JPS63303409A - Pressure controller - Google Patents

Pressure controller

Info

Publication number
JPS63303409A
JPS63303409A JP62139581A JP13958187A JPS63303409A JP S63303409 A JPS63303409 A JP S63303409A JP 62139581 A JP62139581 A JP 62139581A JP 13958187 A JP13958187 A JP 13958187A JP S63303409 A JPS63303409 A JP S63303409A
Authority
JP
Japan
Prior art keywords
pressure
chamber
solenoid valve
proportional solenoid
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139581A
Other languages
Japanese (ja)
Inventor
Takeshi Naraki
剛 楢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62139581A priority Critical patent/JPS63303409A/en
Publication of JPS63303409A publication Critical patent/JPS63303409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To control the pressure inside a chamber with high accuracy, by providing a proportional solenoid valve which changes its opening for adjusting the flow rate in accordance with control values. CONSTITUTION:The objective system 2a of a microscope system 2 is put into a helium chamber 1 and moves forward and backward when the observing position is changed. Therefore, the airtight bellows coupling the chamber 1 with the microscope 2 contract and expand and the pressure inside the chamber 1 changes. The change in pressure is detected by a pressure sensor 14 and compared with a reference values by means of a comparator 16. When the pressure is lower than the reference value, a comparison signal is sent to a helium gas supplying proportional solenoid valve driver 18 from the comparator 16 and a proportional solenoid valve supplies an operating helium gas to the chamber 1 with an opening proportional to the pressure difference. When the internal pressure is higher than the reference value, a comparison signal is sent to a vacuum supplying proportional solenoid valve driver 17 and a proportional solenoid valve 9 operates with an opening proportional to the pressure difference so as to extract the helium gas and correct the pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、密閉状態にされたチャンバ内の圧力を、はぼ
一定に制御する装置に関し、特にX線露光装置等で使用
されるヘリウムチャンバー内の圧力制御に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a device for controlling the pressure within a sealed chamber to a nearly constant level, and in particular to a helium chamber used in an X-ray exposure device, etc. This relates to pressure control within.

〔従来の技術〕[Conventional technology]

従来、この種の装置が適用される装置として、例えば特
開昭59−126632号公報に開示されているような
X線露光装置が知られている。X線(半導体素子の製造
分野では通常軟X線が使われる)はよく知られているよ
うに真空中やある種の不活性ガスの中においては減衰が
少ない、X線露光装置ではX線源(高真空)からのX線
をマスクを介してウェハに照射する場合、X線源とマス
クとの間が機械的に離れる(20〜50cm程度)こと
から、この間にヘリウムガスを満したチャンバーを設け
、X線の減衰を低く押えている。このチャンバーのX線
取り出し窓はマスクの直近、もしくはマスクそのものが
取り出し芯になるように配置されるため、マスク、ウェ
ハのアライメント用の顕微鏡がチャンバー内に入り込む
のが一般的である。アライメント顕微鏡はチャンバーの
外壁を貫通してチャンバー内で進退可能に設けられるた
め、露光時とアライメント時とでチャンバー内容積が変
化する。これによってX線取り出し窓やマスクが変形を
受けることになり、露光、アライメントに支障をきたす
ことになる。
Conventionally, as an apparatus to which this type of apparatus is applied, an X-ray exposure apparatus as disclosed in, for example, Japanese Unexamined Patent Application Publication No. 126632/1984 has been known. As is well known, X-rays (soft X-rays are usually used in the field of semiconductor device manufacturing) are poorly attenuated in vacuum or in some types of inert gas. When irradiating a wafer with X-rays from a high vacuum (high vacuum) through a mask, there is a mechanical separation between the X-ray source and the mask (approximately 20 to 50 cm), so a chamber filled with helium gas is inserted between the X-ray source and the mask. This suppresses the attenuation of X-rays. The X-ray extraction window of this chamber is placed in close proximity to the mask, or so that the mask itself serves as the extraction core, so a microscope for mask and wafer alignment generally enters the chamber. Since the alignment microscope is installed so that it can move forward and backward within the chamber by penetrating the outer wall of the chamber, the internal volume of the chamber changes between the time of exposure and the time of alignment. This causes the X-ray extraction window and mask to be deformed, causing problems in exposure and alignment.

