用されるスターセンサの
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a star sensor mounted on a triaxially stabilized artificial satellite and used for detecting the direction of incidence of starlight and for use in attitude control, etc.

(従来の技術) スターセンサは、例えば人工衛星等に搭載し、星光の入
射方向を測定することによって人工衛星の姿勢を高い精
度で決定し、また、所定の姿勢制御系を介して前記人工
衛星の姿勢を制御するという極めて重要な役割を果たす
一要素としてしばしば用いられている。
(Prior Art) A star sensor is mounted on, for example, an artificial satellite, and determines the attitude of the artificial satellite with high precision by measuring the direction of incidence of starlight. It is often used as an element that plays a very important role in controlling the posture of the body.

このようなスターセンサの従来例について説明する。第
9図は、従来のスターセンサの構成図である。
A conventional example of such a star sensor will be explained. FIG. 9 is a configuration diagram of a conventional star sensor.

1は光学系、2はCCD (Charged Coup
ledDevice :電荷結合素子)、3はccDの
出力を処理して星の方向を表すデータを出力する信号処
理部である。4はA/Dコンバータ、5は計算処理部で
信号処理部3は両者で構成されている。
1 is an optical system, 2 is a CCD (Charged Coup)
ledDevice (charge coupled device), 3 is a signal processing unit that processes the output of the ccD and outputs data representing the direction of the star. 4 is an A/D converter, 5 is a calculation processing section, and the signal processing section 3 is composed of both.

光学系1に入った星の光はCCD2上に像を結ぶ、この
星の像の大きさく直径)は、一般に、C0D2のピクセ
ル(1画素セル以下単にビクセルと言う)の大きさの数
倍となるように調整される。
The starlight that enters the optical system 1 forms an image on the CCD 2. The size and diameter of this star image is generally several times the size of a C0D2 pixel (one pixel cell is simply called a pixel). It will be adjusted so that

第2図CCD上の星像図にこの様子を示す。This situation is shown in the star map on the CCD in Figure 2.

第2図において6はCCDのビクセル、7は光学系によ
ってできた星の像である。8は説明のために区分したビ
クセルを示す、この場合ひとつの星によってCCD2上
に励起される信号レベルは第3図に示されるような形と
なる。
In Fig. 2, 6 is a CCD pixel, and 7 is a star image formed by the optical system. 8 indicates a pixel divided for the sake of explanation. In this case, the signal level excited on the CCD 2 by one star has a form as shown in FIG.

第3図はCODの出力強度分布図であり第2図の太線で
囲まれたビクセル8についての強度分布を示したもので
ある。
FIG. 3 is a COD output intensity distribution diagram, which shows the intensity distribution for the pixel 8 surrounded by the bold line in FIG.

以上のようにして得られた星像の強度分布の信号に対し
て、S、を各ビクセルの信号レベルとし、X、およびY
lを各ビクセルの座標とすると、星の像の中心位置の座
標XCおよび同ycはxc=川汎用L、、、−−−−−
、(1)ΣS1 で求められることが知られている。
For the signal of the intensity distribution of the star image obtained as above, S is the signal level of each pixel, and X and Y
If l is the coordinate of each pixel, the coordinates XC and yc of the center position of the star image are xc=river general L,,,
, (1) ΣS1.

上記の従来技術についてはr 35−THC0NGRE
SSOF  TIIE  INTERNATIONAL
  ASTRONAUTICAL  FEDERATI
ONPREPRINT ”DEVELOPMENT O
F MICRO−PROCESSORCONTROLL
ED  CCD  5TARTRACKERFORUS
E  ON  ASTRO−C″」に記載されている。
Regarding the above prior art, r 35-THC0NGRE
SSOF TIIE INTERNATIONAL
ASTRONAUTICAL FEDERATI
ONPREPRINT ” DEVELOPMENT O
F MICRO-PROCESSOR CONTROLL
ED CCD 5 TART RACKER FORUS
E ON ASTRO-C''.

信号処理部3では、この信号に対して第(1)式および
第(2)式で示される計算を行い、星の像の中心位置を
算出する。この、星の像の中心位置が星の方向を表すデ
ータである。
The signal processing unit 3 performs calculations shown by equations (1) and (2) on this signal to calculate the center position of the star image. The center position of this star image is data representing the direction of the star.

