JPS63303705A - Manufacture of large carbon containing brick - Google Patents

Manufacture of large carbon containing brick

Info

Publication number
JPS63303705A
JPS63303705A JP14050887A JP14050887A JPS63303705A JP S63303705 A JPS63303705 A JP S63303705A JP 14050887 A JP14050887 A JP 14050887A JP 14050887 A JP14050887 A JP 14050887A JP S63303705 A JPS63303705 A JP S63303705A
Authority
JP
Japan
Prior art keywords
compound
rubber
rubber mold
mold
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14050887A
Other languages
Japanese (ja)
Inventor
Shigetoshi Uto
宇都 重俊
Makoto Geshi
誠 下司
Naohito Okamoto
尚人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP14050887A priority Critical patent/JPS63303705A/en
Publication of JPS63303705A publication Critical patent/JPS63303705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To obtain a brick with low porosity of at most 3% by a method in which after a primarily formed abject obtained by forming primarily a compound containing carbon has been covered with a rubber mold, the inside of the rubber mold is sucked to vacuum, and then the compound is secondarily molded by an isostatic press. CONSTITUTION:The primary forming of a compound containing carbon is carried out by hand blow, oil press, friction press or vibration, etc. After the primarily formed object with plasticity has been covered with a rubber mold, the inside of the rubber mold is sucked to vacuum, and the object is isostatically pressed. The rubber mold has preferably the thickness of 5-10mm, and its material is composed of raw rubber, silicon rubber or urethane rubber, etc. In order to remove the air in the primarily formed object and to heighten the degree of pilling, vacuum treatment is achieved. If air remains inside, inner cracks occurs in isostatic press under reduced pressure. The filling defect due to the friction between the mold and the compound is prevented by the isostatic press. The compound is pressurized on the whole surface by pressure contact of the rubber mold with the compound, whereby the uniformly molded object having less restoration due to the spring back of the carbon, may be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカーボンを含有した均質で緻密な大型煉瓦の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing homogeneous and dense large-sized bricks containing carbon.

(従来の技術) 転炉等の製鋼炉用のカーボン含有耐火物は複合吹錬等の
操業条件の過酷化に伴い耐火物の低気孔率化、1m以上
の大型長尺化が要求されてきた。
(Prior art) Carbon-containing refractories for steelmaking furnaces such as converters have been required to have lower porosity and be larger and longer than 1 meter due to harsher operating conditions such as compound blowing. .

耐火物の低気孔率化はカーボン含有耐火物の損耗の一因
であるカーボンの酸化を防止するために通気性を減少さ
せるものであり、大型長尺化は従来のつなぎ積み構造の
欠点である第一層目の残存量が少なくなった時の離脱に
よる溶損速度の増加を解消し、炉寿命を延長させるもの
である。かかる耐火物の製造はカーボンを含有した配合
を調合し、混合・混練した配合物をオイルプレス又はフ
リクシランプレス等で成形するのが一般的である。オイ
ルプレス、フリクシランプレスは固定された金型に所定
量の配合物を投入し、上、下より加圧するいわゆる一軸
加圧成形である。使用されるカーボン原料は通常りん片
状をなしたりん状黒鉛で10〜25w t%添加されて
いる。
Lowering the porosity of refractories reduces air permeability in order to prevent carbon oxidation, which is one of the causes of wear and tear in carbon-containing refractories, and increasing the size and length of refractories is a drawback of conventional tie-laminated structures. This eliminates the increase in erosion rate due to detachment when the remaining amount in the first layer is low, and extends the life of the furnace. In the production of such refractories, it is common to prepare a composition containing carbon, and then to form the mixed and kneaded composition using an oil press, a Frixilane press, or the like. Oil press and Frixilan press are so-called uniaxial pressure molding in which a predetermined amount of the compound is put into a fixed mold and pressurized from above and below. The carbon raw material used is usually scaly graphite, which is added in an amount of 10 to 25 wt%.

