JPS63303073A - Photochemical reaction treatment device - Google Patents

Photochemical reaction treatment device

Info

Publication number
JPS63303073A
JPS63303073A JP13919887A JP13919887A JPS63303073A JP S63303073 A JPS63303073 A JP S63303073A JP 13919887 A JP13919887 A JP 13919887A JP 13919887 A JP13919887 A JP 13919887A JP S63303073 A JPS63303073 A JP S63303073A
Authority
JP
Japan
Prior art keywords
lamp
valve
light
light source
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13919887A
Other languages
Japanese (ja)
Inventor
Shigenori Hayashi
茂則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP13919887A priority Critical patent/JPS63303073A/en
Publication of JPS63303073A publication Critical patent/JPS63303073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the intensity of short wavelength light, more particularly UV light near 185nm by erecting and providing a low pressure mercury lamp to be used for a titled device by positioning a temp. control part provided near the end of a coiled tube-like valve to the lower side. CONSTITUTION:The temp. control part 29 is provided to at least a part of the valve formed by using synthetic quartz as the valve 9 for a light source and sealing mercury and inert gas such as Ar into the valve. The temp. control part 29 controls the mercury vapor pressure in the valve 9 by passing cooling water through an inlet 30 and an outlet 31 to a heat exchanger 32 from the outside. This lamp 9 is erected and provided in a reaction chamber 2 or a light source chamber 5 adjacent to the chamber 2 by positioning the control part 29 to the lower side. The mercury vapor pressure in the valve 9 can be regulated by this device to the pressure under which the intensity of the light emission at about 185nm increases. The intensity of the light at about 185nm can be increased by applying high-frequency electric power to electrodes 33, 34 of the lamp.

Description

【発明の詳細な説明】 (イ)発明の利用分野 本発明は産業分野、特にセラミックスコートを行う分野
及び半導体装置作製技術分野において利用可能な紫外光
ランプを用いた半導体処理装置を提供するものである。
Detailed Description of the Invention (a) Field of Application of the Invention The present invention provides a semiconductor processing apparatus using an ultraviolet lamp that can be used in the industrial field, particularly in the field of ceramic coating and the field of semiconductor device manufacturing technology. be.

(ロ)従来の技術 産業分野特にセラミックスコートまたは半導体装置作製
技術分野において使用されている従来の紫外光源用ラン
プとしては主として高圧水銀ランプ、低圧水銀ランプが
ある0本発明は、特にこの低圧水銀ランプを用いた光処
理装置、例えば光CVD装置、光クリーニング(UVク
リーニング)装置光プラズマCvD装置用光源の改良お
よびその使用方法に関するものである。
(b) Conventional technology The conventional ultraviolet light source lamps used in the technical field, particularly in the ceramic coating or semiconductor device manufacturing technology field, mainly include high-pressure mercury lamps and low-pressure mercury lamps. The present invention relates to improvements in light sources for optical processing apparatuses, such as optical CVD apparatuses, optical cleaning (UV cleaning) apparatuses, and optical plasma CVD apparatuses, and methods for using the same.

従来の低圧水銀ランプは光源用バルブ内にアルゴンガス
を数Torrの圧力で封入し、同時に水銀を封入したも
のであった。
In conventional low-pressure mercury lamps, argon gas is sealed in the light source bulb at a pressure of several Torr, and mercury is also sealed at the same time.

そしてバルブ内に一対のアーク放電を発生させる電極と
、この電極よりガラスバルブを貫通して導出した外部電
極端子より一般に商用周波数(50〜60H2)の交流
電力を印加しアーク放電をさせている。この外部より投
入された電力により水銀原子は励起され、様々なエネル
ギー準位を持つ励起状態の水銀原子となる。さらにこの
励起状態の原子が石英バルブの内壁または原子同志の衝
突により、あとの準位に戻る。その際、代表的に第2図
の示すような発光強度分布を有しており、254ns+
の波長の発光強度が一番強く、その次に185nm付近
の波長の発光強度となっている。
Arc discharge is caused by applying alternating current power, generally at a commercial frequency (50 to 60 H2), through a pair of electrodes that generate arc discharge inside the bulb and an external electrode terminal led out from these electrodes through the glass bulb. The mercury atoms are excited by this externally applied electric power, and become mercury atoms in an excited state with various energy levels. Furthermore, the atoms in this excited state return to the next level due to the inner wall of the quartz bulb or collisions between atoms. At that time, it typically has a luminescence intensity distribution as shown in Figure 2, and has a luminescence intensity distribution of 254ns+
The emission intensity at a wavelength of 185 nm is the strongest, followed by the emission intensity at a wavelength around 185 nm.

