JPS63303932A - Production of 4-methyl-1-pentene - Google Patents

Production of 4-methyl-1-pentene

Info

Publication number
JPS63303932A
JPS63303932A JP62141151A JP14115187A JPS63303932A JP S63303932 A JPS63303932 A JP S63303932A JP 62141151 A JP62141151 A JP 62141151A JP 14115187 A JP14115187 A JP 14115187A JP S63303932 A JPS63303932 A JP S63303932A
Authority
JP
Japan
Prior art keywords
methyl
pentene
carbon atoms
alkali metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62141151A
Other languages
Japanese (ja)
Other versions
JP2608722B2 (en
Inventor
Takao Hibi
卓男 日比
Yasuhiko Too
東尾 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62141151A priority Critical patent/JP2608722B2/en
Publication of JPS63303932A publication Critical patent/JPS63303932A/en
Application granted granted Critical
Publication of JP2608722B2 publication Critical patent/JP2608722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance by dimerizing propylene in the presence of a catalyst produced by supporting an alkali metal on anhydrous potassium carbonate carrier and treating the product with specific alcohols, phenols, etc. CONSTITUTION:The titled substance can be produced with little by-production of 4-methyl-2-pentene, by carrying out dimerization reaction of propylene at 100-200 deg.C and 30-200kg/cm<2> pressure for 2-5hr using a catalyst produced by supporting an alkali metal on anhydrous potassium carbonate carrier and treating the supported product with a specific compound. The supporting is preferably carried out by stirring an anhydrous potassium carbonate carrier and 1-5wt.% of an alkali metal (based on the carrier) at a melting temperature of the alkali metal. The objective catalyst is produced by treating the supported product with a compound selected from 1-10C alcohols, 6-10C phenols, 3-30C amines, 2-20C ethers and 3-20C ketones. The titled substance is useful e.g. as a raw material for heat-resistant polymer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はプロピレンの二量化による4−メチル−1−ペ
ンテンの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing 4-methyl-1-pentene by dimerization of propylene.

4−メチル−1−ペンテンは耐熱性ポリマーの原料、ポ
リオレフィン用のコモノマー等とじて工業的に極めて有
用である。
4-Methyl-1-pentene is extremely useful industrially as a raw material for heat-resistant polymers, a comonomer for polyolefins, and the like.

〈従来の技術〉 プロピレンを二量化して4−メチル−ニーペンテンを製
造する方法はよく知られており2種種の触媒が用いられ
ている。またこのプロピレン二量化触媒として無水炭酸
カリウム担体にアルカリ金属を担持した触媒を用いるこ
とも知られている(特公昭43−25344号公報)。
<Prior Art> The method for producing 4-methyl-neepentene by dimerizing propylene is well known, and two types of catalysts are used. It is also known to use a catalyst in which an alkali metal is supported on an anhydrous potassium carbonate carrier as the propylene dimerization catalyst (Japanese Patent Publication No. 43-25344).

しかしながらこれらの方法においては、目的の4−メチ
ル−1−ペンテンの他にかなりの4−メチル−2−ペン
テンが副生ずる。4−メチル−2−ペンテンは4−メチ
ル−1−ペンテンとその沸点が非常に近いために2両者
を分離して4−メチル−1−ペンテンを精製するために
は多段の蒸留塔及び多量のスチームが必要となる。
However, in these methods, in addition to the desired 4-methyl-1-pentene, a considerable amount of 4-methyl-2-pentene is produced as a by-product. Since the boiling points of 4-methyl-2-pentene and 4-methyl-1-pentene are very close, it takes multiple distillation columns and a large amount of water to separate the two and purify 4-methyl-1-pentene. Steam is required.

〈発明が解決しようとする問題点〉 本発明はかかる従来の技術の欠点、即ちプロピレンを二
量化して4−メチル−1−ペンテンを製造する方法にお
いて4−メチル−2−ペンテンの副生ヲ抑制し、4−メ
チル−1−ペンテンを選択的に得る工業的に有利な方法
を提供することを目的とするものである。
<Problems to be Solved by the Invention> The present invention solves the drawbacks of the conventional techniques, namely, the by-product of 4-methyl-2-pentene in the method of dimerizing propylene to produce 4-methyl-1-pentene. The object of the present invention is to provide an industrially advantageous method for selectively obtaining 4-methyl-1-pentene.

