JPS6330310A - Production of adsorbent for separating carbon monoxide - Google Patents

Production of adsorbent for separating carbon monoxide

Info

Publication number
JPS6330310A
JPS6330310A JP61173282A JP17328286A JPS6330310A JP S6330310 A JPS6330310 A JP S6330310A JP 61173282 A JP61173282 A JP 61173282A JP 17328286 A JP17328286 A JP 17328286A JP S6330310 A JPS6330310 A JP S6330310A
Authority
JP
Japan
Prior art keywords
adsorbent
activated carbon
carbon monoxide
phenolic resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61173282A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugimoto
杉本 行廣
Tetsuo Takano
哲雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61173282A priority Critical patent/JPS6330310A/en
Publication of JPS6330310A publication Critical patent/JPS6330310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title adsorbent having excellent durability and capable of efficiently and inexpensively separating high-purity CO from blast-furnace gas, converter gas, etc., by mixing the fine powder of activated carbon with the aq. soln. of a specified resol-type phenolic resin, granulating and drying the mixture, and then heating the obtained material in an inert gaseous atmosphere. CONSTITUTION:From 10-30wt% resol-type phenolic resin soln. wherein 0.1-0.5 milliequivalent g/g activated carbon of a group IB metal ion of the periodic table (e.g., monovalent Ag and Cu ions from AgCl, CuCl, etc.) is dissolved and which is diluted by 2-3 times with water or aq. ammonia is mixed with <=100-mesh fine activated carbon powder, and sufficiently mixed. The mixture is granulated into pellets having 2-3mm diameter, for example, by an extruder, and dried. The dried pellets are heated in an inert atmosphere of gaseous N2, etc., at 150-500 deg.C in a heating furnace.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は合成化学の原料や冶金関係等に用いられる一
酸化炭素を回収するための吸着剤に係り、特に窒素と共
に多重の一酸化炭素を含有する高炉ガス、転炉ガス等の
製鉄所副生ガスから高純度の一酸化炭素を効率よく分離
回収し得る吸着剤の製造方法に関する。
[Detailed Description of the Invention] Industrial Field of Application This invention relates to an adsorbent for recovering carbon monoxide used as a raw material for synthetic chemistry, metallurgy, etc., and in particular contains multiple carbon monoxides together with nitrogen. The present invention relates to a method for producing an adsorbent that can efficiently separate and recover high-purity carbon monoxide from steelworks byproduct gases such as blast furnace gas and converter gas.

従来技術とその問題点 高炉ガスや転炉ガス等の製鉄所謂生ガスには高濃度の一
酸化炭素が多く含有されており、これらの副生ガスから
一酸化炭素を回収することは工業的に有益である。しか
し、これらの副生ガス中には通常多量の窒素が含まれて
おり、−酸化炭素と窒素の物理的性質は近似しているこ
とから、−酸化炭素と窒素を工業的に低コストで分離す
ることは非常に難しい。従って、この窒素との分離かn
1生ガスから一酸化炭素を分離回収する際に大きな問題
となる。
Conventional technology and its problems Steel mill gases such as blast furnace gas and converter gas contain high concentrations of carbon monoxide, and it is difficult to recover carbon monoxide from these byproduct gases industrially. Beneficial. However, these byproduct gases usually contain a large amount of nitrogen, and since the physical properties of carbon oxide and nitrogen are similar, it is possible to separate carbon oxide and nitrogen industrially at low cost. very difficult to do. Therefore, this separation from nitrogen
1 This poses a major problem when separating and recovering carbon monoxide from raw gas.

ところで、従来の一酸化炭素と窒素の分離方法としては
、吸収法、深冷法、吸着法等が知られている。このうち
、吸収法と深冷法は高収″Pて高純度の一酸化炭素を製
造できる点で吸着法よりもすぐれているが、製造コスト
が高くつく欠点がある。
Incidentally, as conventional methods for separating carbon monoxide and nitrogen, absorption methods, deep cooling methods, adsorption methods, etc. are known. Among these methods, the absorption method and the cryogenic method are superior to the adsorption method in that they can produce high-purity carbon monoxide with a high yield of P, but they have the disadvantage of high production costs.