そこで従来の装置では、チャンバー内のヘリウムガスを
わずかにフローさせて内圧の変化を小さくする方法、チ
ャンバー内の圧力がほぼ一定になるように、チャンバ内
容積を変化させる方法、あるいはチャンバー内圧を検出
してヘリウムの供給、排気を自動的に行なう流体回路を
用いる方法等が考えられていた。特に、流体回路を用い
る方法では、ヘリウムの流路に電磁弁を設け、チャンバ
内圧の変化に応答して電磁弁を開閉するようなフィード
バック制御を採用するため、比較的小さな圧力変動にも
応答できるといった利点がある。このため、1〜数ミク
ロンの厚さのX線取り出し窓(ポリイミド等)やマスク
のメンブレン等がチャンバ内圧と大気圧との差圧によっ
てたわむことが低減される。
Therefore, with conventional devices, there are methods to reduce the change in internal pressure by causing a slight flow of helium gas in the chamber, methods to change the internal volume of the chamber so that the pressure in the chamber is almost constant, or methods to detect the internal pressure in the chamber. A method using a fluid circuit that automatically supplies and exhaust helium has been considered. In particular, the method using a fluid circuit installs a solenoid valve in the helium flow path and employs feedback control that opens and closes the solenoid valve in response to changes in chamber internal pressure, so it can respond to relatively small pressure fluctuations. There are advantages such as Therefore, the X-ray extraction window (made of polyimide or the like) having a thickness of 1 to several microns, the membrane of the mask, and the like are prevented from being bent due to the differential pressure between the chamber internal pressure and the atmospheric pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如き従来の技術では、電磁弁の有効断面積が一定
のため、チャンバ内の圧力変化が大きい場合も小さい場
合も元圧が安定している場合、一定流量の気体の出し入
れしかできないことになる。
In the conventional technology described above, the effective cross-sectional area of the solenoid valve is constant, so whether the pressure change inside the chamber is large or small, if the source pressure is stable, only a constant flow rate of gas can be taken in and taken out. Become.

よって圧力変化が大きい場合を想定して電磁弁の有効断
面積を決定すると、圧力変化が小さい場合は、流量が多
(なりすぎて補正がかかりすぎ、逆に圧力変化が小さい
場合を想定して電磁弁の有効断面積を決めておくと圧力
変化が大きい場合は補正に時間がかかるという問題点が
あった。
Therefore, if the effective cross-sectional area of the solenoid valve is determined assuming a case where the pressure change is large, if the pressure change is small, the flow rate will be too large (too much and the correction will be applied too much, and conversely, assuming a case where the pressure change is small) If the effective cross-sectional area of the solenoid valve is determined in advance, there is a problem in that it takes time to correct when the pressure change is large.

また、体積変化による圧力補正は、構造的に複雑となる
問題点があった。
Further, pressure correction based on volume change has the problem of being structurally complicated.

本発明は、この様な従来の問題点に鑑みてなされたもの
で、チャンバ内の圧力変化の大小にかかわらず高精度な
圧力制御を行う装置を得ることを目的とする。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a device that performs highly accurate pressure control regardless of the magnitude of pressure change within a chamber.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点の解決の為に本発明では、制御値に応じて流
量を調整できるiit磁弁、いわゆる比例電磁弁を用い
、チャンバ内の圧力変化量に応じて電磁弁の開度を変化
させ、チャンバ内の圧力変化を一定値内に安定させるよ
うにした。
In order to solve the above problems, the present invention uses an IIT magnetic valve, a so-called proportional solenoid valve, which can adjust the flow rate according to a control value, and changes the opening degree of the solenoid valve according to the amount of pressure change in the chamber. The pressure change inside the chamber was stabilized within a certain value.