く問題点を解決するための手段〉 本発明者らはプロピレンを三量化して4−メチル−1−
ペンテンを製造する方法において。
Means for Solving the Problems〉 The present inventors trimerized propylene to produce 4-methyl-1-
In a method of manufacturing pentene.

4−メチル−2−ペンテンの副生を抑制し、4−メチル
−1−ペンテンを選択性よく得るための工業的に有利な
方法について鋭意研究を行い。
We conducted extensive research on an industrially advantageous method for suppressing the by-product of 4-methyl-2-pentene and obtaining 4-methyl-1-pentene with good selectivity.

本発明に到達したものである。This has led to the present invention.

すなわち本発明はプロピレンを三量化し、4−メチル−
1−ペンテンを製造する方法において、無水炭酸カリウ
ム担体にアルカリ金属を担持した後、炭素数1〜10の
アルコール類、炭素数6〜10のフェノール類、 炭素
数3〜30のアミン類、炭素数2〜20のエーテル類及
び炭素数3〜20のケトン類から選ばれる少な(とも1
種以上の化合物で処理したものを触媒として用いて反応
を行うことを特徴とする4−メチル−1−ペンテンの製
造法である。
That is, the present invention trimerizes propylene to produce 4-methyl-
In the method for producing 1-pentene, after supporting an alkali metal on an anhydrous potassium carbonate carrier, alcohols having 1 to 10 carbon atoms, phenols having 6 to 10 carbon atoms, amines having 3 to 30 carbon atoms, and carbon atoms A small amount selected from ethers having 2 to 20 carbon atoms and ketones having 3 to 20 carbon atoms (both 1
This is a method for producing 4-methyl-1-pentene, characterized in that the reaction is carried out using as a catalyst a product treated with more than one type of compound.

本願発明方法に用いられる担持触媒に使用するアルカリ
金属としてはリチウム、ナトリウム。
The alkali metals used in the supported catalyst used in the method of the present invention include lithium and sodium.

カリウム、ルビジウム、セシウム等が挙げられるが、好
ましくはナトリウム、カリウムが用いられる。
Examples include potassium, rubidium, cesium, etc., but sodium and potassium are preferably used.

無水炭酸カリウム担体にアルカリ金属を担持する方法と
しては液体アンモニアにアルカリ金属を溶解して担体に
含浸する方法、アルカリ金属を担体に蒸着させる方法な
どが挙げられるが。
Examples of methods for supporting an alkali metal on an anhydrous potassium carbonate carrier include a method in which the alkali metal is dissolved in liquid ammonia and impregnated into the carrier, and a method in which the alkali metal is vapor-deposited on the carrier.

好ましい例としてはアルカリ金属の融解する温度で担体
とアルカリ金属を撹拌する方法が挙げられる。
A preferred example is a method in which the carrier and the alkali metal are stirred at a temperature at which the alkali metal melts.

アルカリ金属の担持量は好ましくは無水炭酸カリウム担
体に対して0.5〜10重量%、さらに好ましくは1〜
5重量%である。
The amount of alkali metal supported is preferably 0.5 to 10% by weight, more preferably 1 to 10% by weight based on the anhydrous potassium carbonate carrier.
It is 5% by weight.

次に担持物の処理に使用する化合物について説明する。Next, the compounds used for treating the supported material will be explained.

本願発明方法において担持物の処理に使用する化合物は
炭素数1〜10のアルコール類、炭素数6〜10のフェ
ノール類、炭素数3〜30のアミン類、炭素数2〜20
のエーテル類、炭素数3〜20のケトン類から選ばれる
少なくとも1種以上の化合物である。
The compounds used in the treatment of the supported material in the method of the present invention include alcohols having 1 to 10 carbon atoms, phenols having 6 to 10 carbon atoms, amines having 3 to 30 carbon atoms, and amines having 2 to 20 carbon atoms.
is at least one compound selected from ethers and ketones having 3 to 20 carbon atoms.

炭素数1〜10のアルコール類としてはエタノール、ブ
タノール、オクタツール等が挙げられるが、好ましくは
炭素数1〜10の脂肪族アルコール類が用いられる。
Examples of alcohols having 1 to 10 carbon atoms include ethanol, butanol, octatool, etc., but aliphatic alcohols having 1 to 10 carbon atoms are preferably used.