前記のように星の像を数ピクセルの大きさにするのは、
ここに示した第(1)式および第(2)式による処理に
よって里方向データをより精度良く求めるためである。
To make the star image a few pixels in size as mentioned above,
This is to obtain village direction data with higher accuracy by processing according to equations (1) and (2) shown here.

星像を小さくして1ビクセル内に結像させれば計算処理
の必要なく星光の入射方向が分るが、この場合の星の方
向の精度は1ビクセルの大きさより精度を上げることは
できない、これに対して上記のように星像を多くのビク
セルに渡るような大きさに結像させて計算処理して中心
位置を求める方法では1ビクセル寸法より小さな寸法精
度で求めることができる。
If the star image is made smaller and focused within one pixel, the direction of incidence of the starlight can be determined without the need for calculation processing, but in this case, the accuracy of the direction of the star cannot be increased beyond the size of one pixel. On the other hand, in the method described above in which the star image is formed into a size that spans many pixels and the center position is determined by calculation, the center position can be determined with a dimensional accuracy smaller than one pixel dimension.

上記のような方法で星の方向を求めることができるが、
C0D2の出力における星の像の強度分布は、第3図で
も示したように、中心部で強く、周辺部では急激に信号
レベルが低下する。これは、光学系の特性によるもので
ある。信号処理部3では、CODの出力をA/Dコンバ
ータ4によりデジタルデータにしてから第(1)式およ
び第(2)式の計算を行うのであるが、周辺部の信号レ
ベルが小さいために、周辺部分の信号のA/D変換の際
の相対的な量子化誤差が大きくなる。このため、星の中
心位置(Xc、YJの計算精度が悪くなる。
You can find the direction of the star using the method described above, but
As shown in FIG. 3, the intensity distribution of the star image in the output of C0D2 is strong at the center, and the signal level drops sharply at the periphery. This is due to the characteristics of the optical system. In the signal processing section 3, the output of the COD is converted into digital data by the A/D converter 4, and then the calculations of equations (1) and (2) are performed, but since the signal level in the peripheral section is small, Relative quantization errors during A/D conversion of peripheral signals become large. For this reason, the calculation accuracy of the star center position (Xc, YJ) deteriorates.

これを解決する方法としてCCD2の出力における星の
像の強度分布を改良して周辺部の信号レベルを大きくし
たり、A/Dコンバータ4のビット長の大きいものを使
用して量子化誤差を小さくする方法が従来取られてきた
To solve this problem, improve the intensity distribution of the star image in the output of the CCD 2 to increase the signal level in the peripheral area, or use a larger bit length for the A/D converter 4 to reduce the quantization error. This method has traditionally been used.

(発明が解決しようとする問題点) しかしながら、C0D2の出力における星の像の強度分
布を改良して周辺部の信号レベルを大きくするには光学
系の特性を向上させることが必要であり、重量の増加、
光学部製作コストの増加を招くことになり、また、A/
Dコンバータのビット長の大きいものを使用する場合も
同様に重量、コストの増加を招くと言う欠点を有してい
た。
(Problem to be solved by the invention) However, in order to improve the intensity distribution of the star image in the output of C0D2 and increase the signal level in the peripheral area, it is necessary to improve the characteristics of the optical system, and the weight increase of,
This will lead to an increase in the production cost of the optical part, and
The use of a D converter with a large bit length also has the disadvantage of increasing weight and cost.

本発明の目的は上記の問題点を解決するために光学系1
の特性により得られた星の像の強度分布の出力信号をレ
ベルの低い信号に対しては高い利得で増幅し、レベルの
高い信号に対しては低い利得で増幅する特性を有する非
線形増幅器を利用することにより、A/D yR換する
際の誤差を小さくして星の方向の計算精度を向上させる
ことのできるスターセンサを提供しようとするものであ
る。
An object of the present invention is to solve the above problems by using an optical system 1.
Utilizes a nonlinear amplifier that has the characteristics of amplifying the output signal of the intensity distribution of the star image obtained by the characteristics with a high gain for low-level signals, and amplifying high-level signals with a low gain. By doing so, the present invention aims to provide a star sensor that can reduce errors in A/D yR conversion and improve calculation accuracy of star directions.

