JPS63303652A - Clad casting method - Google Patents

Clad casting method

Info

Publication number
JPS63303652A
JPS63303652A JP13772187A JP13772187A JPS63303652A JP S63303652 A JPS63303652 A JP S63303652A JP 13772187 A JP13772187 A JP 13772187A JP 13772187 A JP13772187 A JP 13772187A JP S63303652 A JPS63303652 A JP S63303652A
Authority
JP
Japan
Prior art keywords
molten metal
flux
layer
solid member
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13772187A
Other languages
Japanese (ja)
Other versions
JPH0579429B2 (en
Inventor
Shogo Mochizuki
省吾 望月
Eikichi Sagisaka
栄吉 鷺坂
Junichi Oshiro
大代 準一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP13772187A priority Critical patent/JPS63303652A/en
Publication of JPS63303652A publication Critical patent/JPS63303652A/en
Publication of JPH0579429B2 publication Critical patent/JPH0579429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To uniformize joining condition of interface between a clad material and a solid member and to obtain the clad material having good quality by forming molten metal and fluoride series flux molten layer in mold space on a receiving table arranging an Al solid member at center thereof and descending the receiving table. CONSTITUTION:The molten metal 5 is poured into the mold space constituted of the movable receiving table 1 arranging the Al solid member 2 at the center part and the mold 10 from a pouring basin 9, and the flux is charged on the surface of the poured molten metal from flux bins 16 to form the fluoride series flux molten layer 6. Solidified part 4 solidifying by aid of injected cooling water 14 is developed according as descending the receiving table 1 to form the clad material. The molten metal 5 forms the uniform interface alloying layer having no oxide and minute gap with the Al solid member 2 by the molten flux 6 and they become firm joining condition and the clad material having good quality is cast.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明はクラッド鋳造法に係り、界面が均一状態に合金
化接合したクラッド鋳塊を得る鋳造技術に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Application Field) The present invention relates to a clad casting method, and relates to a casting technique for obtaining a clad ingot whose interfaces are uniformly alloyed and bonded.

(従来の技術) 異質の組成を有する材料を複合させたクラツド材は、複
合された夫々の材料の有する特性を兼備することができ
、単一材では具現できない特性を発揮することができる
ので、その製造については従来から種々に検討実施され
ている。
(Prior art) A clad material made by combining materials with different compositions can combine the characteristics of each composite material, and can exhibit characteristics that cannot be achieved with a single material. Various studies have been carried out regarding its production.

即ち、このようなりラフト材を得る一般的な方法は、夫
々の部材を各個に鋳造してから該鋳塊を面削し、あるい
は圧延または押出し等の予成形を施してから面合わせし
、次いで熱間冷間成形加工を施して所望形状の板あるい
は押出しなどによるロッド状のクラツド材とするもので
ある。
That is, the general method for obtaining such a raft material is to cast each member individually, then face the ingot, or perform preforming such as rolling or extrusion, and then face it. It is made into a rod-shaped clad material by hot-cold forming or extrusion into a desired shape.

又このような一般的方法に対し、その面合わせ工程を省
略したクラツド材の製造方法としてクラツド材を構成す
る一方の部材に他方の部材による溶融金属を鋳造成形一
体化したクラッド鋳造をなし、このクラッド鋳塊を成形
加工してクラッド材とする方法が特公昭52−3181
4号公報に提案されている。
In addition, in contrast to such a general method, as a manufacturing method of clad material that omits the face-to-face process, clad casting is used in which molten metal from the other member is integrally cast into one member constituting the clad material. A method for forming clad ingots into clad material was published in Japanese Patent Publication No. 52-3181.
This is proposed in Publication No. 4.

なお、ろう材をクラッドした材料から複雑な形状をもつ
ろう付用部品を2次成形加工して得る場合に、そのろう
材が硬くて曲げ加工困難であり直管でしか使用できない
ことおよびフラックスの塗布が隅部まで的確に行われな
いことなどを回避する方法として、容器内にろう材とフ
ラックス材の溶融層を形成し、この中に最終形状に成形
加工された複雑形状部品を挿入浸漬してから引上げるこ
とにより部品表面にろう材とフラックスの薄層を形成さ
せることが特開昭60−15088号公報に発表されて
いる。
In addition, when obtaining brazing parts with complex shapes from materials clad with brazing filler metal, it is important to note that the brazing filler metal is hard and difficult to bend and can only be used in straight pipes, and that flux As a method to avoid problems such as not being able to apply the coating accurately to the corners, a molten layer of brazing material and flux is formed in a container, and complex-shaped parts that have been molded into the final shape are inserted and immersed in this layer. JP-A-60-15088 discloses that a thin layer of brazing filler metal and flux is formed on the surface of the part by pulling it up.

(発明が解決しようとする問題点) 上記した一般的方法によるものは、面削、圧延または押
出しによる予成形に相当の工数を必要とすることは明か
である。
(Problems to be Solved by the Invention) It is clear that the general method described above requires a considerable number of man-hours for preforming by facing, rolling, or extrusion.

又特公昭52−31814号によるものは、上記の不利
を回避し得るとしても第7図に示すようにクラッド界面
に部分的な微小間隙部21を発生することが肉眼観察で
も確認でき、又マクロ的に微小間隙部21が認められな
いところでもミクロ的に見ると第5図に示すように境界
部分に酸化物が介在していて境界層が明確に存在したも
のとなり、しかも別に第6図に示すように斯うした境界
層の一部が破れて溶融金属が成形体で用いられた一方の
部材域に流れ込んだ状態を形成する部分も発生すること
が本発明者等の実地検討で確認される。つまり酸化物の
厚さが薄い部分で前記第6図のように破れ、この破れた
部分に溶融金属の熱が集中的に作用し、該部分の部材を
溶解せしめ不均一状態となるものと言える。又このよう
なりラッド鋳塊を熱間成形加工して得られるクラツド材
についても第8図に示すように1〜2Mφの凸部23お
よびそれが連続したような連続凸部24が発生し、品質
的に欠陥を残すものとなる。
Furthermore, even if the above-mentioned disadvantages can be avoided in the product according to Japanese Patent Publication No. 52-31814, it can be confirmed by naked eye observation that a partial micro gap 21 is generated at the cladding interface as shown in FIG. Microscopically, even in areas where microscopic gaps 21 are not recognized, as shown in Figure 5, oxides are present in the boundary areas and a boundary layer clearly exists. As shown in the figure, it has been confirmed through field studies by the present inventors that a part of the boundary layer ruptures and the molten metal flows into the area of one of the parts used in the molded body. Ru. In other words, as shown in Figure 6, the oxide ruptures at a thinner area, and the heat of the molten metal acts intensively on this ruptured area, melting the parts in that area and creating a non-uniform state. . In addition, as shown in Fig. 8, in the case of clad material obtained by hot forming a rad ingot, convex portions 23 of 1 to 2 Mφ and continuous convex portions 24 that are continuous are generated, resulting in poor quality. This will leave some defects.