また元圧の変化があると、比例電磁弁の開度が一定でも
気体流量は変化し、内圧変化に対する比例電磁弁の開度
を決定するゲインの設定が困難になる。そこで本発明で
は、比例電磁弁の前段にある程度圧力制御された予備チ
ャンバ(予備圧力室)を設けて、この問題を解決してい
る。
Furthermore, if there is a change in the source pressure, the gas flow rate will change even if the opening degree of the proportional solenoid valve is constant, making it difficult to set the gain that determines the opening degree of the proportional solenoid valve in response to changes in internal pressure. Therefore, in the present invention, this problem is solved by providing a preparatory chamber (preparatory pressure chamber) whose pressure is controlled to some extent before the proportional solenoid valve.

〔作 用〕[For production]

本発明においては、比例電磁弁を使用し、比例電磁弁の
開度により気体の流量を一定にする構成をとった為、チ
ャンバ内の圧力変化の大小により、気体の流量を制御し
、すみやかにチャンバ内圧力を一定の範囲内に入れる事
が出来る。
In the present invention, a proportional solenoid valve is used, and the gas flow rate is made constant depending on the opening degree of the proportional solenoid valve, so the gas flow rate can be controlled depending on the magnitude of the pressure change in the chamber, and the gas flow rate can be quickly controlled. The pressure inside the chamber can be kept within a certain range.

〔実施例〕〔Example〕

図は本発明の実施例のブロック線図であって、ヘリウム
(He)チャンバ1内には顕微鏡システム20対物系2
aが首をつっこんでおり、顕微鏡システム2は対物系2
aとともに観察位置を変える為に図中矢印Aのように前
後に動く、その為にHeチャンバ1と顕微鏡2を継いで
いる気密性のベローズ3は伸縮し、その結果Heチャン
バ1の圧力は変化する。圧力変化は圧力センサ14によ
りモニタされ、コンパレータ16で基準値と比較される
。もし内圧が基準値よりも低ければ、コンパレータ16
からの比較信号はHe供給用比例電磁弁ドライバ18に
送られ、圧力差に比例した開度で、比例電磁弁4を作動
させ、HeガスをHeチャンバ1へ供給する。内圧が基
準値よりも高ければコンパレータ16からの比較信号は
真空供給用比例電磁弁ドライバ17に送られ、圧力差に
比例した開度で比例電磁弁9を作動させ、Heをぬき、
圧力を補正する。
The figure is a block diagram of an embodiment of the present invention, in which a helium (He) chamber 1 includes a microscope system 20, an objective system 2,
A is holding his head, and microscope system 2 is holding objective system 2.
In order to change the observation position along with a, it moves back and forth as shown by arrow A in the figure. Therefore, the airtight bellows 3 connecting He chamber 1 and microscope 2 expands and contracts, and as a result, the pressure in He chamber 1 changes. do. Pressure changes are monitored by pressure sensor 14 and compared with a reference value by comparator 16. If the internal pressure is lower than the reference value, comparator 16
The comparison signal is sent to the He supply proportional solenoid valve driver 18, which operates the proportional solenoid valve 4 at an opening proportional to the pressure difference to supply He gas to the He chamber 1. If the internal pressure is higher than the reference value, the comparison signal from the comparator 16 is sent to the vacuum supply proportional solenoid valve driver 17, which operates the proportional solenoid valve 9 with an opening proportional to the pressure difference, removes He,
Correct pressure.

比例電磁弁4.9の各々の前段(それぞれ供給源、真空
源側)には予備チャンバ6.11とレギュレータ7.1
2とが対になって接続され、He及び真空の供給圧(元
圧)の変動により生じる流量制御上のゲイン設定への影
響を押さえている。
A preliminary chamber 6.11 and a regulator 7.1 are provided before each of the proportional solenoid valves 4.9 (on the supply source and vacuum source sides, respectively).
2 are connected as a pair to suppress the influence on the gain setting for flow rate control caused by fluctuations in He and vacuum supply pressure (original pressure).