炭素数6〜10のフェノール類としてはフェノール、ク
レゾール、キシレノール等が挙げられるが、好ましくは
フェノールが用いられる。
Examples of phenols having 6 to 10 carbon atoms include phenol, cresol, xylenol, etc., and phenol is preferably used.

炭素数3〜30のアミン類としてはイソブチルアミン、
N−メチルピペリジン、トリオクチルアミン、アニリン
等が挙げられるが、好ましくは炭素数3〜30の脂肪族
3級アミンあるいは炭素数3〜30の脂環式3級アミン
が用いられる。
Examples of amines having 3 to 30 carbon atoms include isobutylamine,
Examples include N-methylpiperidine, trioctylamine, aniline, etc., but preferably an aliphatic tertiary amine having 3 to 30 carbon atoms or an alicyclic tertiary amine having 3 to 30 carbon atoms is used.

炭素数2〜20のエーテル類としてはジブチルエーテル
、ジオクチルエーテル、テトラヒドロフラン、ジフェニ
ルエーテル等が挙げられる。
Examples of the ethers having 2 to 20 carbon atoms include dibutyl ether, dioctyl ether, tetrahydrofuran, and diphenyl ether.

炭素数3〜20のケトン類としてはアセトン。Acetone is a ketone having 3 to 20 carbon atoms.

メチルエチルケトン、ジオクチルケトン、アセトフェノ
ン等が挙げられる。
Examples include methyl ethyl ketone, dioctyl ketone, acetophenone, and the like.

さらに好ましくは炭素数1〜10の脂肪族アルコール、
炭素数3〜30の脂肪族3級アミン、炭素数3〜30の
脂環式3級アミンから選ばれる少くとも1種以上の化合
物が用いられる。
More preferably, an aliphatic alcohol having 1 to 10 carbon atoms,
At least one compound selected from aliphatic tertiary amines having 3 to 30 carbon atoms and alicyclic tertiary amines having 3 to 30 carbon atoms is used.

これらの化合物は通常単独で用いられるが。Although these compounds are usually used alone.

場合によっては2種以上の化合物を混合して用いてもよ
い。また同一化合物内にヒドロキシル基、アミン基、エ
ーテル基、カルボニル基より選ばれる2種以上の置換基
を有する化合物を用いてもよい。
In some cases, two or more compounds may be used in combination. Further, a compound having two or more types of substituents selected from a hydroxyl group, an amine group, an ether group, and a carbonyl group within the same compound may be used.

これらの化合物で担持物を処理する場合は。When treating supports with these compounds.

通常不活性ガス雰囲気下あるいは乾燥した炭化水素など
の溶媒中で行う。不活性ガスの例としては窒素などであ
る。
It is usually carried out under an inert gas atmosphere or in a dry solvent such as a hydrocarbon. An example of an inert gas is nitrogen.

炭化水素の例としては、炭素数5〜8の飽和炭化水素あ
るいは原料プロピレンなどが挙げられる。担持物をこれ
らの化合物で処理する方法の例としては、゛前記の炭化
水素溶媒にこれらの化合物を溶解し溶液とした後、一時
的に担持物に含浸させる方法、一時的に通液接触させる
方法、あるいは、溶液で担持物を処理した後間−系内に
プロピレンを仕込んでバッチ反応を行う方法などが挙げ
られる。溶液中のこれらの化合物の濃度の例は好ましく
は0.5〜100重量%。
Examples of hydrocarbons include saturated hydrocarbons having 5 to 8 carbon atoms and raw material propylene. Examples of methods for treating a supported material with these compounds include ``dissolving these compounds in the hydrocarbon solvent described above to form a solution, and then temporarily impregnating the supported material, and temporarily bringing the solution into contact with a liquid. Alternatively, a method may be used in which a supported material is treated with a solution and then propylene is charged into the system to perform a batch reaction. Examples of concentrations of these compounds in solution are preferably 0.5 to 100% by weight.

さらに好ましくは1〜10重量%である。これらの化合
物の添加量の例としては、無水炭酸カリウム担体に担持
したアルカリ金属のモル数に対して、好ましくは0.0
1〜1.0モル、さらに好ましくは0.05〜0.5モ
ルである。
More preferably, it is 1 to 10% by weight. As an example of the amount of these compounds added, it is preferably 0.0 based on the number of moles of the alkali metal supported on the anhydrous potassium carbonate carrier.
The amount is 1 to 1.0 mol, more preferably 0.05 to 0.5 mol.