一方、吸着法に基づいた圧力スイング吸着法(PSA法
)は、前記吸収法および深冷法と比べて原理的に製造コ
ストは安くつくが、−酸化炭素を高4iir!度、高収
率で分離できる吸着剤がなく、未だ確立された技術とは
言い難い。
On the other hand, the pressure swing adsorption method (PSA method), which is based on an adsorption method, is theoretically cheaper to produce than the absorption method and deep cooling method, but the production cost is 4iir! However, there is no adsorbent that can separate the process with high yield, so it is still difficult to say that this is an established technology.

現在知られている吸着剤としては、シリカゲル、活性炭
、活性アルミナ、ゼオライト等があり、このうち−酸化
炭素と窒素の分離に有効な吸着剤としては、■分子ふる
い効果を有するゼオライト、■比表面積の大きな吸着剤
(高分子材料、活性炭等)に金属塩を担持せしめたもの
があげられる。
Currently known adsorbents include silica gel, activated carbon, activated alumina, and zeolite. Among these, the adsorbents that are effective for separating carbon oxide and nitrogen include zeolite, which has a molecular sieving effect, and zeolite, which has a specific surface area. An example is one in which a metal salt is supported on a large adsorbent (polymer material, activated carbon, etc.).

しかし、■のゼオライトによる分離法の場合は一酸化炭
素と窒素の吸着速度差を利用して分離を行なうのである
が、ゼオライトの一酸化炭素に対する吸着選択性が不十
分なため一酸化炭素の純度を上げようとすると製品収率
が極端に低下し、逆に製品収率を上げようとすると一酸
化炭素の純度が低下する等実用上の問題点が多い。
However, in the case of the separation method using zeolite described in (2), separation is carried out by utilizing the difference in adsorption speed between carbon monoxide and nitrogen, but because the adsorption selectivity of zeolite for carbon monoxide is insufficient, the purity of carbon monoxide is Attempts to increase the product yield result in an extremely low product yield, and conversely, attempts to increase the product yield result in a decrease in the purity of carbon monoxide, which poses many practical problems.

使方、前記■の金属塩を担持せしめた吸着剤の場合は、
元来高分子材料や活性炭には分子ふるい性がなく、いわ
ゆる−酸化炭素の金属サイトへの化学吸着に基づく分離
であるため、多量の金属塩を担持する必要があり、その
結果として吸着剤が高価なものになるとともに、吸着ガ
ス成分の脱着が困難で製品収率が低下するなどの欠点が
あり、好ましくなかった。
How to use: In the case of an adsorbent loaded with a metal salt as described in (■) above,
Polymer materials and activated carbon inherently do not have molecular sieving properties, and separation is based on chemisorption of so-called -carbon oxide onto metal sites, so it is necessary to support a large amount of metal salts, and as a result, the adsorbent This method was undesirable because it was expensive and had drawbacks such as difficulty in desorption of adsorbed gas components and reduced product yield.

一方、活性炭に分子ふるい性を付与するため、活性炭表
面をフェノール樹脂等の有機物質で被覆した後加熱処理
を行なって分子ふるい炭素を製造する方法(特開昭59
−230638)、活性炭をフェノール樹脂を用いて造
粒した後加熱処理を行なって分子ふるい炭素を製造する
方法(特開昭59−230637)等が提案されている
が、これらの方法で単に分子ふるい性を改善したのみで
は、−酸化炭素に対する吸@選択性が不十分で、前記ゼ
オライトと同様−酸化炭素分離用吸着剤としては好まし
いものではない。
On the other hand, in order to impart molecular sieving properties to activated carbon, a method of producing molecular sieve carbon by coating the surface of activated carbon with an organic substance such as phenol resin and then heat-treating it (Japanese Patent Laid-Open No. 59
-230638), a method of producing molecular sieve carbon by granulating activated carbon with a phenolic resin and then heating it (Japanese Patent Application Laid-open No. 59-230637), but these methods simply produce molecular sieve carbon. Even if only the properties are improved, the adsorption selectivity for carbon oxide is insufficient, and like the zeolite described above, it is not preferable as an adsorbent for separating carbon oxide.

発明の目的 この発明は吸着剤を用いて一酸化炭素を分離回収する方
法における従来の前記問題点を解決するためになされた
もので、−酸化炭素に対する吸着選択性がすぐれ、かつ
吸着ガス成分の脱着がきわめて良好な一酸化炭素分離用
吸着剤を低コストで製造する方法を提案せんとするもの
である。
Purpose of the Invention The present invention was made in order to solve the above-mentioned problems in the conventional method of separating and recovering carbon monoxide using an adsorbent. The purpose of this paper is to propose a low-cost method for producing an adsorbent for carbon monoxide separation that exhibits extremely good desorption properties.