りん状黒鉛を添加した配合物の一軸加圧成形は加圧方向
と直角にりん状黒鉛が配列する傾向を示し、耐火物使用
時の加熱を想定した還元焼成処理の評価では、加圧方向
のカーボンのスプリングバックによる戻りによって気孔
率を高める他、不均一な充填分布となる等物理的欠点を
有していた。
Uniaxial pressure molding of a compound containing phosphorescent graphite shows a tendency for phosphorescent graphite to be aligned perpendicular to the pressure direction, and in an evaluation of reduction firing treatment assuming heating when using refractories, In addition to increasing the porosity due to carbon returning due to springback, it also had physical drawbacks such as non-uniform filling distribution.

−軸加工成形の場合は大型長尺になるほど加圧面積が増
し、単位面積当りの加圧力が減少して充填率が低下する
- In the case of shaft processing molding, the larger and longer the pressurized area increases, the pressurizing force per unit area decreases, and the filling rate decreases.

したがって、気孔率の増加を招き、煉瓦の大きさく加圧
面積の大きさ)に制限を受ける。されに−軸加工成形の
場合、セラミックス1881111 P979(198
3年)右横第6〜16行に記載されているように、金型
内壁に接する配合物の摩擦のために成形体内部への圧力
伝達が円滑にゆかないために前記記載の如き充填圧力分
布を示し、均質な成形体を得ることは困難であり、かつ
成形体の高さが太き(なるにつれさらに中心部の充填不
良をも生起していた。
Therefore, the porosity increases, and there are restrictions on the size of the brick and the size of the pressurized area. In the case of shaft processing molding, ceramics 1881111 P979 (198
3) As described in lines 6 to 16 on the right side, the pressure is not transmitted smoothly to the inside of the molded body due to the friction of the compound in contact with the inner wall of the mold, so the filling pressure as described above is lowered. It is difficult to obtain a homogeneous molded body with a uniform distribution, and the height of the molded body is thick (as the height of the molded body becomes thicker, filling defects also occur in the center).

(発明が解決しようとする問題点) 上述のように従来法では、−軸加工成形のために大型長
尺化になるにしたがって内部の充填不足が生じやすかっ
た。この充填不足を解消するには大型の成形設備が必要
であり、この設備投資が大変であった。一般的にカーボ
ン含有大型煉瓦は主として転炉、電気炉、混銑車及び真
空脱ガス炉等に用いられる。
(Problems to be Solved by the Invention) As described above, in the conventional method, as the size and length are increased due to -axis processing molding, insufficient filling of the inside tends to occur. In order to solve this shortage of filling, large molding equipment was required, and the investment in this equipment was significant. Generally, carbon-containing large bricks are mainly used in converters, electric furnaces, pig iron mixers, vacuum degassing furnaces, etc.

このマグネシア−カーボン質煉瓦は不焼成であり、気孔
率は3〜7%程度である。同材質の小。
This magnesia-carbon brick is unfired and has a porosity of about 3 to 7%. Small size made of the same material.

中型煉瓦(5〜80kg程度)は普通の成形機により2
〜3%程度の気孔率のものが得られるが近時製鋼炉の操
業条件の過酷化に対応するため大型長尺煉瓦(100〜
300kg以上)であっても3%以下の低気孔率化のも
のが強く要望されていた。
Medium-sized bricks (approximately 5 to 80 kg) are made using an ordinary molding machine.
Although it is possible to obtain a material with a porosity of about ~3%, large-sized long bricks (100~
There was a strong demand for a material with a low porosity of 3% or less even when the weight was 300 kg or more.

(問題点を解決するための手段) かかる問題点を解決するために本発明者等は種々検討を
加えた結果、二種の異なった成形方法を採ることによっ
て本発明方法を完成させたものである。すなわち、カー
ボン含有配合物を一次成形し、得られた一次成形体をゴ
ム型で被覆した後、ゴム型内部を真空にし、前記成形体
をアイソスタチックプレスで二次成形するものである。
(Means for solving the problem) In order to solve the problem, the present inventors conducted various studies, and as a result, completed the method of the present invention by adopting two different molding methods. be. That is, after primary molding a carbon-containing compound and covering the obtained primary molded body with a rubber mold, the inside of the rubber mold is evacuated and the molded body is secondary molded using an isostatic press.