しかしながら最近、半導体装置作製技術分野において、
光処理装置、特に光CVD法(紫外光により反応性気体
を分解、反応せしめて被膜形成を行う) 、UVクリー
ニング(基板表面を紫外光で照射し、汚物を除去する)
が注目されている0例えば光CVO法で半導体膜を作製
する方法において、5in)12□!(n =1.2.
3・・・)のシラン類を紫外光にて分解反応させて半導
体膜を形成する。その時、短波長光、特に185nm付
近の紫外光が特に前記反応に有効であるため、従来の紫
外光源を用いた反応速度が遅い光CVD法においては、
この185ns+付近の紫外光強度をより強(すること
が求められていた。
However, recently in the field of semiconductor device manufacturing technology,
Optical processing equipment, especially photo-CVD method (decomposes reactive gases using ultraviolet light and causes them to react to form a film), UV cleaning (irradiates the substrate surface with ultraviolet light to remove dirt)
For example, in the method of manufacturing a semiconductor film using the photoCVO method, which is attracting attention, 5in)12□! (n = 1.2.
The silanes (3...) are decomposed and reacted with ultraviolet light to form a semiconductor film. At that time, short wavelength light, especially ultraviolet light around 185 nm, is particularly effective for the reaction, so in the conventional photoCVD method, which has a slow reaction rate using an ultraviolet light source,
It has been desired to increase the intensity of ultraviolet light around 185 ns+.

(ハ)発明の目的 本発明はこれらの要求を満たすものであり、短波長光、
特に185nm付近の紫外光強度を著しく高めた紫外光
源を持つ半導体処理装置を提供するものである。
(c) Purpose of the invention The present invention satisfies these requirements, and uses short wavelength light,
In particular, the present invention provides a semiconductor processing apparatus having an ultraviolet light source with significantly increased ultraviolet light intensity near 185 nm.

(ニ)発明の構成 そのため、本発明は蛇管状のバルブの端部付近に温度制
御部を有する紫外光源用ランプを反応室又は反応室に隣
接して設けられた光源室内に温度制御部と電力導入端子
が下側となるよう直立して設けた構造を有するものであ
ります。
(d) Structure of the Invention Therefore, the present invention provides a lamp for an ultraviolet light source having a temperature control section near the end of a serpentine bulb, and a temperature control section and power supply in a reaction chamber or a light source chamber provided adjacent to the reaction chamber. It has an upright structure with the inlet terminal facing downward.

−aの低圧水銀ランプは第3図に示した発光強度分布図
に示すように254nm付近の光が最も強い。
As shown in the emission intensity distribution diagram of the low-pressure mercury lamp -a shown in FIG. 3, the light around 254 nm is the strongest.

この254nmの光は63P tのエネルギ準位より基
底状態である61S0の準位に遷移する際に、この波長
に相当するエネルギが放出される。
When this 254 nm light transits from the 63Pt energy level to the ground state 61S0 level, energy corresponding to this wavelength is emitted.

一般の低圧水銀灯はこの6’PI、 6’P6.6’p
z等のエネルギ準位を有する励起確率が、185nm付
近の光を出す61P1の準位を有する励起確率より相当
筒いため、25dnm付近の光の強度が強くなっている
General low pressure mercury lamps are 6'PI, 6'P6.6'p
Since the excitation probability for an energy level such as z is considerably higher than the excitation probability for a 61P1 level that emits light at around 185 nm, the intensity of light around 25 dnm is strong.

本発明はこの従来の低圧水銀灯に較べて短波長光である
185nm付近の光の強度を数倍に高めるため、供給電
源として高周波を加えており、同時にプラズマ処理用電
源を兼ねることが可能となった。
The present invention adds high frequency as a power supply in order to increase the intensity of short-wavelength light around 185 nm several times compared to conventional low-pressure mercury lamps, making it possible to simultaneously serve as a power source for plasma processing. Ta.

供給電源として高周波電力を用いた為に水銀原子の励起
確率が増し、6’PIのエネルギ準位の励起確率が高く
なり185nm付近の光の発光が強(なる。
Since high-frequency power is used as the power supply, the probability of excitation of mercury atoms increases, the probability of excitation of the 6'PI energy level increases, and light emission around 185 nm becomes stronger.

さらに紫外光源用ランプの少なくとも1ケ所に温度制御
部を設け、185nm付近の紫外光強度が強くなるよう
に温度制御を行い、ランプバルブ内の水銀蒸気圧を18
5n−付近の発光が強くなる圧力に調整し、ランプに高
周波電力、例えば13.56 Ml+□の周波数の電力
を供給し発光せしめるものであります。
Furthermore, a temperature control section is installed in at least one part of the ultraviolet light source lamp, and the temperature is controlled so that the intensity of ultraviolet light around 185 nm becomes strong, and the mercury vapor pressure inside the lamp bulb is reduced to 185 nm.
The pressure is adjusted so that the light emission around 5n- is strong, and the lamp is supplied with high-frequency power, for example, power with a frequency of 13.56 Ml+□, to make it emit light.