発明の構成 この発明に係る一酸化炭素分離用吸着剤の製造方法は、
微粉状の活性炭に、IB族金属イオン0.1〜0.5ミ
リ当it (110−活性炭を溶解したレゾール型フェ
ノール樹脂水溶液を10〜30@量%配合し、混合、造
粒、乾燥後不活性雰囲気下150〜500℃の温度で加
熱することを特徴とするものである。すなわち、この発
明は活性炭の一酸化炭素に対する吸着選択性と吸着ガス
成分の脱着性を改善するため、微粉状活性炭造粒のため
の結合剤として、水溶性のレゾール型フェノール樹脂に
あらかじめIB族金属イオンを溶解したものを用い、こ
の結合剤と微粉状活性炭とを混合し、造粒、乾燥後、結
合剤の樹脂を加熱硬化させる方法である。
Structure of the Invention The method for producing an adsorbent for carbon monoxide separation according to the present invention includes:
10 to 30% of a resol type phenol resin aqueous solution in which 0.1 to 0.5 milliliter of group IB metal ion (110-activated carbon is dissolved) is blended into fine powdered activated carbon, and after mixing, granulation, and drying, This invention is characterized by heating at a temperature of 150 to 500°C in an active atmosphere.In other words, the present invention aims to improve the adsorption selectivity of activated carbon to carbon monoxide and the desorption performance of adsorbed gas components. As a binder for granulation, a water-soluble resol-type phenolic resin in which group IB metal ions are dissolved in advance is used. This binder and finely powdered activated carbon are mixed, and after granulation and drying, the binder is This method heats and hardens the resin.

この発明において、結合剤としてレゾール型フェノール
樹脂を用いたのは、水溶性であり微粉状活性炭と混合し
易いためである。なお、微粉状活性炭との混合を容易に
するため、前記フェノール樹脂は水またはアンモニア水
で2〜3倍に稀釈して使用するのが好ましい。
In this invention, a resol type phenolic resin is used as a binder because it is water-soluble and easily mixed with finely powdered activated carbon. In addition, in order to facilitate mixing with fine powder activated carbon, the phenol resin is preferably used after being diluted 2 to 3 times with water or aqueous ammonia.

前記フェノール樹脂に金属イオンを溶解させたのは、混
合、造粒過程でフェノール樹脂が活性炭を被覆すること
によって金属イオンを効果的に分散させて金属イオンの
使用量を低減するためと、吸着ガス成分(−酸化炭素)
の脱着性をよくするためである。この金属イオンとして
IB族金属イオンを用いたのは、−酸化炭素と適度な親
和力を有し、−酸化炭素に対する吸着選択性と易脱着性
を併せもっためである。このIB族金属イオンとしては
、特に限定するものではないが、−価のA♂イオンある
いはaイオンはその金属塩の入手が容易であり、また安
価であることから好ましい。
The reason why the metal ions are dissolved in the phenolic resin is that the phenol resin coats the activated carbon during the mixing and granulation process, thereby effectively dispersing the metal ions and reducing the amount of metal ions used. Ingredients (-carbon oxide)
This is to improve the ease of attachment and detachment. The reason why a Group IB metal ion was used as this metal ion is that it has a suitable affinity for -carbon oxide and has both adsorption selectivity and easy desorption properties for -carbon oxide. The IB group metal ion is not particularly limited, but -valent A♂ ions or a ions are preferred because their metal salts are easily available and inexpensive.

ここで、塩化銀、塩化銅(I)等の水に対する溶解度の
低い金属塩の場合は、例えばあらかじめこれらの金属塩
をアンモニア水中に錯イオンの形で溶解しておき、これ
をフェノール樹脂と混合しAiイオンあるいはaイオン
を溶解したフェノール樹脂水溶液として使用することが
好ましい。
In the case of metal salts with low solubility in water, such as silver chloride and copper(I) chloride, for example, these metal salts are dissolved in ammonia water in the form of complex ions, and this is mixed with the phenol resin. It is preferable to use a phenol resin aqueous solution in which Ai ions or a ions are dissolved.