本発明における一次成形は従来の定形耐火物の常法であ
る手打ち、オイルプレス、フリクシランプレス、振動等
で行うものであり、−火成形体の充填率は最終目標充填
率の70〜97%の範囲が適している。70%以下では
一次成形体から二次成形体への圧縮寸法変化率が大きく
寸法精度が不正確になりやすく、かつ作業能率の向上が
望めない、97%以上は一次成形体の充填組織の影響が
太き(なり緻密化及びりん状黒鉛の配列が方向性を示し
、均質な成形体が得難くなる。
The primary forming in the present invention is carried out by the usual methods for conventional shaped refractories, such as hand hammering, oil press, Frixilan press, vibration, etc. - The filling rate of the fire-formed body is 70 to 97% of the final target filling rate. range is suitable. If it is less than 70%, the compression dimensional change rate from the primary molded body to the secondary molded body is large, and the dimensional accuracy tends to be inaccurate, and no improvement in work efficiency can be expected.If it is more than 97%, it is affected by the filling structure of the primary molded body. The graphite becomes thick (and the densification and arrangement of the phosphor-like graphite show directionality, making it difficult to obtain a homogeneous molded body.

(作 用) アイソスタチックプレスは、−火成形した可塑性を有す
る一次成形体をゴム型で被覆した後、ゴム型内部を真空
にして行う。
(Function) Isostatic pressing is carried out by covering a fire-molded primary molded body with plasticity in a rubber mold, and then evacuating the inside of the rubber mold.

ゴム型は5〜10■の厚みが適しており、材質は生ゴム
、シリコンゴム、ウレタンゴム等である。
The suitable thickness of the rubber mold is 5 to 10 cm, and the material is raw rubber, silicone rubber, urethane rubber, etc.

真空処理を行うのは、−火成形体内の空気を除去し充填
を高めるものであり、空気を内存しているとアイソスタ
チックプレス減圧時に内部亀裂を生じる。アイソスタチ
ックプレスは一軸加圧成形の欠点である金型と配合物間
の摩擦による充填不良はなく、ゴム型が配合物に圧着し
全面から加圧され、カーボンのスプリングバックによる
戻りが少ない均質な成形体が得られる。
The purpose of vacuum treatment is to remove air within the fire-formed body and increase its filling, and if air is present, internal cracks will occur during isostatic press depressurization. Isostatic press eliminates filling defects caused by friction between the mold and compound, which is a disadvantage of uniaxial pressure molding, and the rubber mold presses against the compound and pressurizes from the entire surface, resulting in a homogeneous product with less return due to carbon springback. A molded body can be obtained.

アイソスタチックプレスの成形圧は1.0〜1.3t/
iが適しており、従来法では1.3 t /d以上の成
形圧でも低気孔率を得るのは困難であった。その理由は
アイソスタチックプレスが全面加圧であるからにほかな
らない。
The molding pressure of isostatic press is 1.0 to 1.3t/
i is suitable, and it was difficult to obtain a low porosity even at a molding pressure of 1.3 t /d or more using the conventional method. The reason for this is simply because the isostatic press applies pressure across the entire surface.

本発明における製造法は従来の成形設備を使用し、大型
長尺煉瓦を製造せんとするもので設備投資を必要としな
いのも有利な点である。アイソスタチックプレスは従来
から使用されているが一般的にゴム型に混練した配合物
を直接投入して行うものである0本発明においては一次
成形することにより、アイソスタチックプレス後の耐火
物の設定寸法が正確かつ均質、緻密な大型長尺耐火物が
得られる。
The manufacturing method of the present invention uses conventional molding equipment to manufacture large elongated bricks, and is advantageous in that it does not require any capital investment. Isostatic pressing has been used for a long time, but it is generally carried out by directly introducing the kneaded compound into a rubber mold.In the present invention, by primary forming, the refractory after isostatic pressing is Large, long refractories with accurate, uniform, and dense dimensions can be obtained.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