特開昭60−15088号公報のものは最終形状とされ
た部品に浸漬塗着するもので、下端から装入し、上端に
達した後、直ちに上端から引出すこととなるので、ろう
材およびフラックス材の浴中に存する時間およびそ糺に
よる加熱と該加熱による溶解ないし合金化状態が装入さ
れた部品の各部において夫々に異ったものとならざるを
得す、成程ろう材およびフラックスの覆着されたものと
して得られる外観的関係は同じであっても最終成形体と
された母材との境界面においては非常に異った状態が連
続的に変化して形成される。即ち形成されたろう材の厚
さにむらがあり、境界面における合金層の形成状態ない
し厚さは甚だしく変化したものとなり、更には手工業的
で、生産性に劣ることは明かである。
The method disclosed in JP-A No. 60-15088 dip-coats parts into the final shape, and is charged from the lower end and immediately pulled out from the upper end after reaching the upper end. The time that the material remains in the bath, the heating during compaction, and the state of melting or alloying caused by the heating must be different for each part of the charged part. Even if the appearance relationship obtained as a covered product is the same, very different states are continuously changed and formed at the interface with the base material that becomes the final molded product. That is, the thickness of the formed brazing filler metal is uneven, and the formation condition and thickness of the alloy layer at the interface vary considerably. Furthermore, it is obvious that the process is a manual process and has poor productivity.

「発明の構成」 (問題点を解決するための手段) 可動受台を有する鋳型内にアルミニウムまたはアルミニ
ウム合金による固体部材をセットし、前記鋳型と固体部
材または固体部材と固体部材との間に溶融金属を注入す
ると共に該溶融金属浴面上に弗化物系フラックスの溶融
層を形成維持せしめつつ上記可動受台を降下して前記固
体部材と鋳型内または固体部材と固体部材との間で冷却
凝固され該固体部材と一体化した上記溶融金属による凝
固層を連続的に導出し、前記鋳型内を順次に通過する上
記固体部材の表面を前記したフラックス溶融層に順次接
触せしめてから溶融金属に通入し、前記固体部材外面に
上述したフラックス溶融層と溶融金属による略一様な熱
履歴を与えつつ鋳造することを特徴とするクラフト鋳造
法。
"Structure of the Invention" (Means for Solving Problems) A solid member made of aluminum or aluminum alloy is set in a mold having a movable pedestal, and melting is performed between the mold and the solid member or between the solid members. As the metal is injected, the movable pedestal is lowered to form and maintain a molten layer of fluoride flux on the surface of the molten metal bath, and the metal is cooled and solidified within the solid member and the mold or between the solid members. A solidified layer of the molten metal integrated with the solid member is continuously drawn out, and the surface of the solid member passing sequentially through the mold is brought into contact with the molten layer of flux, and then the molten metal is passed through the mold. A craft casting method characterized in that the solid member is cast while giving the outer surface of the solid member a substantially uniform thermal history due to the above-mentioned flux molten layer and molten metal.

(作用) 可動受台を有する鋳型内にアルミニウムまたはアルミニ
ウム合金による固体部材をセットし、該固体部材と鋳型
との間に溶融金属を注入すると共に該溶融金属浴面上に
弗化物系フラックスの溶融層を形成維持せしめつつ可動
受台を降下して前記固体部材と鋳型内で冷却凝固し該固
体部材と一体化した溶融金属凝固層を連続的に抽出する
ことにより、鋳型内を順次に通過する上記固体部材の外
面を前記フラックス溶融層に順次接触せしめ、この固体
部材外面における酸化物を除去する。又このような酸化
物除去に続いて直ちに溶融金属に接触しその表面にその
凝固層を一体化して形成する。
(Function) A solid member made of aluminum or aluminum alloy is set in a mold having a movable pedestal, and molten metal is injected between the solid member and the mold, and fluoride flux is melted on the surface of the molten metal bath. While forming and maintaining the layer, the movable pedestal is lowered, and the molten metal solidified layer that is cooled and solidified in the solid member and the mold and is integrated with the solid member is successively extracted, thereby passing through the mold one after another. The outer surface of the solid member is sequentially brought into contact with the molten layer of flux to remove oxides on the outer surface of the solid member. Immediately following such oxide removal, it comes into contact with molten metal to form a solidified layer on its surface.

このようにして順次に導入される固体部材に対し、前記
フラックス溶融層と溶融金属から与えられる熱エネルギ
ーないし熱履歴は略一様であり、上記のように固体部材
とその表面に形成された溶融金属凝固層の界面において
は一様な合金化が図られ、強固に接合した界面が形成さ
れる。
Thermal energy or heat history given by the flux molten layer and molten metal to the solid members that are sequentially introduced in this way is approximately uniform, and as described above, the molten metal formed on the solid member and its surface is Uniform alloying is achieved at the interface of the solidified metal layer, forming a strongly bonded interface.

このようにして得られたクラッド鋳塊を熱間、冷間成形
加工してクラツド材とすると各層の厚さが一定状態で界
面は強固安定したものとなり、表面に凸部などが発生す
ることがない。即ちこのようなりラッド鋳塊を成形加工
したときの表面に発生する凸部は固体部材表面に存在す
る酸化物により該固体部材と溶融金属凝固層との接合が
不確実となり、界面に生じた微小間隙に存在するガスが
その後の熱間加工などで膨張、集合し、更には剥離して
、所謂フクレとしてクラツド材表面に発生するものと推
定されるが、上記のような作用関係から酸化物がなくな
り、しかも界面において均一な合金層が形成されること
により強固な接合が得られると共に微小間隙もなく、上
述したようなフクレの発生原因となるガスおよび接合不
安定部か存在しないことになるものと推定される。
When the clad ingot obtained in this way is hot- and cold-formed to produce a clad material, the thickness of each layer is constant and the interface is strong and stable, and no convexities occur on the surface. do not have. In other words, the protrusions that occur on the surface when a rad ingot is formed are caused by the presence of oxides on the surface of the solid member, which makes the bond between the solid member and the solidified molten metal layer uncertain, and the microscopic bumps that occur at the interface. It is presumed that the gas existing in the gaps expands, aggregates, and even peels off during subsequent hot processing, resulting in so-called blisters occurring on the surface of the cladding material. Moreover, by forming a uniform alloy layer at the interface, a strong bond is obtained, and there are no minute gaps, and the gas and unstable bonding parts that cause blisters as described above are not present. It is estimated to be.