この時温度制御には最適値が存在し、温度制御が低すぎ
るとランプ内の水銀の圧力が減り、発光に寄与する水銀
の数が減り発光強度が弱まる。
At this time, there is an optimum value for temperature control; if the temperature control is too low, the pressure of mercury in the lamp decreases, the number of mercury contributing to light emission decreases, and the light emission intensity weakens.

また制御温度が高すぎると、水銀の圧力が増し電子エネ
ルギーが減り、185nm付近の発光強度が弱くなるこ
とが判明した。
It has also been found that when the control temperature is too high, the pressure of mercury increases, the electron energy decreases, and the emission intensity around 185 nm becomes weaker.

またこのように温度制御部には外部よりその温度を制御
するための媒体を導入しなければならない、そのため本
発明はこれら媒体の導入を容易にするため紫外光源ラン
プを反応室又は光源室内に直立して設けた減圧状態の反
応室内に前記媒体を導入することが容易なようにするも
のである。
In addition, it is necessary to introduce a medium for controlling the temperature into the temperature control section from the outside.Therefore, in the present invention, an ultraviolet light source lamp is placed upright in the reaction chamber or light source chamber in order to facilitate the introduction of the medium. This makes it easy to introduce the medium into a reaction chamber provided under reduced pressure.

以下に実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

第2図に本発明の装置に使用したランプの概略を示す。 FIG. 2 schematically shows a lamp used in the apparatus of the present invention.

光源用バルブ(9)として合成石英を用い、バルブ内に
水銀と、不活性ガス例えばArを封入したバルブの少な
くとも1部分に温度制御部(29)を設けておりこの温
度制御部(29)は外部より(30)、(31)の出入
口より冷却水を(32)の熱交換器に流し、バルブ(9
)内の水銀蒸気圧を制御する。
Synthetic quartz is used as the light source bulb (9), and a temperature control section (29) is provided in at least a portion of the bulb, which is filled with mercury and an inert gas such as Ar. Cooling water flows from the outside into the heat exchanger (32) from the inlet and outlet ports (30) and (31), and the valve (9)
) to control the mercury vapor pressure within.

この温度制御部(29)の温度制御は冷却水の温度を調
節して制御したが本実施例に示す方法のみではなく、ラ
ンプバルブ(9゛)内の温度制御ができれば他の方法で
もよい。
Although the temperature control section (29) was controlled by adjusting the temperature of the cooling water, the method shown in this embodiment is not the only method, and other methods may be used as long as the temperature inside the lamp bulb (9') can be controlled.

このランプ(9)の電極(33)、(34)を通して1
3.56MH2の高周波電力を200W投入し、発光さ
せた、この時温度制御部(29)の温度を変化させた時
の185nmの光の発光強度を第4図曲線(35)示す
1 through the electrodes (33) and (34) of this lamp (9).
A curve (35) in FIG. 4 shows the emission intensity of 185 nm light when 200 W of high frequency power of 3.56 MH2 was applied and the temperature of the temperature control section (29) was varied.

同図において、横軸は温度制御部の温度を示し縦軸は任
意スケールで185no+の波長の光の発光強度を示し
ている。
In the figure, the horizontal axis represents the temperature of the temperature control section, and the vertical axis represents the emission intensity of light with a wavelength of 185no+ on an arbitrary scale.

同曲線(35)より明らかなように40〜80℃付近に
おいて、185nmの光の強度は強くなり、その温度範
囲より低い場合や、高い場合は強度が弱っていた。これ
と比較するために本実施例と全く同じランプ(9)を用
い、50Hzの周波数の電力を同様に電極(33) 、
 (34)を通して200W投入して、同様に温度制御
部の温度を変化させた。
As is clear from the same curve (35), the intensity of 185 nm light was strong near 40 to 80°C, and the intensity was weak when the temperature was lower or higher than that range. For comparison, a lamp (9) exactly the same as in this example was used, and power at a frequency of 50 Hz was similarly applied to the electrodes (33),
200 W was applied through (34) to change the temperature of the temperature control section in the same way.

その結果を第4図曲1 (36)に示す。The results are shown in Figure 4, Song 1 (36).

又スケールは同じであり、曲線(35)と(36)とは
比較することができる。
Also, the scales are the same, so curves (35) and (36) can be compared.