また、予備チャンバ6.11内の圧力は圧力センサ5.
10でそれぞれモニタされ、レギュレータ7.12で予
備チャンバ6.11内の圧力を制御しきれなくなった場
合の監視ができるようにしである。
The pressure inside the preliminary chamber 6.11 is also measured by the pressure sensor 5.11.
10, respectively, to enable monitoring in case the pressure in the preliminary chamber 6.11 becomes uncontrollable by the regulator 7.12.

また、Heチャンバ1内の圧力が比例電磁弁4.9で制
御しきれずにある規定値より上昇又は低下した場合の安
全策として圧力センサ14からの検出信号をコンパレー
タ15に常に送るように構成しておく。そしてここで検
知されたチャンバ圧力が規定値より大きいとき、又は小
さいときはり一り弁13を開きHeチャンバ1内のHe
ガスを解放して圧力異常を防止するような機構となって
いる。
Furthermore, as a safety measure in the event that the pressure within the He chamber 1 cannot be fully controlled by the proportional solenoid valve 4.9 and rises or falls below a certain specified value, the configuration is such that the detection signal from the pressure sensor 14 is always sent to the comparator 15. I'll keep it. When the chamber pressure detected here is larger or smaller than the specified value, the valve 13 is opened and the He in the He chamber 1 is removed.
It has a mechanism that releases gas to prevent pressure abnormalities.

さらに真空の配管の途中(チャンバ1と電磁弁9の間)
に酸素センサ8を取り付け、チャンバ1内を空気からH
eガスに置換した場合、あるいはチャンバ外壁からの空
気のリークを考慮して、Heチャンバ1内のHefi度
を推定できるようにしである。この位置に酸素センサ8
があれば、熱を発生するタイプのセンサでも顕微鏡シス
テム2等に影響を与えずに測定することができる。しか
し、この位置では、真空側が作動した時しか酸素濃度の
測定動作ができないので、各ドライバ17.18にオフ
セットをのせ、常に真空系を動作(チャンバlからHe
ガスを排気する動作)させ、その圧力補正を電磁弁4を
開いてHe供給系で行うようにすれば解決される。
Furthermore, in the middle of vacuum piping (between chamber 1 and solenoid valve 9)
Attach the oxygen sensor 8 to the chamber 1 to remove air from the inside of the chamber 1.
This allows the degree of Hefi in the He chamber 1 to be estimated by taking into account air leakage from the outer wall of the chamber or when replacing with e-gas. Oxygen sensor 8 in this position
If there is, even a type of sensor that generates heat can be used for measurement without affecting the microscope system 2 or the like. However, in this position, the oxygen concentration can only be measured when the vacuum side is activated, so an offset is placed on each driver 17 and 18 so that the vacuum system is always activated (from chamber l to He
This problem can be solved by performing an operation to exhaust the gas, and then opening the solenoid valve 4 to correct the pressure in the He supply system.

次に本実施例の全体動作について説明する。Next, the overall operation of this embodiment will be explained.

不図示のHeガス供給源からの陽圧のHeガスはレギュ
レータ7を介して予備チャンバ6に流入する。予備チャ
ンバ6はHeガスをある一定の圧力に保持して貯えるも
ので、Heチャンバlで起り得る最大の圧力変化に対し
て十分な精度で補正ができるように容積が決められてい
る。また不図示の真空源からの負圧も予備チャンバ11
に供給され、レギュレータ12によって予備チャンバ1
1内の負圧がほぼ一定値になるように制御される。
Positive pressure He gas from a He gas supply source (not shown) flows into the preliminary chamber 6 via the regulator 7 . The preparatory chamber 6 stores He gas while maintaining it at a certain pressure, and its volume is determined so that the maximum pressure change that can occur in the He chamber 1 can be corrected with sufficient accuracy. Negative pressure from a vacuum source (not shown) is also applied to the preliminary chamber 11.
is supplied to the pre-chamber 1 by the regulator 12.
The negative pressure inside 1 is controlled to be approximately constant.