次に本発明の実施方法について説明する。反応方法は特
に限定されないが、粉末触媒をオートクレーブに充填し
て行うバッチ反応、あるいは流動床方式、固定床方式の
流通反応などが挙げられる。
Next, a method of implementing the present invention will be explained. The reaction method is not particularly limited, but examples include a batch reaction performed by filling an autoclave with a powdered catalyst, and a flow reaction using a fluidized bed system or a fixed bed system.

反応温度は通常50〜300°Cが採用され、好ましく
は100〜200°Cが採用される。反応圧力は通常大
気圧〜300kg 7cm2が採用され、好ましくは3
0〜200 kg/am”が採用される。
The reaction temperature is usually 50 to 300°C, preferably 100 to 200°C. The reaction pressure is usually atmospheric pressure to 300 kg 7 cm2, preferably 300 kg 7 cm2.
0 to 200 kg/am” is adopted.

バッチ反応において触媒の濃度としては通常1〜50重
量%が採用され、好ましくは1〜30重量%が採用され
る。また反応時間は通常1〜15時間であり、好ましく
は2〜5時間である。
In batch reactions, the catalyst concentration is usually 1 to 50% by weight, preferably 1 to 30% by weight. Further, the reaction time is usually 1 to 15 hours, preferably 2 to 5 hours.

流通反応において、プロピレン供給速度は通常LH3V
で0.05〜15 hr−’であり、好ましくは0.1
〜5 hr−1が採用される。
In the flow reaction, the propylene feed rate is usually LH3V
from 0.05 to 15 hr-', preferably 0.1
~5 hr−1 is adopted.

以下に実施例によって本発明方法をさらに詳細に説明す
るが2本発明は以下の実施例によって制約されるもので
はない。
The method of the present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples.

〈実施例〉 比較例1 直径4mmの円柱状無水炭酸カリウム244gを硬質ガ
ラス製フラスコに入れ窒素雰囲気下350℃で2時間乾
燥し2次いで金属す)lラム6.8gを加え、窒素気流
中250°Cで5時間撹拌し、触媒を調製した。
<Example> Comparative Example 1 244 g of cylindrical anhydrous potassium carbonate with a diameter of 4 mm was placed in a hard glass flask and dried at 350° C. for 2 hours under a nitrogen atmosphere. Then, 6.8 g of metal ram was added, and the flask was heated at 250 g in a nitrogen stream. The catalyst was prepared by stirring at °C for 5 hours.

以下(こ、流通反応装置で反応を行った。The following reaction was carried out in a flow reactor.

内径15tnmのステンレス製反応管に触媒を91m1
充填し、窒素雰囲気とする。次いで反応管を加熱し触媒
を温度153°Cに保った。圧力108kg/cm2に
おいて液化プロピレンを70 ml /hで流通させた
。21時間後反応液を分析した。分析はガスクロマトグ
ラフィーで行った。反応結果は、プロヒレン転化率21
%、4−メチル−1−ペンテン(以下4MIPと記す)
選択率77.2%、4−メチル−2−ペンテン(以下4
M2Pと記載)選択率11.0%であった。4MIP選
択率と4M2P選択率の比は4MI P/4M2P=7
であった。さらに147.5時間後反応液を分析した。
91ml of catalyst was placed in a stainless steel reaction tube with an inner diameter of 15tnm.
Fill with nitrogen atmosphere. The reaction tube was then heated to maintain the catalyst at a temperature of 153°C. Liquefied propylene was flowed at a rate of 70 ml/h at a pressure of 108 kg/cm2. After 21 hours, the reaction solution was analyzed. Analysis was performed by gas chromatography. The reaction result was a prohylene conversion rate of 21
%, 4-methyl-1-pentene (hereinafter referred to as 4MIP)
Selectivity 77.2%, 4-methyl-2-pentene (hereinafter 4
(Described as M2P) The selectivity was 11.0%. The ratio of 4MIP selection rate and 4M2P selection rate is 4MIP/4M2P=7
Met. After a further 147.5 hours, the reaction solution was analyzed.

反応結果は、プロピレン転化率15%、4MIP選択率
77.0%、4M2P選択率12.696であった。4
MIP選択率と4M2P選択率の比は4MI P/4M
2P= 6であった。
The reaction results were a propylene conversion rate of 15%, a 4MIP selectivity of 77.0%, and a 4M2P selectivity of 12.696. 4
The ratio of MIP selection rate and 4M2P selection rate is 4MIP/4M
2P=6.