第1表に示すようにマグネシアクリンカ−80w t%
と火状黒鉛20w t%とに対し、フェノール樹脂を3
%(外掛)添加し、混合混練した配合物300kgを長
さ1.100m幅300mの金型に入れフリクシランプ
レス(750t )で3001の厚さに一次成形し、充
填率2.80の成形体を得た。この成形体を厚さ10閣
のシリコンゴム型で被覆し、真空装置により650閣H
,まで減圧した 成形体をアイソスタチックプレスによ
り1.1 t /cdで加圧し二次成形体を得た。
Magnesia clinker - 80wt% as shown in Table 1
and 20wt% of fiery graphite, and 3% of phenolic resin.
% (external), mixed and kneaded, 300 kg of the mixture was put into a mold with a length of 1.100 m and a width of 300 m, and primary molded to a thickness of 3001 mm using a Frixilane press (750 t) to form a molded product with a filling rate of 2.80. I got it. This molded body was covered with a silicone rubber mold with a thickness of 10 mm, and a 650 mm thick mold was coated with a vacuum device.
The molded body, which was depressurized to , was pressurized at 1.1 t/cd using an isostatic press to obtain a secondary molded body.

この二次成形体の充填率は3.00であった。The filling rate of this secondary molded body was 3.00.

比較例として同じ配合物を同量同形状の金型に投入し、
3.000tオイルプレスの最高加圧により300鴫の
厚さに成形した。
As a comparative example, the same amount of the same compound was put into a mold of the same shape,
It was molded to a thickness of 300 mm using a 3,000 t oil press at maximum pressure.

この成形体の充填率は2.88であった。The filling rate of this molded body was 2.88.

従来品についても本発明品と同じ位置から供試体を採取
し、それぞれ見掛気孔率をJISに基づいて測定した。
Samples of the conventional products were also taken from the same locations as the products of the present invention, and the apparent porosity of each was measured based on JIS.

第1表 配合割合及び物性値 ※ 見掛気孔率の分布測定用のサンプリング採取位置は
、大型長尺煉瓦の長さ方向の上端面部、下端面部及びそ
の中央部の3個所を50鵬厚さで均一に切出し採取した
。この3個所の切出部を更に下記の9個所に切出し、縦
50閣、横50■、高さ50閣。
Table 1 Mixing ratio and physical property values * Sampling locations for measuring distribution of apparent porosity were taken at three locations in the lengthwise direction of the large long brick: the upper end surface, the lower end surface, and the center thereof, at a thickness of 50 mm. It was cut out uniformly and collected. These three sections were further cut out into the following nine sections, resulting in a length of 50 squares, a width of 50 cm, and a height of 50 squares.

の供試体を得た。9個所の切出し方法は、−次成形時の
上ライナー側に当たる上端部をA、中央部をB、下ライ
ナー側に当たる下端部をCとし、A。
A specimen was obtained. The cutting method for the 9 parts is as follows: - The upper end that will be on the upper liner side during the next molding is A, the center part is B, and the lower end that will be on the lower liner side is C.

B、Cを更に各々左端部をAt、B+、C+、中央部を
At、Bz、C!、右端部をAs、Bs、Csとし計2
7個の供試体を得た。従って煉瓦の中央はBxである。
Further, the left end of B and C is At, B+, C+, and the center part is At, Bz, C! , the right end is As, Bs, Cs, total 2
Seven specimens were obtained. Therefore, the center of the brick is Bx.

(発明の効果) その結果、本発明品の見掛気孔率2.2以下のものが得
られ、かつそのバラツキが非常に小さく、均質緻密なも
のが得られた。これに比し、従来品は見掛気孔率が4.
0以上でそのバラツキも大きかった。
(Effects of the Invention) As a result, the product of the present invention had an apparent porosity of 2.2 or less, had very small variation, and was homogeneous and dense. In comparison, the apparent porosity of conventional products is 4.
The variation was large when it was 0 or more.