上記金属イオンの使用量として、活性炭1グラムに対し
0.1〜0.5ミリ当量ダラムと限定したのは、金属イ
オンの使用量が活性炭1グラムに対して0.1ミリ当量
ダラム未満では効果がなく、他方0.5ミリ当量ダラム
を超えると、吸着した一酸化炭素の常温での脱着が困難
となるためである。
The amount of metal ions used is limited to 0.1 to 0.5 milliequivalent duram per gram of activated carbon, because if the amount of metal ions used is less than 0.1 milliequivalent duram per gram of activated carbon, it will not be effective. On the other hand, if the amount exceeds 0.5 milliequivalent duram, it becomes difficult to desorb the adsorbed carbon monoxide at room temperature.

この発明では前記フェノール樹脂の水溶液中にあらかじ
め前記IB族金属イオンを溶解したものを結合剤として
用いるが、微粉状活性炭に対する結合剤の配合量として
10〜30重量%と限定したのは、10重量%未満では
造粒物の強度が十分とは言えず、他方30重量%を超え
ると造粒物どうしの付着を招き団塊化するためである。
In this invention, the group IB metal ion dissolved in advance in the aqueous solution of the phenolic resin is used as the binder, but the amount of the binder added to the finely powdered activated carbon is limited to 10 to 30% by weight. If the content is less than 30% by weight, the strength of the granules will not be sufficient, whereas if it exceeds 30% by weight, the granules will adhere to each other and form agglomerates.

微粉状活性炭と結合剤とを混合、造粒、乾燥後、この発
明では不活性雰囲気下150〜500℃の温度で加熱す
ることを特徴とするが、加熱処理温度として150〜5
00℃と限定したのは、150℃未満の加熱温度ではフ
ェノール樹脂の熱硬化が不十分で、十分な強度を有する
吸着剤が得られず、他方500℃を超える温度ではフェ
ノール樹脂の熱分解が進み吸着剤の強度低下が起こるた
めである。また、不活性雰囲気としたのは、添加された
金属イオンの酸化による活性低下を防止するためである
。なお、熱処理時間としては、特に限定するものではな
いが、1時間未満ではフェノール樹脂の熱硬化が不十分
であり、他方4時間以上加熱処理を行なっても吸着剤の
強度向上がみられないことから、1〜4時間が好ましい
After mixing, granulating, and drying the fine powder activated carbon and the binder, this invention is characterized by heating at a temperature of 150 to 500°C in an inert atmosphere, but the heat treatment temperature is 150 to 500°C.
The reason for limiting the temperature to 00°C is that at a heating temperature of less than 150°C, the thermosetting of the phenolic resin is insufficient and an adsorbent with sufficient strength cannot be obtained, while at a temperature exceeding 500°C, the thermal decomposition of the phenolic resin occurs. This is because the strength of the adsorbent decreases as it progresses. Furthermore, the reason for the inert atmosphere is to prevent a decrease in activity due to oxidation of the added metal ions. The heat treatment time is not particularly limited, but if it is less than 1 hour, the thermosetting of the phenol resin will be insufficient, and on the other hand, if the heat treatment is performed for 4 hours or more, no improvement in the strength of the adsorbent will be observed. 1 to 4 hours is preferable.

この発明で使用される活性炭の種類は特に限定するもの
ではないが、石炭由来の活性炭が安価でかつ容易に入手
できるため好ましい。
The type of activated carbon used in this invention is not particularly limited, but activated carbon derived from coal is preferred because it is inexpensive and easily available.

第1図はこの発明方法を示すブロック図である。FIG. 1 is a block diagram showing the method of this invention.

すなわち、前記したとおり微粉状活性炭(100メツシ
ユ以下)に対し、IB族金属塩(AaCア、 Cu(J
等)0.1〜0.5ミリ当量Q/Q−活性炭を溶解した
水またはアンモニア水で2〜3倍に稀釈したレゾール型
フェノール樹脂を10〜30重量%配合し、十分に混合
した後、造粒過程で例えば押出成型機で粒径2〜3mm
φのペレットを造粒する。得られたペレットは乾燥後、
加熱過程で例えば加熱炉を用いて窒素ガス等不活性雰囲
気下で150〜500℃の温度で加熱処理を行なう。
That is, as mentioned above, fine powder activated carbon (100 mesh or less) is mixed with IB group metal salts (AaCa, Cu(J
etc.) 10 to 30% by weight of a resol type phenolic resin diluted 2 to 3 times with water or aqueous ammonia in which 0.1 to 0.5 milliequivalent Q/Q-activated carbon is dissolved and mixed thoroughly, In the granulation process, for example, with an extruder, the particle size is 2 to 3 mm.
Pellets of φ are granulated. After drying the obtained pellets,
In the heating process, heat treatment is performed at a temperature of 150 to 500° C. using, for example, a heating furnace in an inert atmosphere such as nitrogen gas.