更に本発明の仔細について説明すると、本発明における
弗化物系フラックスは溶融状態で固体部材たるアルミニ
ウムまたはアルミニウム合金材表面の酸化物を除去する
作用をなすものであればよい。例えばKF−Aj’F3
系のフラックスは斯うした酸化物除去効果が太き(、し
かもアルミニウムまたはアルミニウム合金に対し耐腐食
性を有するので好ましい。このKF−An、系フラック
スはKF56wt%近傍で共晶点(562℃)をもつが
、共晶点を外れる割合でKF−AItF3を含有したと
しても溶融金属の注入温度をフラックスの融点以上にし
ておけばフラックスは溶融し、固体部材表面の酸化物除
去をなし得る。このようなにF−Aj7F3系フラック
スは、にFSIl’F1を主剤とし、これにCaF、、
NaF % LIF 5LtA I F4、Li、A 
I F、などの弗化物を含有させることもできる。にF
−AIFW系フランクスは、にFSIIF3の単体化合
物でもよいし、KF、AItF、の錯化合物、例えばK
ANFいKiA I!FS。
To further explain the details of the present invention, the fluoride flux used in the present invention may be any flux as long as it has the effect of removing oxides from the surface of aluminum or aluminum alloy material, which is a solid member, in a molten state. For example, KF-Aj'F3
This KF-An system flux has a strong oxide removal effect (and has corrosion resistance against aluminum or aluminum alloys, so it is preferable). However, even if KF-AItF3 is contained in a proportion that is outside the eutectic point, if the injection temperature of the molten metal is set above the melting point of the flux, the flux will melt and oxides on the surface of the solid member can be removed. The F-Aj7F3-based flux has FSIl'F1 as the main ingredient, and CaF,...
NaF % LIF 5LtA I F4, Li, A
It is also possible to contain a fluoride such as IF. to F
-AIFW series Franks may be a simple compound of FSIIF3, or a complex compound of KF, AItF, for example, K
ANF KiA I! F.S.

X3AβF3などの単味あるいは混合物であってもよい
It may be a single substance such as X3AβF3 or a mixture thereof.

前記したアルミニウムまたはアルミニウム合金部材は、
たとえばグラビテイ鋳造または半連続鋳造の如き鋳造方
法で、スラブまたは中実あるいは中空のビレットなどの
鋳塊とし、該鋳塊をそのままあるいは面削し、またはこ
れに予備的な成形加工を施し、所望の寸法として用いる
The aluminum or aluminum alloy member described above is
For example, a casting method such as gravity casting or semi-continuous casting is used to form an ingot, such as a slab or a solid or hollow billet, and the ingot is processed as it is, face-milled, or subjected to a preliminary forming process to form the desired shape. Used as a dimension.

クラッド鋳造については第1図に示すように鋳型lOの
底部に可動受台1を設け、鋳型10内にはアルミニウム
またはアルミニウム合金による固体部材2を位置せしめ
、これを可動受台1にセットし、固体部材2と鋳型10
との間の鋳型空間3に溶融金属5を注入して鋳型10に
よる冷却効果で漸次凝固せしめ、凝固部4を前記固体部
材2と共に可動受台lに支持協動させて鋳型10の下方
に導出し、上記のような溶融金属5の表面に溶融フラッ
クス層6を形成維持するために前記固体部材2の周面一
部または全部に前述したような弗化物系フラックスの塗
布層7を形成したものを用い、これを順次に導入しフラ
ックス層6に補給する。
For clad casting, as shown in FIG. 1, a movable pedestal 1 is provided at the bottom of a mold 10, a solid member 2 made of aluminum or aluminum alloy is placed inside the mold 10, and this is set on the movable pedestal 1. Solid member 2 and mold 10
The molten metal 5 is injected into the mold space 3 between the mold 10 and gradually solidified by the cooling effect of the mold 10, and the solidified part 4 is supported and cooperated with the solid member 2 on the movable pedestal l and led out below the mold 10. However, in order to form and maintain a molten flux layer 6 on the surface of the molten metal 5 as described above, a coating layer 7 of a fluoride flux as described above is formed on a part or all of the circumferential surface of the solid member 2. are used to sequentially introduce them and replenish the flux layer 6.

あるいは第2図に示すように第1水冷鋳型11内に樋ま
たはタンディツシュ12から注湯して固体部材2を凝固
造形し、これを可動受台lに上記同様にセットして第2
水冷鋳型たる前記鋳型10内を通過せしめ、該鋳型10
については第1図と同様の関係とし、フラックスの補給
については粉状または棒状とされたものを適当な導入手
段で送入するものである。
Alternatively, as shown in FIG. 2, the solid member 2 is solidified by pouring it into the first water-cooled mold 11 from the gutter or tundish 12, and then set it on the movable pedestal l in the same manner as above.
The mold 10 is passed through the mold 10 which is a water-cooled mold.
The relationship is the same as that shown in FIG. 1, and the flux is supplied in the form of a powder or rod using an appropriate introducing means.

これら第1、第2図の示すものは本発明方法を実施する
若干例であって、本発明はこのような設備に限定される
ものでないことは当然であり、要するに適当な厚さ以上
の溶融フラックス層6を溶融金属5面に形成維持した状
態で実施でき、このフラックス層6に固体部材2の表面
が接触することによりその表面酸化物を除去する。前記
塗布層7を形成するためのフラックスはアルニールや水
などの液体に懸濁させたちの°を使用することができる
し、又静電塗装等で塗着することもできる。
What is shown in FIGS. 1 and 2 are some examples of implementing the method of the present invention, and it goes without saying that the present invention is not limited to such equipment. The process can be carried out with the flux layer 6 formed and maintained on the surface of the molten metal 5, and the surface oxide of the solid member 2 is removed by contacting the surface of the solid member 2 with this flux layer 6. The flux for forming the coating layer 7 can be used in the form of a suspension in a liquid such as alniel or water, or can be applied by electrostatic coating or the like.