前記した本発明品及び従来品を転炉の羽目に使用したと
ころ、従来品の溶損速度1.2mm/chに対し、本発
明品は0.8■/chの溶損速度を示し、約35%耐用
性を高めることができた。
When the above-described products of the present invention and the conventional product were used in the surface of a converter, the product of the present invention showed a corrosion loss rate of 0.8 mm/ch, compared to the erosion rate of 1.2 mm/ch for the conventional product, which was approximately We were able to increase durability by 35%.

Claims (1)

【特許請求の範囲】 1、カーボン含有配合物を一次成形し、得られた成形体
をゴム型で被覆した後ゴム型内部を真空にし、前記成形
体をアイソスタチックプレスで二次成形することを特徴
とするカーボン含有大型煉瓦の製造法。 2、前記一次成形体の充填率が目標充填率の70〜97
%である特許請求の範囲第1項記載のカーボン含有大型
煉瓦の製造法。
[Claims] 1. Primary molding of the carbon-containing compound, covering the obtained molded body with a rubber mold, evacuating the inside of the rubber mold, and secondary molding of the molded body using an isostatic press. A method for producing large carbon-containing bricks characterized by: 2. The filling rate of the primary molded body is the target filling rate of 70 to 97.
% of the carbon-containing large brick according to claim 1.
JP14050887A 1987-06-03 1987-06-03 Manufacture of large carbon containing brick Pending JPS63303705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14050887A JPS63303705A (en) 1987-06-03 1987-06-03 Manufacture of large carbon containing brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14050887A JPS63303705A (en) 1987-06-03 1987-06-03 Manufacture of large carbon containing brick

Publications (1)

Publication Number Publication Date
JPS63303705A true JPS63303705A (en) 1988-12-12

Family

ID=15270279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14050887A Pending JPS63303705A (en) 1987-06-03 1987-06-03 Manufacture of large carbon containing brick

Country Status (1)

Country Link
JP (1) JPS63303705A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104708A (en) * 1981-12-17 1983-06-22 松下電器産業株式会社 Method of hydrostatic molding construction
JPS60235710A (en) * 1984-05-09 1985-11-22 Akechi Ceramic Kk Production of graphite electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104708A (en) * 1981-12-17 1983-06-22 松下電器産業株式会社 Method of hydrostatic molding construction
JPS60235710A (en) * 1984-05-09 1985-11-22 Akechi Ceramic Kk Production of graphite electrode

Similar Documents

Publication Publication Date Title
RU2587194C2 (en) Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining
CN106966708B (en) Unburned alumina-magnesia carbon brick and preparation method thereof
CN86105661A (en) Stoneware section bar and production method thereof and use
KR890000485B1 (en) Magnesia-carbon refractory
JPS63303705A (en) Manufacture of large carbon containing brick
JP6344621B2 (en) Magnesia spinel fired brick manufacturing method
JP3546368B2 (en) Dense ceramic compacts based on magnesia and / or calcined dolomite and their use
EP0299441B1 (en) Slidding gate nozzle for special steel
JP2012192430A (en) Alumina carbon-based slide gate plate
KR940005080B1 (en) Process for preparation of magnesia-carbon stamp material
JPH0692724A (en) Production of spinel-alumina fired brick
JP6361705B2 (en) Lining method of converter charging wall
KR20200025788A (en) The compisition for RH snorkel refractory
JP3673961B2 (en) Lined structure of vacuum degassing equipment vacuum chamber
JPH04280858A (en) Production of unburned magnesia-carbon brick
JPH0952755A (en) Magnesia-chrome refractory
KR940006428B1 (en) Process for the preparation of firebrick
JPH11157927A (en) Zirconia amorphous refractory
JP2604002B2 (en) Carbon containing refractories
JP2000109359A (en) Refractory composition and refractory
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH10158071A (en) Graphite patching material
JPH04342468A (en) Refractory for continuous casting and its production
SU833865A1 (en) Refractory mass
RU2281266C1 (en) Charge for preparing slag neutralizer