実施例1 比較例1と同様にして、触媒を調製した。Example 1 A catalyst was prepared in the same manner as in Comparative Example 1.

比較例1と同様な反応管に触媒を100m1充填し、窒
素雰囲気とした。次にN−メチルピペリジン4.5g、
乾燥へブタン2Qml、プロピレン300 mlの混合
液を触媒の充填された反応管に注入し、80°C、10
0kg 7cm2 ニおいて4時間触媒を処理した。
A reaction tube similar to that in Comparative Example 1 was filled with 100 ml of catalyst and set in a nitrogen atmosphere. Next, 4.5 g of N-methylpiperidine,
A mixture of 2 Q ml of dry hebutane and 300 ml of propylene was injected into a reaction tube filled with catalyst, and heated at 80°C for 10
The catalyst was treated for 4 hours at 0 kg 7 cm2.

次いで比較例1と同様にプロピレン二量化反応を行った
。触媒温度を151°Cに保った。圧力103 kg 
7cm2 において液化プロピレンを68 ml /h
で流通させた。21時間後反応液を分析した。分析はガ
スクロマトグラフィーで行った。反応結果は、プロピレ
ン転化率32%4MIP選択率84.1ム 4M2P選
択率2.3%であった。
Next, a propylene dimerization reaction was carried out in the same manner as in Comparative Example 1. Catalyst temperature was maintained at 151°C. pressure 103 kg
68 ml/h of liquefied propylene in 7 cm2
It was distributed in After 21 hours, the reaction solution was analyzed. Analysis was performed by gas chromatography. The reaction results were a propylene conversion rate of 32%, a 4MIP selectivity of 84.1%, and a 4M2P selectivity of 2.3%.

4MIP選択率と4M2P選択率の比は4MIP/4M
2P=37であった。さらに153時間後反応液を分析
した。
The ratio of 4MIP selectivity and 4M2P selectivity is 4MIP/4M
2P=37. After a further 153 hours, the reaction solution was analyzed.

反応結果は、プロピレン転化率31%、4MIP選択率
83.5%、4M2P選択率2.796であった。4 
MI P選択率と4M2P選択率の比は。
The reaction results were a propylene conversion rate of 31%, a 4MIP selectivity of 83.5%, and a 4M2P selectivity of 2.796. 4
What is the ratio between MI P selectivity and 4M2P selectivity?

4MI P/4M2 P=31であった。4MI P/4M2 P=31.

実施例2〜9 実施例1で用いたN−メチルピペリジンのかわりに表1
に記載した化合物を用いる以外は実施例1と同月な方法
で触媒を調製した。ついで実施例1と同じ条件でプロピ
レンの二型化反応を行い2表1に示す結果を得た。
Examples 2-9 Table 1 instead of N-methylpiperidine used in Example 1
A catalyst was prepared in the same manner as in Example 1 except that the compound described in Example 1 was used. Next, a dimorphic reaction of propylene was carried out under the same conditions as in Example 1, and the results shown in Table 1 were obtained.

表  1 (注)反応成績は反応開始20時間後の値である。Table 1 (Note) Reaction results are values 20 hours after the start of the reaction.

以上の実験結果から解るように、高い4MIPの選択率
を得た。特に4MIPと4M2Pの選択率の比4MIP
/4M2Pが大巾に向上し。
As can be seen from the above experimental results, a high selectivity of 4MIP was obtained. Especially the ratio of selectivity between 4MIP and 4M2P 4MIP
/4M2P has been greatly improved.

反応物の蒸留等による分離が容易になることを示してい
る。
This indicates that the reaction products can be easily separated by distillation or the like.

〈発明の効果〉 以上の如く本発明によりプロピレンを三量化し、4−メ
チル−1−ペンテンを製造する方法において、4−メチ
ル−2−ペンテンをほとんど副生ずることなく、4−メ
チル−1−ペンテンを高選択率で製造できるようになっ
た。
<Effects of the Invention> As described above, in the method of trimerizing propylene to produce 4-methyl-1-pentene according to the present invention, 4-methyl-1-pentene is produced almost without producing 4-methyl-2-pentene as a by-product. Pentene can now be produced with high selectivity.