溶融フラックス層は場合によっては鋳型内に予めフラッ
クスを投入した状態で溶湯を鋳型10内に注入しても短
時間内に溶湯表面に溶融展開することができ、フラック
スの形態としても粉末状、ケーキ状の如きの何れでもよ
い。
In some cases, the molten flux layer can be melted and spread on the surface of the molten metal within a short time even if the molten metal is injected into the mold 10 with flux pre-filled in the mold. It can be in any shape.

前記のように可動受台1と共に鋳型10の下方に導出さ
れる固体部材2および凝固部4の移動に伴い、溶融フラ
ックス層6および溶融金属5は相対的に部材2の下部か
ら上部に向は移動することとなり、溶融フラックス層6
は溶融金属5面上に浮上するのでフラックスの巻き込み
は皆無でその後の加工に支障を来すことはない。しかも
溶融フラックス層6が固体部材2の表面と接触すること
により瞬間的に該固体部材2表面の酸化物を溶解除去し
て部材2と溶融金属5との濡れ性を良好とし、密着一体
化した凝固部4を形成接合し且つ一様な熱履歴によって
均一な合金層を形成して強固なりラッド鋳塊となる。こ
の状況は具体的にその1例を第4図の顕微鏡写真として
示す如くで部材2と凝固部4のクラッド界面は第5図の
ように酸化物の介在で明確に区分されたものでなく、又
第6図のように溶融金属の流れ込んだ部分を形成するこ
ともなくて、略一定の幅をもった均一な合金層を介し強
固安定に接合されたものとなる。勿論このような界面に
おいて微小間隙の存在する余地もなく的確に接合してい
るから、該鋳塊を圧延または押出し加工し、更には延伸
加工しても表面に凸部(フクレ)の発生することがない
し、強度の曲げ加工などを施し複雑な形状をもつ部品を
製造しても凝固部4の剥離することはなくなり品質的に
優れたクラツド材を得ることができる。
As the solid member 2 and the solidified part 4 are led out below the mold 10 together with the movable pedestal 1 as described above, the molten flux layer 6 and the molten metal 5 move relatively from the bottom to the top of the member 2. As a result, the molten flux layer 6
Since the flux floats on the molten metal 5 surface, there is no entrainment of flux and it does not interfere with subsequent processing. Moreover, when the molten flux layer 6 comes into contact with the surface of the solid member 2, the oxides on the surface of the solid member 2 are instantly dissolved and removed, improving the wettability between the member 2 and the molten metal 5, and making them tightly integrated. Solidified portions 4 are formed and bonded, and a uniform alloy layer is formed by a uniform thermal history to become strong and become a rad ingot. A concrete example of this situation is shown in the micrograph of FIG. 4, where the cladding interface between the member 2 and the solidified portion 4 is not clearly separated by the presence of oxides as shown in FIG. Furthermore, there is no need to form a portion into which molten metal has flowed as shown in FIG. 6, and the bonding becomes strong and stable through a uniform alloy layer having a substantially constant width. Of course, since such interfaces are precisely joined without leaving any room for minute gaps, protrusions (blisters) will not occur on the surface even if the ingot is rolled, extruded, or even stretched. Furthermore, even if parts with complex shapes are produced by strong bending, etc., the solidified portions 4 will not peel off, and a clad material of excellent quality can be obtained.

本発明によるものは更に第3図に示すような態様で実施
することができる。即ち鋳型10の両側内面にそってコ
イル18をガイドロール19で案内しながら導入し、固
体部材であるこれらのコイル18.18間に溶融金属5
を注入すると共に該溶融金属浴面に溶融フラックス層6
を形成維持し、可動受台lに凝固一体化した部分を受け
て順次導出するものである。即ち本発明によるものは固
体部材2は複数層としたものに溶融金属4をクラフト鋳
造してもよいわけで、又溶融金属の一例若しくは両側に
固体部材、特に薄板とした固体部材2を用いることがで
きる。このようにすると、例えば薄板を純Al系あるい
は組成、素性のはっきりしたA1合金のものとし、溶融
金属4をスクラップなどから得たものとすることができ
、コスト低廉で、しかもクラフト材の表面は組成、素性
のはっきりしたものとすることができるから各種の用途
に有利に適用できる。勿論スクラップに限らず耐熱ある
いは強度などの特性のある合金材とすることもできる。
The invention can further be implemented in the manner shown in FIG. That is, the coils 18 are introduced along both inner surfaces of the mold 10 while being guided by guide rolls 19, and the molten metal 5 is placed between the coils 18 and 18, which are solid members.
At the same time, a molten flux layer 6 is injected onto the molten metal bath surface.
is formed and maintained, and the solidified and integrated portion is received on a movable pedestal l and sequentially guided out. That is, in the present invention, the solid member 2 may be made of a plurality of layers by craft casting the molten metal 4, and the solid member 2, particularly a thin plate, may be used as an example of molten metal or on both sides. Can be done. In this way, for example, the thin plate can be made of pure Al or A1 alloy with a clear composition and origin, and the molten metal 4 can be obtained from scrap etc., and the cost is low, and the surface of the craft material is Since it can have a clear composition and identity, it can be advantageously applied to various uses. Of course, the material is not limited to scrap, but may also be an alloy material with properties such as heat resistance or strength.