(問題点を解決するための手段) 本発明は上記の目的を達成するために次の手段構成を有
する。即ち、本発明のスターセンサは、人工衛星等の姿
勢制御装置において、星からの入射光を取り込む光学系
と所定の位置関係をもって配置されたCCDを含む星光
検出手段と; 該星光検出手段から出力される星光検出
出力信号を受けて低いレベルの信号に対しては高い利得
で増幅し、高いレベルの信号に対しては低い利得で増幅
する非線形増幅器と; 該非線形増幅器からの出力信号
を受けて所定ビット数のディジタル信号に変換するA/
D変換器と; 前記ディジタル信号を受けて、前記非線
形増幅による非線形効果を補正した前記星光の入射方向
を算出する星光入射方向算出手段と; を具備すること
を特徴とするスターセンサ。
(Means for Solving the Problems) The present invention has the following means configuration to achieve the above object. That is, the star sensor of the present invention is used in an attitude control device for an artificial satellite or the like, and includes: a starlight detection means including a CCD disposed in a predetermined positional relationship with an optical system that takes in incident light from a star; and an output from the starlight detection means. a nonlinear amplifier that receives a starlight detection output signal and amplifies a low level signal with a high gain, and amplifies a high level signal with a low gain; A/
A star sensor comprising: a D converter; and starlight incident direction calculation means for receiving the digital signal and calculating the incident direction of the starlight with the nonlinear effect corrected due to the nonlinear amplification.

(作 用) 以下、上記手段構成を有する本発明のスターセンサの作
用について述べる。星からの入射光は光学系で取り込ま
れ所定の光学的処理がなされ、星光検出手段のCCD上
に星の像を結ぶ、CODでは星の像が光の強度に対応し
た大きさの電圧または電流の信号に変換され、星光強度
分布に応じた出力信号が星光検出手段から取り出される
(Function) Hereinafter, the function of the star sensor of the present invention having the above means configuration will be described. Incident light from a star is taken in by an optical system and subjected to predetermined optical processing to form an image of the star on the CCD of the starlight detection means. is converted into a signal, and an output signal corresponding to the starlight intensity distribution is taken out from the starlight detection means.

この星光強度分布に応じた出力信号は光学系のレンズ等
の特性によって与えられるものであるが、星像の周辺部
の信号レベルが小さく、計算処理をするために信号をA
/D変換し量子化する際に大きなレベルの信号の部分と
比較して相対的に誤差が大きくなる。そこでA/D変換
をする前にレベルの低い信号は高い利得で増幅し、レベ
ルの高い信号は低い利得で増幅する非線形増幅器で星光
検出手段からの出力信号を受けて増幅する。このように
して星像周辺の低いレベルの信号を大きく増幅し、A/
D変換される際に入ってくる誤差を小さく抑える。
This output signal corresponding to the starlight intensity distribution is given by the characteristics of the lens of the optical system, but the signal level at the periphery of the star image is low, so the signal is output at A for calculation processing.
When performing /D conversion and quantization, the error becomes relatively large compared to the signal portion with a large level. Therefore, before A/D conversion, a low level signal is amplified with a high gain, and a high level signal is amplified with a low gain.The output signal from the starlight detection means is received and amplified by a nonlinear amplifier. In this way, the low-level signals around the star image are greatly amplified, and the A/
To suppress errors introduced during D conversion.

このA/D変換された信号が星光入射方向算出手段へ入
力され、前記の非線形増幅器で与えられた非線形効果を
元に戻す補正を含む第(1)式および第(2)式の計算
処理が行われて星光の入射方向が算出される。
This A/D converted signal is input to the starlight incident direction calculation means, and calculation processing of equations (1) and (2) including correction to restore the nonlinear effect given by the nonlinear amplifier is performed. The direction of incidence of starlight is calculated.

(実 施 例) 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明のスターセンサの実施例の構成を示す図であ
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a diagram showing the configuration of an embodiment of the star sensor of the present invention.

第1図において1は光学系で2はCCDであり、光学系
1で星光が取り入れられCCD2の上に星像が形成され
る。9は非線形増幅器、4はA/Dコンバータ、5は非
線形増幅器による非線形効果を補正し第(1)式および
第(2)式の計算を行う計算処理部である。
In FIG. 1, 1 is an optical system and 2 is a CCD. Starlight is taken in by the optical system 1 and a star image is formed on the CCD 2. 9 is a nonlinear amplifier, 4 is an A/D converter, and 5 is a calculation processing unit that corrects the nonlinear effect caused by the nonlinear amplifier and calculates equations (1) and (2).