前記混合、造粒過程ではIB族金属イオンを含有するフ
ェノール樹脂が活性炭を被覆し、添加された金属イオン
が均一に分散されるため、金属イオンの使用量は少なく
てすみ、かつ−酸化炭素の脱着性も良好となる。また、
加熱過程ではフェノール樹脂中に微細な細孔が発生し、
これらの細孔が一種の分子ふるいとして作用するため、
窒素に対する一酸化炭素の吸着選択性がいっそう優れた
ものとなる。
In the mixing and granulation process, the activated carbon is coated with a phenolic resin containing group IB metal ions, and the added metal ions are uniformly dispersed, so the amount of metal ions used is small, and - The removability is also improved. Also,
During the heating process, fine pores are generated in the phenolic resin,
Because these pores act as a kind of molecular sieve,
The adsorption selectivity of carbon monoxide to nitrogen becomes even more excellent.

実施例1 1−11−1th炭を炭化復水蒸気で賦活して製造した
活性炭(比表面積973m2/(J)を100メツシユ
以下に粉砕し、この微粉状活性炭80重量%に対して、
塩化銀を溶解したアンモニア水で2倍に稀釈したフェノ
ール樹脂水溶液20重i%を常温で配合し、十分混合し
た後押出成型機を用いて粒径2〜3mmφのペレットを
造粒し、このペレットを110℃の温度で2時間乾燥し
た後、加熱炉を用いて窒素ガス雰囲気下250’Cの温
度で3時間加熱処理を行なった。
Example 1 Activated carbon produced by activating 1-11-1th coal with carbonized condensate steam (specific surface area 973 m2/(J) was pulverized to 100 mesh or less, and based on 80% by weight of this fine powder activated carbon,
A 20% by weight aqueous phenolic resin solution diluted twice with ammonia water containing silver chloride dissolved therein is blended at room temperature, thoroughly mixed, and then granulated into pellets with a particle size of 2 to 3 mmφ using an extrusion molding machine. After drying at a temperature of 110° C. for 2 hours, heat treatment was performed for 3 hours at a temperature of 250° C. in a nitrogen gas atmosphere using a heating furnace.

このようにして得られた吸着剤0.02−を内容積0.
046 iのステンレス!fill製吸着塔に充填し、
純度99.9%の一酸化炭素を使用して温度20℃、平
衡圧力2ataで一酸化炭素吸着量の測定を行なうとと
もに、吸着平衡到達後放任した後60Torrまでの減
圧を行ない一酸化炭素脱着量を測定した。また、窒素に
ついても純度99.9%のガスを使用して同様の吸脱着
試験を行なった。
The adsorbent thus obtained has an internal volume of 0.02.
046 i stainless steel! filled into a fill adsorption tower,
Using carbon monoxide with a purity of 99.9%, measure the amount of carbon monoxide adsorbed at a temperature of 20°C and an equilibrium pressure of 2ata, and after reaching adsorption equilibrium, leave it alone and reduce the pressure to 60 Torr to determine the amount of carbon monoxide desorbed. was measured. A similar adsorption/desorption test was also conducted for nitrogen using a gas with a purity of 99.9%.

本実施例の結果を、A?イオンを添加しないフェノール
樹脂水溶液とAロ゛イオン量が本発明の範囲を超えたフ
ェノール樹脂水溶液を使用して前記と同様の方法により
調製した吸着剤と比較して第1表に示す。
The result of this example is A? Table 1 shows a comparison between an adsorbent prepared by the same method as described above using an aqueous phenolic resin solution to which no ions were added and an aqueous phenolic resin solution with an A ion content exceeding the range of the present invention.