なお固体部材2の温度が高ければ所要の合金組成をもつ
凝固層4が容易且つ確実に形成されるので、固体部材2
の厚みが溶融金属5ないしその凝固部4の厚さに対し比
較的大きく、あるいはその熱容量の大きい場合には該部
材2を予め加熱しておくことが好ましい。このような部
材2に対する加熱温度は相対的な厚み差、熱容量差など
によって変化し、−概に定めることはできないが、更に
界面合金層を厚くしたい場合にはより高温とし、固体部
材が溶融金属5ないしその凝固部4によって加熱され、
溶融金属層5に接触するときに固相線温度近傍あるいは
この温度よりも僅かに高温となるように予熱することが
好ましい。
Note that if the temperature of the solid member 2 is high, the solidified layer 4 having the required alloy composition can be easily and reliably formed.
When the thickness of the molten metal 5 or its solidified portion 4 is relatively large compared to the thickness of the molten metal 5 or its solidified portion 4, or when its heat capacity is large, it is preferable to heat the member 2 in advance. The heating temperature for such a member 2 changes depending on the relative thickness difference, heat capacity difference, etc. - Although it cannot be determined generally, if it is desired to further thicken the interfacial alloy layer, the heating temperature is set higher, and the solid member becomes a molten metal. 5 or heated by the coagulation part 4,
It is preferable to preheat the molten metal layer 5 so that the temperature is near the solidus temperature or slightly higher than this temperature when it comes into contact with the molten metal layer 5.

固体部材2としてはアルミニウムまたはアルミニウム合
金を広く採用することができ、その組成は特に限定する
必要がない。又凝固層4を形成する溶融金属5としても
アルミニウムまたはアルミニウム合金は固よりZns 
Cu合金などを採用し得る。
As the solid member 2, aluminum or an aluminum alloy can be widely used, and its composition does not need to be particularly limited. Also, as the molten metal 5 forming the solidified layer 4, aluminum or aluminum alloy is used as solid Zns.
Cu alloy or the like may be used.

又鋳造雰囲気は大気中でもよいが、不活性ガス雰囲気と
することもできる。
The casting atmosphere may be air, but may also be an inert gas atmosphere.

(実施例) 本発明によるものの具体的な実施例について説明すると
以下の如くである。
(Example) Specific examples of the present invention will be described below.

実施例I JIS3003合金を常法により溶製し、半連続鋳造し
てtsonx6o鰭の断面で、長さ1000龍の鋳塊と
した。該鋳塊は脱脂後予熱炉で480℃の温度に加熱し
、該加熱鋳塊を200xlOOamの半連続鋳造鋳型に
おける可動受台1上に第9図に示すように垂直にセット
し、鋳型IOの上部には耐火材8を設け、該耐火材8の
周側に溶湯溜リ9が設けられた設備においてこの溶湯溜
り9に対し別途に溶製された730℃のJI34045
による組成をもった溶融金属5を順次に耐火材8部分を
介して鋳型10内に供給せしめ、しかもこの溶融金属5
面にフラックスビン16から75−t%KA I F4
と25−1%に、八lFhの割合とされた弗化物系フラ
ックス粉末を供給し、即ち導入される加熱鋳塊2の単位
長さ当り該フラックスを0.1g/口・lll1nの割
合で供給しながら、200 am/sinの鋳造速度で
ホットトップ鋳造した。
Example I A JIS 3003 alloy was melted by a conventional method and semi-continuously cast to obtain an ingot having a cross section of a Tsonx6o fin and a length of 1000 mm. After degreasing, the ingot was heated to a temperature of 480°C in a preheating furnace, and the heated ingot was set vertically on the movable pedestal 1 of a 200xlOOam semi-continuous casting mold as shown in Fig. 9, and the mold IO was heated. A refractory material 8 is provided on the upper part, and JI 34045 at 730° C. is separately melted for this molten metal reservoir 9 in a facility in which a molten metal reservoir 9 is provided on the circumferential side of the refractory material 8.
A molten metal 5 having a composition of
Flux bottle 16 to 75-t%KA I F4 on the surface
and 25-1%, a fluoride-based flux powder is supplied at a ratio of 8 lFh, that is, the flux is supplied at a ratio of 0.1 g/lllln per unit length of the heated ingot 2 introduced. Meanwhile, hot top casting was carried out at a casting speed of 200 am/sin.

即ち上記のように供給されたフラックス粉末は溶融金属
5に接すると直ちに溶融して該溶融金属5上に溶融フラ
ックス層6牽形成し、該溶融フラックス層6を介して鋳
塊2が溶融金属5内に通入され、鋳型10により冷却さ
れた鋳塊2の周面にクラフト層である凝固部4を形成し
たものとして可動受台1により導出された。
That is, when the flux powder supplied as described above comes into contact with the molten metal 5, it immediately melts and forms a molten flux layer 6 on the molten metal 5, and the ingot 2 is transferred to the molten metal 5 through the molten flux layer 6. The ingot 2 was passed through the mold 10 and cooled by the mold 10, and then the solidified part 4, which is a craft layer, was formed on the circumferential surface of the ingot 2, and the ingot 2 was led out by the movable pedestal 1.

このようにして得られたクラフト鋳塊についてその鋳塊
2と凝固部4との界面部分に関しミクロ的に顕微鏡観察
したものが前記第4図であり、均一な合金層が形成され
強固且つ安定に接合していることが確認された。またこ
のような鋳塊についてのマクロ的な断面構成は第10図
に示す通りであって第6図に示したように肉眼的に観察
できる間隙部21は皆無であった。
FIG. 4 shows a microscopic observation of the interface between the ingot 2 and the solidified portion 4 of the craft ingot thus obtained, and shows that a uniform alloy layer is formed and is strong and stable. It was confirmed that they were connected. Further, the macroscopic cross-sectional structure of such an ingot was as shown in FIG. 10, and as shown in FIG. 6, there were no gaps 21 that could be observed with the naked eye.

又このクラッド鋳塊を常法によって固剤後、熱間および
冷間圧延を施し、厚さ0.2 msの板材としたところ
熱間圧延材は固より、冷間圧延材においてもその表面は
平滑で凸部の発生は全くなく、品質の優れたクラフト材
を得ることができた。
In addition, this clad ingot was solidified using a conventional method, and then hot and cold rolled to form a plate with a thickness of 0.2 ms. A kraft material of excellent quality was obtained which was smooth and had no protrusions.

なお上記のような本発明によるものに対し、比較例■と
してフラックス粉末の供給を排出し、従ってフラックス
層6の形成およびこのフラックス層6による加熱鋳塊2
に対する作用のない外は、すべてが上記条件に従った方
法によりクラッド鋳塊を得、このクラッド鋳塊を観察し
たところ、鋳塊2と凝固部4との間にはマクロ的に間隙
部21が全周的に発生していた。
In addition, compared to the above-described one according to the present invention, as a comparative example (2), the supply of flux powder was discharged, and therefore the flux layer 6 was formed and the heated ingot 2 was heated by this flux layer 6.
A clad ingot was obtained by a method that complied with the above conditions except that there was no effect on the ingot, and when this clad ingot was observed, it was found that there was a macroscopic gap 21 between the ingot 2 and the solidified part 4. It was happening all over the place.