非線形増幅器9の特性を第4図に示し、計算処理部5で
おこなう非線形効果補正処理の特性を第5図に示す、第
4図において横軸は非線形増幅器9への入力、縦軸は出
力をあられしているeQp+Rpは、それぞれ入力、出
力の飽和値、Q o 、 R。
The characteristics of the nonlinear amplifier 9 are shown in FIG. 4, and the characteristics of the nonlinear effect correction process performed by the calculation processing section 5 are shown in FIG. 5. In FIG. 4, the horizontal axis represents the input to the nonlinear amplifier 9, and the vertical axis represents the output. The falling eQp+Rp are the input and output saturation values, Q o , and R, respectively.

は、非線形増幅器9の折れ点パラメータである。is a turning point parameter of the nonlinear amplifier 9.

第5図において横軸は計算処理部5への入力、縦軸は出
力をあられしている。第4図に示される補正を行った後
にA/D変換を行うことにより、信号レベルの低いとこ
ろでの量子化誤差が軽減される。このようにして得られ
たデータが計算処理部5で第(1)式および第(2)式
の計算がなされ、星光の入射方向が算出される。
In FIG. 5, the horizontal axis represents the input to the calculation processing unit 5, and the vertical axis represents the output. By performing A/D conversion after performing the correction shown in FIG. 4, quantization errors at low signal levels are reduced. The data obtained in this manner is subjected to calculations according to equations (1) and (2) in the calculation processing section 5, and the direction of incidence of starlight is calculated.

ここに示した非線形増幅器9の特性および非線形効果補
正特性は一例であって、非線形増幅器9については低レ
ベルの入力に対して利得が高く、高レベルの入力に対し
て利得の低いものであれば、第4図に示した特性に限る
ものではない。
The characteristics and nonlinear effect correction characteristics of the nonlinear amplifier 9 shown here are just examples, and the nonlinear amplifier 9 may have a high gain for low level inputs and a low gain for high level inputs. , the characteristics are not limited to those shown in FIG.

非線形効果補正特性についても同様に、非線形増幅器の
特性を補正するよう低レベルの入力に対して利得が低く
、高レベルの入力に対して利得の高いものであれば、第
5図の特性に限るものではない。
Similarly, regarding the nonlinear effect correction characteristics, if the gain is low for low level inputs and high for high level inputs so as to correct the characteristics of the nonlinear amplifier, then the characteristics shown in Figure 5 are limited. It's not a thing.

本方式の有意性を実際に示すため、ここでは、CODの
うち第2図の太線で囲まれた部分のみを考慮の対象とし
、太線部の中のビクセルの信号値から第(1)式のXC
の式のみを計算してX方向の星像中心位置の計算精度を
評価することにする。
In order to actually demonstrate the significance of this method, we will consider only the part of the COD surrounded by the thick line in Figure 2, and use equation (1) from the signal value of the pixel in the thick line. XC
We will evaluate the calculation accuracy of the star image center position in the X direction by calculating only the equation.

第(1)式および第(2)式にみるように、XCを求め
る式とycを求める式は独立である(XCを求めるとき
Y方向の信号分布は影響しない)ことから、このような
評価により一般性を失わない。
As shown in equations (1) and (2), the equation for calculating XC and the equation for calculating yc are independent (the signal distribution in the Y direction has no effect when calculating XC), so such an evaluation without loss of generality.

評価の際、星信号の強度分布を第6図のように仮定した
。第6図において、横軸のひとめちりは1ビクセルの長
さに対応する。原点が星像の中心であり、縦軸は、中心
からある距離をおいた位置での信号強度を表す、また、
A/Dコンバータ4は4ビツト長とした。
During the evaluation, the intensity distribution of the star signal was assumed as shown in Figure 6. In FIG. 6, each line on the horizontal axis corresponds to the length of one pixel. The origin is the center of the star image, and the vertical axis represents the signal strength at a certain distance from the center.
The A/D converter 4 has a length of 4 bits.

星の中心位置が1ビクセルのなかの種々の位置をとった
ときの、真の星像位置と第(1)式および第(2)式に
よってコンピュータシミュレーションによる計算をした
星像中心のずれを示したものが第7図、第8図である6
両図において、横軸は星像中心の、あるとクセルの中心
からのずれ、縦軸には横軸で示される位置に星像中心が
あるときの星像中心計算誤差を表す、第8図は、従来の
方法で星の中心位置を算出したときの誤差の様子を示し
たものであり、第7図は本発明の方式によって星の中心
位置を算出したときの誤差の様子を示したものである。
Shows the deviation between the true star image position and the star image center calculated by computer simulation using equations (1) and (2) when the star center position takes various positions within 1 pixel. Figures 7 and 8 are 6
In both figures, the horizontal axis represents the deviation of the star image center, if any, from the center of the xel, and the vertical axis represents the star image center calculation error when the star image center is at the position indicated on the horizontal axis. Figure 7 shows the error when calculating the center position of a star using the conventional method, and Figure 7 shows the error when calculating the center position of a star using the method of the present invention. It is.