図においてHeチャンバ1は装置のX線源側から見た平
面図であり、矩形の領域PAはマスク上の回路パターン
領域である。顕微鏡システム2の対物系2aはHeチャ
ンバl内の回路パターン領域PAの周辺上方空間まで繰
り出され、ここでマスクとウェハとのアライメントが行
なわれる。この間、先にも説明したように酸素センサー
8を作動させるために、ドライバー17.1日によるフ
ィードバックループ内にオフセットを与え、わずかなH
eガスが電磁弁4を介してHeチャンバ1内に流入し、
さらに電磁弁9を介して排気されるようにする。さて、
アライメントが完了すると、顕微鏡システム2の対物系
2aが回路パターン領域PAの上方空間をX線から遮え
ぎらないように退避する。このときHeチャンバ1内の
圧力が変化(減圧)するが、その変化量は圧力センサー
14で検出され、ただちにコンパレータ16によって基
準値と比較され、ドライバー18は電磁弁4の開角を大
きくするような制御値を出力する。これによってHeチ
ャンバl内の圧力は元の値に補正される。もちろん、圧
力が元の値に近づくにしたがって電磁弁4の開度も小さ
くなる。そしてHeチャンバ1内の圧力が安定したとこ
ろでX線の露光が行なわれる。X線露光は、通常の光露
光にくらべると数倍以上の時間がかかるため、この間に
おいても圧力サーボ系が常時働いてHeチャンバ1内の
圧力は一定値に保たれる。
In the figure, the He chamber 1 is a plan view seen from the X-ray source side of the apparatus, and the rectangular area PA is the circuit pattern area on the mask. The objective system 2a of the microscope system 2 is extended to a space above the circuit pattern area PA in the He chamber 1, and alignment between the mask and the wafer is performed here. During this time, in order to activate the oxygen sensor 8, as explained earlier, an offset is given in the feedback loop by the driver 17.1, and a slight H
E gas flows into the He chamber 1 via the solenoid valve 4,
Furthermore, the air is exhausted through the solenoid valve 9. Now,
When the alignment is completed, the objective system 2a of the microscope system 2 is retracted so as not to block the space above the circuit pattern area PA from X-rays. At this time, the pressure inside the He chamber 1 changes (depressurizes), but the amount of change is detected by the pressure sensor 14 and immediately compared with a reference value by the comparator 16, and the driver 18 causes the solenoid valve 4 to increase the opening angle. Outputs the control value. As a result, the pressure within the He chamber I is corrected to its original value. Of course, as the pressure approaches the original value, the opening degree of the solenoid valve 4 also decreases. Then, when the pressure within the He chamber 1 becomes stable, X-ray exposure is performed. Since X-ray exposure takes several times longer than normal light exposure, the pressure servo system operates constantly during this time to maintain the pressure in the He chamber 1 at a constant value.

このようなサーボ系を安定に、正確に働かせるためには
、比例電磁弁4を通るHeガスの圧力、比例電磁弁9か
ら引かれる負圧がほぼ安定で一定値になっていることが
必要である1本実施例では予備チャンバ6.11、レギ
ュレータ7.12によって、これらの条件を達成してい
る。
In order for such a servo system to work stably and accurately, it is necessary that the pressure of He gas passing through the proportional solenoid valve 4 and the negative pressure drawn from the proportional solenoid valve 9 be approximately stable and at a constant value. In one embodiment, these conditions are achieved by means of a preliminary chamber 6.11 and a regulator 7.12.

さて、露光が終了して、ウェハ上の次の領域に対してス
テップアンドリピート方式で露光を行なう場合は、再び
顕微鏡2が繰り出される。このときHeチャンバ1内の
圧力が上昇するため、主に比例電磁弁9の開度が大きく
なるようにサーボ制御され、元の圧力に補正される。
Now, when the exposure is completed and the next area on the wafer is to be exposed in a step-and-repeat manner, the microscope 2 is moved out again. At this time, the pressure inside the He chamber 1 increases, so servo control is performed mainly to increase the opening degree of the proportional solenoid valve 9, and the pressure is corrected to the original pressure.