又上述したJI33003合金鋳塊の予熱温度を560
℃とし、その他の条件は上記同様としてクラッド鋳塊を
得た比較例■のものについてその鋳塊2と凝固部4との
境界部についてマクロ的に観察した結果は肉眼的には間
隙部21の認められないところがあるにしても60%近
い割合で間隙部21を認めた。しかもこの間隙部21の
認められない部分についてミクロ的に観察した結果は第
4図のような酸化物層が確認され、又第5図のように酸
化物が破れて溶融金属がJIS3003合金鋳塊2の領
域に流れ込んだものと認められる部分が確認され、均一
な接合が得られず、合金化も不均一である。
In addition, the preheating temperature of the JI33003 alloy ingot mentioned above was set to 560°C.
℃, and other conditions were the same as above, and the clad ingot was obtained in Comparative Example 2.The boundary between the ingot 2 and the solidified part 4 was macroscopically observed. Even though there were some areas where it was not observed, gaps 21 were observed at a rate of nearly 60%. Moreover, as a result of microscopic observation of the part where the gap 21 is not recognized, an oxide layer as shown in Fig. 4 was confirmed, and as shown in Fig. 5, the oxide was broken and the molten metal became a JIS 3003 alloy ingot. A portion that appears to have flowed into the region No. 2 was confirmed, and uniform bonding was not obtained and alloying was also non-uniform.

更にこれらのクラッド鋳塊を前記した本発明の実施例の
ように固剤し、熱間圧延、冷間圧延したところ、熱間圧
延材においては1イ当り10個以上の凸部が発生し、冷
間圧延材においても形状は若干異るにしても同数ないし
それ以上の凸部が発生していて品質的に本発明によるも
のとは隔設に相違するものであった。
Furthermore, when these clad ingots were solidified as in the above-described embodiments of the present invention, and then hot-rolled and cold-rolled, 10 or more convex portions were generated per ingot in the hot-rolled material. Although the shape of the cold-rolled material was slightly different, the same number or more of convex portions were generated, and the quality was different from that of the present invention in terms of spacing.

実施例2 Fe:0.44%、Si:0.25%、Cu:0.13
%、Mn:0.82%、Mg:1.2%の組成を有する
溶融アルミニウム合金を金型鋳造し、断面が180×6
0鶴で長さが1000鶴の鋳塊を得た。該鋳塊を脱脂後
、その表面にKAlF、: 80 wt%と、に3 A
IFh: 5wt%およびLis Aj!Fi : 1
5wt%からなるフラッフ粉末を30g/lの割合で水
に懸濁させたスラリーをスプレーガンで400+Il/
rrfの割合で塗布した。このフラックスを塗布した鋳
塊を乾燥後、予熱炉で480℃に加熱し、該加熱鋳塊を
720℃で加熱溶融されたJIS1080の組成を有す
る溶融金属により実施例1に示した下段の鋳造装置でク
ラフト鋳造した。
Example 2 Fe: 0.44%, Si: 0.25%, Cu: 0.13
%, Mn: 0.82%, Mg: 1.2%, a molten aluminum alloy with a composition of 180 x 6
An ingot with a length of 1000 cranes was obtained with 0 cranes. After degreasing the ingot, its surface was coated with KAlF: 80 wt% and 3 A.
IFh: 5wt% and Lis Aj! Fi: 1
A slurry of 5wt% fluff powder suspended in water at a rate of 30g/l was sprayed with a spray gun at 400+Il/l.
It was applied at a rate of rrf. After drying the ingot coated with this flux, it is heated to 480°C in a preheating furnace, and the heated ingot is heated and melted at 720°C using molten metal having a composition of JIS 1080 in the lower casting apparatus shown in Example 1. Craft cast.

即ち鋳塊に塗布されたフラックスは溶融金属に接すると
直ちに溶融して該溶融金属面にフラックス溶融層として
展開被覆した条件下で実施例1と同じに鋳造された。
That is, the flux applied to the ingot melted immediately upon contact with the molten metal, and casting was carried out in the same manner as in Example 1 under the conditions that the flux was spread and coated as a molten layer on the surface of the molten metal.

得られたクラッド鋳塊について観察したところ、マクロ
的およびミクロ的の何れにおいても実施例1におけると
同様に良好な接合が得られており、又界面において均一
な合金層が形成されていて、強固に接合していることが
確認された。
When the obtained clad ingot was observed, good bonding was obtained in both macroscopic and microscopic terms as in Example 1, and a uniform alloy layer was formed at the interface, making it strong. It was confirmed that it was connected to

実施例3 JIS3003合金を半連続鋳造法により125鶴φで
、長さ1000龍のビレットに鋳造した。
Example 3 A JIS 3003 alloy was cast into a billet with a diameter of 125 mm and a length of 1000 mm using a semi-continuous casting method.

該ビレットを面前して120flφとし、脱脂後、予熱
炉で300℃に加熱し、該加熱ビレットを160鶴φの
半連続鋳造鋳型における可動受台上に垂直状として配設
し、730℃のJIS 1050溶融金属を注入して1
20 m/winの鋳造速度でホントトップ鋳造した。
The billet was made into a diameter of 120flφ, degreased, and then heated to 300°C in a preheating furnace.The heated billet was placed vertically on a movable pedestal in a semi-continuous casting mold of 160mm diameter, and heated to 730°C JIS. 1 by pouring 1050 molten metal
Tru-top casting was performed at a casting speed of 20 m/win.

この鋳造に際して前記ビレットと溶融金属の境界部分に
754%KA I Faと25%に3A j! F、か
らなる弗化物系フラックス粉末を、境界の単位長さ当り
0.06g /ca−1IIinの割合で供給した。即
ちこのフラックスは溶融金属に接すると直ちに溶融して
溶融金属面上に溶融フラックス層を形成し、該フラック
ス層を介しビレットは溶融金属中に導入された。
During this casting, the boundary between the billet and the molten metal contains 754% KA I Fa and 25% 3A j! A fluoride flux powder consisting of F was supplied at a rate of 0.06 g/ca-1IIin per unit length of the boundary. That is, this flux melted immediately upon contact with the molten metal to form a molten flux layer on the surface of the molten metal, and the billet was introduced into the molten metal through the flux layer.