ここに示した例では、Qo=0.5.R,=0.8とし
た。両図を比較することにより、本方式によって精度が
最高約3倍以上向上することがわかる。
In the example shown here, Qo=0.5. R,=0.8. By comparing both figures, it can be seen that this method improves the accuracy by a maximum of about 3 times or more.

(発明の効果) 本発明のスターセンサは、従来のスターセンサが星像の
強度分布の周辺の信号が小さいことから、この信号をA
/D変換して量子化する際に生ずる誤差が星像中心を求
める精度を悪くしている原因であることを考慮して、非
線形増幅器で低いレベルの信号は高い利得で増幅し、高
いレベルの信号は低い利得で増幅した後にA/D変換し
、そしてA/D変換されたあとの信号に対して非線形増
幅効果の補正を含む計算処理をすることにより、A/D
変換の際の誤差を小さく抑えられ星光の入射方向を精度
よく算出することができるという利点がある。
(Effects of the Invention) The star sensor of the present invention has a conventional star sensor that produces small signals around the intensity distribution of a star image.
Considering that the error that occurs during /D conversion and quantization is the cause of poor accuracy in determining the star image center, low-level signals are amplified with high gain using a nonlinear amplifier, and high-level signals are The signal is A/D converted after being amplified with a low gain, and the A/D converted signal is subjected to calculation processing including correction of nonlinear amplification effects.
This has the advantage that the error during conversion can be kept small and the direction of incidence of starlight can be calculated with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のスターセンサの実施例の構成図、第2
図はCCD上の星像図、第3図は星信号の強度分布図、
第4図は非線形増幅器の特性図、第5図は非線形効果補
正の特性図、第6図は精度評価において仮定した星信号
強度分布図、第7図は本発明のスターセンサによる星像
中心計算誤差を示す図、第8図は従来のスターセンサに
よる星像中心計算誤差を示す図、第9図は従来のスター
センサの構成図である。 1・・・・・・光学系、 2・・・・・・CCD、 3
・・・・・・信号処理部、 4・・・・・・A/Dコン
バータ、 5・・・・・・計算処理部、 6・・・・・
・CCDのビクセル、7・・・・・・星の像、 8・・
・・・・第3図の星信号の強度分布の信号強度表示に用
いるビクセルの領域、9・・・・・・非線形増幅器。 代理人 弁理士  八 幡  義 博 ネe所のズター七)すの梵鉋例の7限威図第 / 図 CCD上の星儂図 第2 図 星e号/l劫介布間 第3 図 第 5 図 祷〕ζした星信号分]した布間 隼 C図
Figure 1 is a configuration diagram of an embodiment of the star sensor of the present invention, Figure 2 is a configuration diagram of an embodiment of the star sensor of the present invention.
The figure is a star image map on the CCD, and Figure 3 is a star signal intensity distribution map.
Figure 4 is a characteristic diagram of the nonlinear amplifier, Figure 5 is a characteristic diagram of nonlinear effect correction, Figure 6 is a star signal intensity distribution diagram assumed in accuracy evaluation, and Figure 7 is a star image center calculation using the star sensor of the present invention. FIG. 8 is a diagram showing the error in star image center calculation by a conventional star sensor, and FIG. 9 is a configuration diagram of the conventional star sensor. 1...Optical system, 2...CCD, 3
... Signal processing section, 4 ... A/D converter, 5 ... Calculation processing section, 6 ...
・CCD vixel, 7...Star image, 8...
...Vixel region used to display the signal strength of the star signal intensity distribution in Figure 3, 9...Nonlinear amplifier. Agent: Yoshi Yahata, Hiroshi Hiroshi's Zutter 7) Suno's Sanskrit Plane Example 7th Edition / Diagram CCD's Star Map No. 2 Diagram E/l Kosuke Fuma No. 3 Diagram No. 5 Illustrated prayer] Hayabusa Funoma who received the star signal