以上本実施例によれば、顕微鏡システム2の移動量及び
移動速度が変化したとしても、Heチャンバ1内の圧力
は応答性よく調整され、しかも比例電磁弁4.9を予備
チャンバ6.11と組み合わせて使うため、極めて大き
な範囲内で精密な圧力制御が可能となる。
As described above, according to the present embodiment, even if the movement amount and movement speed of the microscope system 2 change, the pressure in the He chamber 1 can be adjusted with good responsiveness, and the proportional solenoid valve 4.9 can be adjusted to the preliminary chamber 6.11. When used in combination, precise pressure control is possible within an extremely large range.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、内圧の変化し得るチャン
バ内の圧力を極めて精密にサーボ制御することが可能に
なる。
As described above, according to the present invention, it becomes possible to extremely precisely servo control the pressure inside the chamber, which can change.

また本発明は内部圧力を制御する必要のある機器一般に
広(利用できるものであり、例えば投影型露光装置にお
いて、投影レンズ内の密封された空気間隔の圧力を制御
して投影倍率や焦点面を微少量だけ補正するような場合
にも同様の効果が得られる。
Furthermore, the present invention can be widely used in equipment that requires internal pressure control. For example, in a projection exposure apparatus, the projection magnification and focal plane can be controlled by controlling the pressure in the sealed air space within the projection lens. A similar effect can be obtained even when only a minute amount of correction is to be made.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例による圧力制御装置のブロック線図
である。 [主要部分の符号の説明] 1・・・Heチャンバ、 2・・・顕微鏡システム、3
・・・ベローズ、 4・・・比例電磁弁、 5・・・圧
力センサ、  6・・・予備チャンバ、  7・・・レ
ギュータ、8・・・酸素センサ、 9・・・比例電磁弁
、  10・・・圧力センサ、  11・・・予備チャ
ンバ、  12・・・真空レギュレータ、  13・・
・リーク弁、  14・・・圧力センサ、  15・・
・コンパレータ、  16・・・コンパレータ
The figure is a block diagram of a pressure control device according to an embodiment of the present invention. [Explanation of symbols of main parts] 1...He chamber, 2...Microscope system, 3
...Bellows, 4...Proportional solenoid valve, 5...Pressure sensor, 6...Preliminary chamber, 7...Regulator, 8...Oxygen sensor, 9...Proportional solenoid valve, 10. ...Pressure sensor, 11...Preliminary chamber, 12...Vacuum regulator, 13...
・Leak valve, 14...pressure sensor, 15...
・Comparator, 16... Comparator

Claims (2)