上記のようにして得られたクラフト鋳塊について観察し
たところ、実施例1のものと同様にマクロ、ミクロとも
良好な接合が得られ、界面は均一な合金層となっており
、強固に接合していることを確認した。
When the kraft ingot obtained as described above was observed, it was found that similar to the one in Example 1, good macro and micro bonding was obtained, and the interface was a uniform alloy layer, resulting in strong bonding. I confirmed that

又このクラッド鋳塊を1500φに面前後、400℃に
予熱し、押出速度3.711I/1IIin、面圧53
.5 kg/ w”で押出加工し、16tmφの押出材
としたが、該押出材には凸部の発生が認められず、品質
の優れたクラツド材を得ることができた。これに対し溶
融金属上にフラックス層を設けることなく行った比較例
の場合には、その他が同じ条件で得られたクラッド鋳塊
は境界部にマクロ的に間隙の発生が境界長さに対して2
5%近い割合で認められ、品質的に劣ることは明かであ
った。
In addition, this clad ingot was preheated to 400°C before and after the face to 1500φ, extrusion speed was 3.711I/1IIin, and surface pressure was 53.
.. The material was extruded at 5 kg/w" to obtain an extruded material of 16 tmφ, but no convexities were observed in the extruded material, and a clad material of excellent quality could be obtained. In contrast, molten metal In the case of a comparative example in which no flux layer was provided on top of the clad ingot obtained under the same conditions, the occurrence of macroscopic gaps at the boundary was 2 times the boundary length.
It was observed at a rate of nearly 5%, and it was clear that the quality was inferior.

「発明の効果」 以上説明したような本発明によるときは面合わせ工程を
省略した有利な工程で目的のクラッド鋳塊を得しめ、し
かもクラッド界面における酸化物を有効に除去し、該ク
ラッド界面における微小間隙の発生をなからしめると共
に均一な合金層を形成して強固な接合状態を得しめ、従
ってこれを更に成形加工して得られる製品において1〜
2鶴φの小凸部などの欠陥を発生することがなく、品質
的に卓越したクラツド材を得しめるものであって、工業
的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, the desired clad ingot can be obtained through an advantageous process that omits the face-to-face process, and oxides at the clad interface can be effectively removed, and oxides at the clad interface can be effectively removed. This eliminates the occurrence of minute gaps and forms a uniform alloy layer to achieve a strong bonding state. Therefore, in products obtained by further molding,
This invention does not produce defects such as small convex portions of 2 cranes φ and produces a cladding material of excellent quality, and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
と第2図はそれぞれ本発明方法を実施する設備の概要を
示した断面的説明図、第3図は更に別の本発明方法を実
施設備の概要についての断面的説明図、第4図は本発明
によって得られたクラッド鋳塊について部材とクラッド
層の境界部分における金属の組織を示した顕微鏡写真、
第5図と第6図は夫々従来法によるものについての第4
図と同様な顕微鏡写真、第7図は従来法による鋳塊のマ
クロ的断面構成を示した断面図、第8図は従来の鋳塊を
用い加工成形して得られるクラツド材の表面における欠
陥部(凸部)の発生状況を示す説明図、第9図は実施例
において採用された鋳造設備の説明図、第10図は実施
例で得られた鋳塊の断面図である。 然してこれらの図面において、1は可動受台、2は固体
部材、3は鋳型空間、4は凝固部、5は溶融金属、6は
溶融フラックス層、7はフラックスの塗布層、8は耐火
材、9は溶湯溜り、1oは鋳型、16はフラックスピン
、18はコイル、19はガイドロール、21は間隙部を
示すものである。 特 許 出 願人   日本軽金属株式会社発   明
   者    望  月  省  合同      
       鷺  坂  栄  吉同       
      大  代  準  −−′34  図 手続補正書(自発) 昭和  42.7.月2 日 特許庁長官)IXlllすt人  殿 1、事件の表示 昭和tユ年特   許Ill第1J’77−21  号
2、発明の冬 称 7 ウ・・J”Jj饅しi充ミ 3、補正をする者 事件との関係特許出願人 名称(氏名)   日 本 軽 金 属床弐会社4、代
理人 昭和   年   月   日 発送 補正の内容 1、本願明細書中筒16頁4行口中に「第6図」とある
のを「第7図」と訂正する。 2、同22頁3〜4行口中に「10は鋳型、」とある次
に「14は冷却水、jと加入する。 図面中訂正書 11本願出願頭初図面中「第9図」を別紙の如(訂正す
る。 第   タ   国
The drawings show the technical contents of the present invention, and FIGS. 1 and 2 are cross-sectional explanatory diagrams showing an outline of the equipment for carrying out the method of the present invention, and FIG. 3 is a diagram showing another method of the present invention. A cross-sectional explanatory diagram of the outline of the equipment for carrying out the method; FIG. 4 is a micrograph showing the metal structure at the boundary between the member and the cladding layer of the clad ingot obtained by the present invention;
Figures 5 and 6 show the fourth example of the conventional method, respectively.
A microscopic photograph similar to the one shown in the figure, Fig. 7 is a sectional view showing the macroscopic cross-sectional structure of an ingot produced by the conventional method, and Fig. 8 shows defects on the surface of the clad material obtained by processing and forming the ingot using the conventional method. FIG. 9 is an explanatory view of the casting equipment employed in the example, and FIG. 10 is a cross-sectional view of the ingot obtained in the example. In these drawings, 1 is a movable pedestal, 2 is a solid member, 3 is a mold space, 4 is a solidified part, 5 is a molten metal, 6 is a molten flux layer, 7 is a flux coating layer, 8 is a refractory material, 9 is a molten metal reservoir, 1o is a mold, 16 is a flux pin, 18 is a coil, 19 is a guide roll, and 21 is a gap. Patent applicant: Nippon Light Metal Co., Ltd. Inventor: Sho Mochizuki Joint
Yoshitoshi Sagisaka Sakae
Jun Oshiro --'34 Illustration procedure amendment (voluntary) Showa 42.7. January 2nd, Commissioner of the Japan Patent Office) IXllllst Person 1, Indication of the case Showa tyu year patent Ill No. 1 J'77-21 2, Winter of Invention Name 7 U...J"Jj Manushii Mitsumi 3 , Person making the amendment Name of the patent applicant related to the case (name) Japan Light Metal Flooring Company 2 Company 4, Agent 1939 Month/Date Contents of the shipping amendment 1, In the middle part of the specification, page 16, line 4: "Figure 6" has been corrected to "Figure 7." 2. On page 22, lines 3 to 4, it says "10 is the mold," and then "14 is the cooling water, and add j." Correction to the Drawings 11 "Figure 9" in the original drawings at the beginning of the application is attached as an attachment. (Correction.