Claims (1)

【特許請求の範囲】[Claims] 人工衛星等の姿勢制御装置において、星からの入射光を
取り込む光学系と所定の位置関係をもつて配置されたC
CDを含む星光検出手段と;該星光検出手段から出力さ
れる星光検出出力信号を受けて低いレベルの信号に対し
ては高い利得で増幅し、高いレベルの信号に対しては低
い利得で増幅する非線形増幅器と;該非線形増幅器から
の出力信号を受けて所定ビット数のディジタル信号に変
換するA/D変換器と;前記ディジタル信号を受けて、
前記非線形増幅による非線形効果を補正した前記星光の
入射方向を算出する星光入射方向算出手段と;を具備す
ることを特徴とするスターセンサ。
In attitude control devices for artificial satellites, C is placed in a predetermined positional relationship with the optical system that captures incident light from stars.
A starlight detection means including a CD; upon receiving a starlight detection output signal output from the starlight detection means, a low level signal is amplified with a high gain, and a high level signal is amplified with a low gain. a nonlinear amplifier; an A/D converter that receives an output signal from the nonlinear amplifier and converts it into a digital signal of a predetermined number of bits; receives the digital signal;
A star sensor comprising: a starlight incident direction calculation means for calculating an incident direction of the starlight with the nonlinear effect due to the nonlinear amplification corrected;
JP62140626A 1987-06-04 1987-06-04 Star sensor Pending JPS63304113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140626A JPS63304113A (en) 1987-06-04 1987-06-04 Star sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140626A JPS63304113A (en) 1987-06-04 1987-06-04 Star sensor

Publications (1)

Publication Number Publication Date
JPS63304113A true JPS63304113A (en) 1988-12-12

Family

ID=15273076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140626A Pending JPS63304113A (en) 1987-06-04 1987-06-04 Star sensor

Country Status (1)

Country Link
JP (1) JPS63304113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059295A (en) * 2012-08-14 2014-04-03 Inst Of Optics & Electronics Chinese Academy Of Science Method for removing offset of light spot centroid due to crosstalk
CN107883945A (en) * 2017-10-11 2018-04-06 北京控制工程研究所 It is a kind of to suppress angle star sensor without the sun

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059295A (en) * 2012-08-14 2014-04-03 Inst Of Optics & Electronics Chinese Academy Of Science Method for removing offset of light spot centroid due to crosstalk
CN107883945A (en) * 2017-10-11 2018-04-06 北京控制工程研究所 It is a kind of to suppress angle star sensor without the sun

Similar Documents

Publication Publication Date Title
CN108805934B (en) External parameter calibration method and device for vehicle-mounted camera
CN101268682B (en) Method and apparatus providing imager noise reduction using parallel input arithmetic mean modules
US9654706B2 (en) Method for reducing image fuzzy degree of TDI-CCD camera
CN107644435B (en) Attitude correction-considered agile optical satellite field-free geometric calibration method and system
CN204613493U (en) Pick-up lens and possess the camera head of pick-up lens
CN204129311U (en) Pick-up lens and possess the camera head of pick-up lens
CN105578009A (en) Light spot imaging device
US10803621B2 (en) Method and device for building camera imaging model, and automated driving system for vehicle
CN101755190A (en) Calibration method, calibration device, and calibration system having the device
US9117271B2 (en) Apparatus, method and recording medium for image processing
CN110648298A (en) Optical aberration distortion correction method and system based on deep learning
CN106878700B (en) wide-angle lens correction system and method thereof
KR100744937B1 (en) Lens distortion correction method
CN110986998B (en) Satellite video camera on-orbit geometric calibration method based on rational function model
JP2015220716A (en) Imaging element, control method of the same, control program, and signal processor
CN115311365A (en) High-precision on-orbit geometric positioning method for long-linear-array swinging camera
JPS63304113A (en) Star sensor
CN101827274A (en) Image processing apparatus, image processing method and camera head
JP5349273B2 (en) RPC calculator
CN117308889B (en) High-precision celestial body measuring method for all chip units of joint spliced CCD
JP2020107938A (en) Camera calibration device, camera calibration method, and program
JP2021040210A (en) Imaging apparatus and signal processing apparatus
JPH04165777A (en) Picture element signal correcting device
JP4523422B2 (en) Satellite image position correction device
US6928853B2 (en) Method and device for the hysteresis correction of measured values for sensors with extensometers