Claims (1)

【特許請求の範囲】[Claims] プロピレンを二量化し、4−メチル−1−ペンテンを製
造する方法において、無水炭酸カリウム担体にアルカリ
金属を担持した後、炭素数1〜10のアルコール類、炭
素数6〜10のフェノール類、炭素数3〜30のアミン
類、炭素数2〜20のエーテル類、炭素数3〜20のケ
トン類から選ばれる少なくとも1種以上の化合物で処理
したものを触媒として用いて反応を行うことを特徴とす
る4−メチル−1−ペンテンの製造法。
In a method for producing 4-methyl-1-pentene by dimerizing propylene, after supporting an alkali metal on an anhydrous potassium carbonate carrier, alcohols having 1 to 10 carbon atoms, phenols having 6 to 10 carbon atoms, carbon The reaction is carried out using as a catalyst a compound treated with at least one compound selected from amines having 3 to 30 carbon atoms, ethers having 2 to 20 carbon atoms, and ketones having 3 to 20 carbon atoms. A method for producing 4-methyl-1-pentene.
JP62141151A 1987-06-04 1987-06-04 Method for producing 4-methyl-1-pentene Expired - Lifetime JP2608722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141151A JP2608722B2 (en) 1987-06-04 1987-06-04 Method for producing 4-methyl-1-pentene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141151A JP2608722B2 (en) 1987-06-04 1987-06-04 Method for producing 4-methyl-1-pentene

Publications (2)

Publication Number Publication Date
JPS63303932A true JPS63303932A (en) 1988-12-12
JP2608722B2 JP2608722B2 (en) 1997-05-14

Family

ID=15285325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141151A Expired - Lifetime JP2608722B2 (en) 1987-06-04 1987-06-04 Method for producing 4-methyl-1-pentene

Country Status (1)

Country Link
JP (1) JP2608722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266834A (en) * 1991-02-20 1992-09-22 Kobe Steel Ltd Production of dialkylnaphthalene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993303A (en) * 1973-01-11 1974-09-05
JPS60215638A (en) * 1984-04-11 1985-10-29 Nippon Oil Co Ltd Preparation of 4-methyl-1-pentene
JPS61106526A (en) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd Production of 4-methyl-1-pentene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993303A (en) * 1973-01-11 1974-09-05
JPS60215638A (en) * 1984-04-11 1985-10-29 Nippon Oil Co Ltd Preparation of 4-methyl-1-pentene
JPS61106526A (en) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd Production of 4-methyl-1-pentene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266834A (en) * 1991-02-20 1992-09-22 Kobe Steel Ltd Production of dialkylnaphthalene

Also Published As

Publication number Publication date
JP2608722B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US9403742B2 (en) Process for the synthesis of trifluoroethylene
JPS6221771B2 (en)
RU1811522C (en) Method of 1,1,1,2-tetrafluoroethane synthesis
Schneider et al. A new triphasic solid-solid-liquid catalytic system for the inexpensive and selective oxidation of secondary alcohols by calcium hypochlorite
CN107365244B (en) Method for preparing 1H-perhalo cyclic olefin by hydrogen-halogen exchange reaction through hydrogen source provided by organic solvent
EP3015446B1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
US7396945B1 (en) Method of preparing tetrahydrofuran
JPS63303932A (en) Production of 4-methyl-1-pentene
US3471563A (en) Hydrogenation of adiponitrile over alkali moderated ruthenium
JP2007008850A (en) Method for producing monohydroxyacetone
EP3831813B1 (en) Method for producing aromatic nitrile compound and method for producing carbonate ester
US3217041A (en) Preparation of olefinic oxygencontaining compounds
WO2016073750A1 (en) Metathesis catalysts and methods thereof
US4045484A (en) Process for preparing N&#39;-methyl acethydrazide
TWI725046B (en) Method for producing halogenated acrylate ester derivate
EP3135661B1 (en) Method for producing halogenated acrylic acid derivative
JP2749664B2 (en) Propylene production method
US4684758A (en) Production of 2,5-dimethyl-2,4-hexadiene
JP4359447B2 (en) Method for producing monohydroxyacetone
US4014941A (en) Method of producing α,β-unsaturated ether
US5693806A (en) Process for producing pyrazine compounds
JPS63253037A (en) Production of 4-methyl-1-pentene
CA2155155A1 (en) Process for the preparation of trichloroacetyl chloride
CA1088097A (en) Process for preparing n&#39;-methyl acethydrazide
KR930005305B1 (en) Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use