【特許請求の範囲】[Claims] (1)内圧の変化し得るチャンバ内の圧力を検出し、該
圧力が所定の値になるようにフィードバック制御する装
置において、 前記チャンバ内の気体を出し入れするためにチャンバと
圧力源との間に設けられて、前記気体の流量を制御する
電磁弁ユニットと; 該電磁弁ユニットと前記圧力源との間に設けられ、前記
電磁弁ユニットへの制御値に応じて前記気体の流量が調
整されるように予備的に圧力調整する予備圧力室とを備
えたことを特徴とする圧力制御装置。
(1) In a device that detects the pressure in a chamber whose internal pressure can change and performs feedback control so that the pressure becomes a predetermined value, there is a device between the chamber and the pressure source in order to take in and out the gas in the chamber. a solenoid valve unit that is provided to control the flow rate of the gas; and a solenoid valve unit that is provided between the solenoid valve unit and the pressure source, and that adjusts the flow rate of the gas according to a control value to the solenoid valve unit. A pressure control device characterized by comprising a preliminary pressure chamber for preliminary pressure adjustment.
(2)前記圧力源は、前記チャンバに前記気体を供給す
る加圧気体供給源と、前記チャンバから前記気体を排出
する負圧源とを有し、 前記電磁弁ユニットは、前記加圧気体供給源と前記チャ
ンバとの間に設けられ、前記制御量に応じて流量を制御
する第1比例電磁弁と、前記負圧源と前記チャンバとの
間に設けられ、前記制御量に比例して流量を制御する第
2比例電磁弁とを有し、 前記予備圧力室は、前記加圧気体供給源と前記第1比例
電磁弁との間に設けられた第1予備室と、前記負圧源と
第2比例電極弁との間に設けられた第2予備室とを有す
ることを特徴とする特許請求の範囲第1項記載の装置。
(2) The pressure source includes a pressurized gas supply source that supplies the gas to the chamber, and a negative pressure source that discharges the gas from the chamber, and the electromagnetic valve unit supplies the pressurized gas. a first proportional solenoid valve that is provided between the source and the chamber and controls the flow rate in accordance with the controlled amount; and a first proportional solenoid valve that is provided between the negative pressure source and the chamber and controls the flow rate in proportion to the controlled amount. a second proportional solenoid valve that controls the pressure, and the preliminary pressure chamber includes a first preliminary chamber provided between the pressurized gas supply source and the first proportional solenoid valve, and a second proportional solenoid valve that controls the negative pressure source. 2. The device according to claim 1, further comprising a second preliminary chamber provided between the second proportional electrode valve and the second proportional electrode valve.
JP62139581A 1987-06-03 1987-06-03 Pressure controller Pending JPS63303409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139581A JPS63303409A (en) 1987-06-03 1987-06-03 Pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139581A JPS63303409A (en) 1987-06-03 1987-06-03 Pressure controller

Publications (1)

Publication Number Publication Date
JPS63303409A true JPS63303409A (en) 1988-12-12

Family

ID=15248594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139581A Pending JPS63303409A (en) 1987-06-03 1987-06-03 Pressure controller

Country Status (1)

Country Link
JP (1) JPS63303409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326106A (en) * 1991-04-25 1992-11-16 Japan Atom Energy Res Inst Pressure controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326106A (en) * 1991-04-25 1992-11-16 Japan Atom Energy Res Inst Pressure controller

Similar Documents

Publication Publication Date Title
US6289923B1 (en) Gas supply system equipped with pressure-type flow rate control unit
US9400004B2 (en) Transient measurements of mass flow controllers
EP0676672B1 (en) Processing method and apparatus for a resist-coated substrate
JP2021524068A (en) Chamber pressure control method and equipment, semiconductor equipment
US5770899A (en) Linear motor
US20030025889A1 (en) Exposure apparatus and control method therefor, and device manufacturing method
TWI698603B (en) Flow control method and flow control device
US6200100B1 (en) Method and system for preventing incontinent liquid drip
KR20110015692A (en) Systems and methods for updating valve cracking current in mass flow controllers
JP2766935B2 (en) X-ray exposure equipment
JP4832276B2 (en) Substrate adsorption system and semiconductor manufacturing apparatus
JPS63303409A (en) Pressure controller
EP0805975B1 (en) Pressure injection apparatus for capillary electrophoresis apparatus
JPH11354520A (en) Converted ion beam machining device
JP2001105298A (en) Inner pressure stabilizing device for fluid pressurization type carrier
JP2880264B2 (en) Substrate holding device
JP2003167635A (en) Back pressure control valve
JPH021905A (en) X-ray exposure system
JPH03101216A (en) X-ray exposure device
US20230229177A1 (en) Fluid control device, fluid control method, and fluid control program
JP3122271B2 (en) Method of injecting oxygen into boiler feedwater in thermal power plant
JP2005307993A (en) Method for calibrating stage device using variable restriction static pressure bearing
JP3074192B2 (en) Wafer processing equipment
JPH01285729A (en) Absolute pressure controller
JPH0426456Y2 (en)