第1表より明らかなごとく、結合剤として使用したフェ
ノール樹脂水溶液にA、/イオンを溶解して調製した吸
着剤の一酸化炭素吸着量は、いずれも〜イオンを添加し
ない比較例の試験陽、5と比べて増大していることがわ
かる。しかしながら、〜゛イオン量0.5ミリ当量q/
g−活性炭を超える比較例の試験隘4の場合には、吸着
剤への一酸化炭素吸着量は多いものの、60Torrま
で減圧を行なった時の一酸化炭素脱着率が低下し始めた
。従って、4〜イオン量は前記したとおり0.5ミリ装
置g/c+−活性炭以下が好ましいことがわかる。他方
、窒素の吸脱着に対しては、Ag″イオンの添加は影響
を与えなかった。
As is clear from Table 1, the amount of carbon monoxide adsorbed by the adsorbent prepared by dissolving A, / ions in the aqueous phenol resin solution used as a binder was - It can be seen that the number has increased compared to 5. However, ~゛Ion amount 0.5 milliequivalent q/
In the case of Comparative Test No. 4, which exceeds g-activated carbon, although the amount of carbon monoxide adsorbed to the adsorbent was large, the carbon monoxide desorption rate began to decrease when the pressure was reduced to 60 Torr. Therefore, it can be seen that the amount of 4 to ions is preferably 0.5 millimeters g/c+-activated carbon or less as described above. On the other hand, the addition of Ag'' ions had no effect on the adsorption and desorption of nitrogen.

なお、吸着剤の硬度はいずれも1.8〜2.0ki(水
屋式硬度計)の範囲であった。
In addition, the hardness of all the adsorbents was in the range of 1.8 to 2.0 ki (Mizuya type hardness meter).

第1表 実 施 例2 実施例1において、金属塩として塩化銀の代わりに塩化
銅(1)を使用し吸着剤の調製を行なった。
Table 1 Examples Example 2 In Example 1, an adsorbent was prepared using copper chloride (1) instead of silver chloride as the metal salt.

得られた吸着剤について実施例1と同様な方法で一酸化
庚素、窒素の吸脱着試験を行なった結果を、侃°イオン
を添加しないフェノール樹脂水溶液とCLL”イオン量
が本発明の範囲を超えたフェノール樹脂水溶液を使用し
て実施例1と同様の方法により調製した吸着剤と比較し
て第2表に示す。
The obtained adsorbent was subjected to an adsorption/desorption test for phosphorus monoxide and nitrogen in the same manner as in Example 1. Table 2 shows a comparison with an adsorbent prepared in the same manner as in Example 1 using an aqueous phenolic resin solution of 20%.

第2表より明らかなごとく、結合剤として使用したフェ
ノール樹脂水溶液にCIL″イオンを溶解して調製した
吸着剤の一酸化炭素吸着量は、いずれも伍イオンを添加
しない比較例の試験Nα5と比べて増大していることが
わかる。しかしながらGイオン量が0.5ミリ当量g/
(]−活性炭を超える比較例の試験Nα9の場合には、
吸着剤への一酸化炭素吸着量は多いものの、60Tor
rまで減圧を行なった時の一酸化炭素脱着率が低下し始
めた。従って、ごイオン量は前記したとおり0.5ミリ
当量97g−活性炭以下が好ましいことがわかる。他方
、窒素の吸脱着に対しては、促イオンの添加は影響を与
えなかった。
As is clear from Table 2, the amount of carbon monoxide adsorbed by the adsorbent prepared by dissolving CIL'' ions in the phenolic resin aqueous solution used as a binder is higher than that of the comparative example Test Nα5 in which no 5 ions are added. It can be seen that the amount of G ions increases by 0.5 milliequivalent g/
(] - In the case of comparative example test Nα9 exceeding activated carbon,
Although the amount of carbon monoxide adsorbed to the adsorbent is large, 60 Tor
When the pressure was reduced to r, the carbon monoxide desorption rate began to decrease. Therefore, it can be seen that the amount of ions is preferably 0.5 milliequivalent 97 g of activated carbon or less as described above. On the other hand, the addition of ion promoters had no effect on nitrogen adsorption and desorption.

なお、吸着剤の硬度はいずれも1.8〜2.0−(水屋
式硬度計)の範囲であった。
The hardness of each adsorbent was in the range of 1.8 to 2.0 (Mizuya hardness tester).

第   2   表 実施例3 実施例1において、試験Nα2で使用したA♂イオン添
加フェノール樹脂水溶液の配合量をs、 io。
Table 2 Example 3 In Example 1, the blending amounts of the A♂ ion-added phenolic resin aqueous solution used in Test Nα2 were s and io.

20、30.40重量%と変え、温度250°Cで加熱
処理して調製した場合の吸着剤の硬度(水屋式硬度計)
を第3表に示す。
Hardness of adsorbent when prepared by heating at 250°C (Mizuya hardness tester)
are shown in Table 3.