Claims (1)

【特許請求の範囲】[Claims] 可動受台を有する鋳型内にアルミニウムまたはアルミニ
ウム合金による固体部材をセットし、前記鋳型と固体部
材または固体部材と固体部材との間に溶融金属を注入す
ると共に該溶融金属浴面上に弗化物系フラックスの溶融
層を形成維持せしめつつ上記可動受台を降下して前記固
体部材と鋳型内または固体部材と固体部材との間で冷却
凝固され該固体部材と一体化した上記溶融金属による凝
固層を連続的に導出し、前記鋳型内を順次に通過する上
記固体部材の表面を前記したフラックス溶融層に順次接
触せしめてから溶融金属に通入し、前記固体部材表面に
上述したフラックス溶融層と溶融金属による略一様な熱
履歴を与えつつ鋳造することを特徴とするクラッド鋳造
法。
A solid member made of aluminum or aluminum alloy is set in a mold having a movable pedestal, and molten metal is injected between the mold and the solid member or between the solid members and a fluoride-based material is poured onto the molten metal bath surface. While forming and maintaining a molten layer of flux, the movable pedestal is lowered to form a solidified layer of the molten metal that is cooled and solidified between the solid member and the mold or between the solid members and is integrated with the solid member. The surface of the solid member that is continuously led out and sequentially passes through the mold is brought into contact with the above-mentioned flux molten layer, and then passed through the molten metal, and the above-mentioned flux molten layer and the molten metal are brought into contact with the surface of the solid member. A clad casting method characterized by casting while giving a substantially uniform thermal history to the metal.
JP13772187A 1987-06-02 1987-06-02 Clad casting method Granted JPS63303652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13772187A JPS63303652A (en) 1987-06-02 1987-06-02 Clad casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13772187A JPS63303652A (en) 1987-06-02 1987-06-02 Clad casting method

Publications (2)

Publication Number Publication Date
JPS63303652A true JPS63303652A (en) 1988-12-12
JPH0579429B2 JPH0579429B2 (en) 1993-11-02

Family

ID=15205275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13772187A Granted JPS63303652A (en) 1987-06-02 1987-06-02 Clad casting method

Country Status (1)

Country Link
JP (1) JPS63303652A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523746A (en) * 2003-06-24 2007-08-23 ノベリス・インコーポレイテッド Casting method for composite ingot
KR100771756B1 (en) 2006-07-10 2007-10-30 한국생산기술연구원 Method for producing ag-based electrical contact material by extrusion
US7611778B2 (en) 2001-10-23 2009-11-03 Alcoa Inc. Simultaneous multi-alloy casting
CN103100700A (en) * 2013-01-21 2013-05-15 东北大学 Cladding casting device for aluminum alloy composite ingot casting and cladding casting method
JP2021065906A (en) * 2019-10-23 2021-04-30 品川リフラクトリーズ株式会社 Mold powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611778B2 (en) 2001-10-23 2009-11-03 Alcoa Inc. Simultaneous multi-alloy casting
KR100979670B1 (en) * 2001-10-23 2010-09-02 알코아 인코포레이티드 Simultaneous multi-alloy casting and multi-layered brazing sheet
KR101013405B1 (en) 2001-10-23 2011-02-14 알코아 인코포레이티드 Simultaneous multi-alloy casting
EP2801423A1 (en) * 2001-10-23 2014-11-12 Alcoa Inc. Simultaneous multi-alloy casting
JP2007523746A (en) * 2003-06-24 2007-08-23 ノベリス・インコーポレイテッド Casting method for composite ingot
JP4648312B2 (en) * 2003-06-24 2011-03-09 ノベリス・インコーポレイテッド Casting method for composite ingot
KR100771756B1 (en) 2006-07-10 2007-10-30 한국생산기술연구원 Method for producing ag-based electrical contact material by extrusion
CN103100700A (en) * 2013-01-21 2013-05-15 东北大学 Cladding casting device for aluminum alloy composite ingot casting and cladding casting method
JP2021065906A (en) * 2019-10-23 2021-04-30 品川リフラクトリーズ株式会社 Mold powder

Also Published As

Publication number Publication date
JPH0579429B2 (en) 1993-11-02

Similar Documents

Publication Publication Date Title
KR101013405B1 (en) Simultaneous multi-alloy casting
RU2274515C2 (en) Method for joining by rolling liquid and solid different type metals and plant for performing the same
AU2002335126A1 (en) Simultaneous multi-alloy casting
US8444042B2 (en) Method for producing steel pipe plated with metal by thermal spraying
US9038702B2 (en) System and method of producing multi-layered alloy products
US3206808A (en) Composite-ingot casting system
JP3849092B2 (en) Method for producing aluminum alloy clad material
US3353934A (en) Composite-ingot
JP2009125794A (en) Method for manufacturing clad aluminum alloy sheet
JPS63303652A (en) Clad casting method
US3669179A (en) Process of bonding molten metal to preform without interfacial alloy formation
CN109047368A (en) A kind of preparation method of the compound Bar Wire Product of aluminium packet magnesium
JP3813822B2 (en) Manufacturing method of clad material with good brazing properties
US853932A (en) Process of making bimetallic products.
JPH0647165B2 (en) Manufacturing method of metal laminated composite
EP0149064A1 (en) Continuous molten copper cladding of ferrous alloys
JPH05123831A (en) Method for continuously casting composite cast billet
JP2015042416A (en) Internal chill casting method
JPS60206587A (en) Production of clad steel plate
JPS6152357A (en) Manufacture of seamless clad tube
JPS60111764A (en) Brazing method of ferrous parts
JPH0534110B2 (en)
JPS59130654A (en) Device for producing fine wire
JPH02147149A (en) Clad casting method
JPH0417954A (en) Pouring nozzle for belt wheel type continuous casting