第3表より明らかなごとく、結合剤として使用したフェ
ノール樹脂水溶液配合量が10重量%に達しない比較例
の試験No、2−1の場合には吸着剤の強度が不十分で
あり、他方、フェノール樹脂水溶液配合量が30重量%
を超える比較例の試験No、2−5の場合には造粒時造
粒物どおしが付着して団塊となるため好ましくない。従
って、フェノール樹脂水溶液配合量は前記したとおり1
0〜30徂量%が好ましいことがわかる。
As is clear from Table 3, in the comparative example Test No. 2-1, in which the amount of the phenolic resin aqueous solution used as the binder did not reach 10% by weight, the strength of the adsorbent was insufficient; Phenol resin aqueous solution blending amount is 30% by weight
In the case of Comparative Example Test No. 2-5 exceeding the above, the granules adhere to each other during granulation and form lumps, which is not preferable. Therefore, the blending amount of the phenol resin aqueous solution is 1 as described above.
It can be seen that 0 to 30% by weight is preferable.

(以下余白) 実施例4 実施例1において、試験Nα2で造粒されたペレットの
加熱処理温度を50.150. 250. 400゜6
00℃と変えて調製した場合の吸着剤の硬度(本屋式硬
度計)を第4表に示す。
(The following is a blank space) Example 4 In Example 1, the heat treatment temperature of the pellets granulated in test Nα2 was set to 50.150. 250. 400°6
Table 4 shows the hardness of the adsorbent (according to a bookstore hardness tester) when the temperature was changed to 00°C.

第4表より明らかなごとく、ペレットの加熱処理温度が
150’Cに達しない比較例の試験Nα2−6の場合に
はフェノール樹脂の熱硬化が不十分でおるため十分な強
度を有する吸着剤が得られず、他方、加熱処理温度が5
00’Cを超える比較例の試験N0.2−10の場合に
はフェノール樹脂の熱分解が進み吸着剤強度が低下する
。従って、加熱処理温度は前記したとおり150〜50
0℃が好ましいことがわかる。
As is clear from Table 4, in the comparative example test Nα2-6 where the heat treatment temperature of the pellets did not reach 150'C, the heat curing of the phenol resin was insufficient, so an adsorbent with sufficient strength was not obtained. On the other hand, when the heat treatment temperature was 5
In the case of Comparative Example Test No. 2-10 where the temperature exceeds 00'C, thermal decomposition of the phenol resin progresses and the strength of the adsorbent decreases. Therefore, the heat treatment temperature is 150 to 50% as described above.
It can be seen that 0°C is preferable.

第   4   表 発明の詳細 な説明したごとく、この発明によれば、窒素含有量を増
加させず一酸化炭素吸着量を増大してm−酸化炭素と窒
素を効果的に分離する吸着剤を調製することができるの
で、窒素と共に多量の一酸化炭素を含む原料ガスから圧
力スイング吸着法によって高純度の一酸化炭素を高収率
で回収することができる。また、この発明法で調製され
た吸着剤は、微粉状の活性炭に対しIB族金属イオンを
溶解したフェノール樹脂水溶液を結合剤として使用して
造粒し、乾燥後不活性雰囲気下で加熱処理したものであ
り、金属イオンの使用量を低減できるため、圧力スイン
グ吸着法による一酸化炭素の吸脱着が等温条件下で容易
に行なわれるとともに吸着剤の劣化が実質的に起らない
ために吸着剤の再生あるいは交換が不要である等、コス
ト的にも安価につく利点がある。
As detailed in Table 4, according to the invention, an adsorbent is prepared that effectively separates m-carbon oxide and nitrogen by increasing the adsorption amount of carbon monoxide without increasing the nitrogen content. Therefore, high-purity carbon monoxide can be recovered in high yield from a raw material gas containing nitrogen and a large amount of carbon monoxide by the pressure swing adsorption method. In addition, the adsorbent prepared by the method of this invention is made by granulating fine powdered activated carbon using a phenol resin aqueous solution containing group IB metal ions as a binder, and then drying and heat-treating the mixture in an inert atmosphere. Because the amount of metal ions used can be reduced, adsorption and desorption of carbon monoxide by the pressure swing adsorption method can be easily carried out under isothermal conditions, and there is virtually no deterioration of the adsorbent. It also has the advantage of being inexpensive, such as not requiring regeneration or replacement.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 微粉状の活性炭に、 I B族金属イオン0.1〜0.5
ミリ当量g/g−活性炭を溶解したレゾール型フェノー
ル樹脂水溶液を10〜30重量%配合し、混合、造粒、
乾燥後不活性雰囲気下150〜500℃の温度で加熱す
ることを特徴とする一酸化炭素分離用吸着剤の製造方法
0.1 to 0.5 of IB group metal ion to finely powdered activated carbon
Milliequivalent g/g - 10 to 30% by weight of a resol type phenolic resin aqueous solution in which activated carbon is dissolved, mixed, granulated,
A method for producing an adsorbent for separating carbon monoxide, which comprises heating at a temperature of 150 to 500°C in an inert atmosphere after drying.
JP61173282A 1986-07-23 1986-07-23 Production of adsorbent for separating carbon monoxide Pending JPS6330310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173282A JPS6330310A (en) 1986-07-23 1986-07-23 Production of adsorbent for separating carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173282A JPS6330310A (en) 1986-07-23 1986-07-23 Production of adsorbent for separating carbon monoxide

Publications (1)

Publication Number Publication Date
JPS6330310A true JPS6330310A (en) 1988-02-09

Family

ID=15957560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173282A Pending JPS6330310A (en) 1986-07-23 1986-07-23 Production of adsorbent for separating carbon monoxide

Country Status (1)

Country Link
JP (1) JPS6330310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472180A2 (en) * 1990-08-23 1992-02-26 Air Products And Chemicals, Inc. Highly dispersed cuprous compositions
JP2008264697A (en) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology Noble metal particle carrier and hydrogenation catalyst using it
JP2012516829A (en) * 2009-02-05 2012-07-26 エルジー・ケム・リミテッド Method for producing composite material comprising carbon-based particles / copper
WO2015077835A1 (en) * 2013-11-26 2015-06-04 Monash University Pelletized form of a composite material and method of producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472180A2 (en) * 1990-08-23 1992-02-26 Air Products And Chemicals, Inc. Highly dispersed cuprous compositions
JP2008264697A (en) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology Noble metal particle carrier and hydrogenation catalyst using it
JP2012516829A (en) * 2009-02-05 2012-07-26 エルジー・ケム・リミテッド Method for producing composite material comprising carbon-based particles / copper
WO2015077835A1 (en) * 2013-11-26 2015-06-04 Monash University Pelletized form of a composite material and method of producing same

Similar Documents

Publication Publication Date Title
JP3071429B2 (en) Agglomerates based on activated carbon, methods for their preparation and their use as adsorbents
US4914076A (en) Method of producing an adsorbent for separation and recovery of CO
EP1142622B1 (en) Method of adsorptive separation of carbon dioxide
JPS62500572A (en) Method for producing activated carbon adsorbent pellets with high heat capacity and pelletized activated carbon adsorbent with high heat capacity
JPS6040893B2 (en) Ethylene absorbent and its manufacturing method
CN113371730A (en) Modified calcium low-silicon zeolite molecular sieve and preparation method thereof
US5427751A (en) Method for using high capacity unsupported regenerable CO2 sorbent
JPS6330310A (en) Production of adsorbent for separating carbon monoxide
CN105903458A (en) Preparation method and application of calcium-based adsorbent
EP1200342A1 (en) Process for production of carbonaceous chars having catalytic activity
JP3451664B2 (en) Carbon dioxide adsorbent and method for producing the same
CN113117639B (en) Modified molecular sieve adsorbent and preparation method and application thereof
CN114452959A (en) Simple and efficient adsorbent compounding method
JPH11349320A (en) Production of activated carbon
JP4015829B2 (en) Method for producing activated carbon having high strength and high denitration performance
CN101298037A (en) Adsorbing agent for removing trace amount of nitric oxide in carbon dioxide and preparation
CN114768755A (en) Regenerated flue gas dechlorinating agent and preparation method thereof
JPH0157043B2 (en)
CN113351159A (en) Adsorbent for deeply removing carbon monoxide in hydrogen, preparation method thereof and method for removing carbon monoxide in hydrogen by using adsorbent
JPH08206443A (en) Acidic gas absorbent and production thereof
JP2989201B2 (en) Spherical porous carbon particles and method for producing the same
CN114700036B (en) Modified tobacco stem-based biomass hierarchical porous carbon and preparation method and application thereof
KR101488237B1 (en) Preparation Process of Dry Adsorbent for Selective Capture of Gaseous Carbon Dioxide
SU1414777A1 (en) Method of producing granulated activated carbon
RU2096325C1 (en) Method of producing spheroid-shaped aluminium oxide granules