曲線(36)より明らかなように、この比較例の場合も
最適温度が存在するが、その温度は20℃付近と本発明
の場合と異なっていた。さらに、その強度も最適温度付
近においてすら、本発明の場合の約半分以下であった。
As is clear from the curve (36), an optimum temperature also exists in the case of this comparative example, but the temperature was around 20°C, which was different from that in the case of the present invention. Furthermore, the strength was about half or less than that in the case of the present invention even near the optimum temperature.

本発明はこのような185nn+の光強度の強いランプ
を用いる為オイル等を窓にコートしなくても185nm
の短波長の紫外光を基板の被形成面に多量に到達させ得
るため形成される被膜の限界膜厚(窒化珪素膜の場合)
を従来の1000人より3000人にまで向上させるこ
とができた。このためInP等の化合物半導体の反射防
止膜、さらに薄膜型シリコン半導体素子のゲイト絶縁膜
、GaAs等の化合物半導体のパッシベイション膜とし
て必要かつ十分な膜厚を光CVD法のみで作ることがで
き得る。
Since the present invention uses such a lamp with a strong light intensity of 185nm, it is possible to emit light of 185nm without coating the window with oil or the like.
The critical thickness of the film that can be formed to allow a large amount of short-wavelength ultraviolet light to reach the surface on which the substrate is formed (in the case of silicon nitride film)
We were able to increase the number of employees from 1,000 to 3,000. For this reason, it is possible to create the necessary and sufficient film thickness for antireflection films for compound semiconductors such as InP, gate insulating films for thin-film silicon semiconductor devices, and passivation films for compound semiconductors such as GaAs using only the photoCVD method. obtain.

また本発明方法においては、フォンブリンオイル等を窓
にまったく用いないオイルフリーの反応系であるため、
バックグラウンドレベルの真空度を10−’torr以
下とすることができた。
Furthermore, in the method of the present invention, since it is an oil-free reaction system that does not use Fomblin oil or the like at all in the window,
It was possible to reduce the background level of vacuum to 10-'torr or less.

そして珪素等の半導体被膜、酸化珪素、窒化珪素、窒化
アルミニューム、リンガラス、ホウ素ガラス等の絶縁膜
、金属アルミニューム、チタン、タングステン等の金属
またはその珪化物の導体被膜の光励起による光CVO被
膜形成をさせ得る。
Then, a photo-CVO coating is formed by photoexcitation of semiconductor coatings such as silicon, insulating coatings such as silicon oxide, silicon nitride, aluminum nitride, phosphorus glass, boron glass, etc., and conductive coatings of metals such as metal aluminum, titanium, tungsten, or their silicides. can be caused to form.

以下、第1図に示した本発明装置により、本発明の詳細
を記す。
The details of the present invention will be described below using the apparatus of the present invention shown in FIG.

第1図において、被形成面を有する基板(4)は基板支
持体(7)に保持され、反応室(2)に保持される。こ
の基板支持体の内部にはヒータが近接して設けられてい
る。また反応室(2)のまわりには電源(13)より電
気エネルギが供給される強制冷却方式の低圧水銀灯より
なる紫外光ai(9)が多数直立配設された光源室(5
)を有する。光源室(5)は反応室(2)とそれぞれの
圧力差を10torr以下の概略同一の真空度になるよ
う保持した。このため、反応に支障のない反応にあずか
らない非生成物気体(窒素、水素、ヘリューム又はアル
ゴン)を光源室(5)に供給した。
In FIG. 1, a substrate (4) having a surface to be formed is held on a substrate support (7) and held in a reaction chamber (2). A heater is provided adjacent to the interior of the substrate support. In addition, around the reaction chamber (2), a light source chamber (5) in which a large number of ultraviolet light ai (9) made of forced cooling low-pressure mercury lamps, which are supplied with electrical energy from a power source (13), are arranged upright.
). The light source chamber (5) and the reaction chamber (2) were maintained at approximately the same degree of vacuum with a pressure difference of 10 torr or less. For this reason, a non-product gas (nitrogen, hydrogen, helium, or argon) that did not interfere with the reaction and did not participate in the reaction was supplied to the light source chamber (5).

この紫外光ランプの電極は電子放出のためにはその電極
がBaO等の仕事函数の小さい材料を電極(33) (
34)上にコートされている。 またこのランプに設け
られた温度制御部(29)と熱交換器(32)との十分
熱伝導を向上させるためその間には熱伝導性ペーストを
介在している。
In order to emit electrons, the electrodes of this ultraviolet light lamp are made of a material with a small work function such as BaO (33) (
34) coated on top. Further, in order to sufficiently improve heat conduction between the temperature control section (29) and the heat exchanger (32) provided in this lamp, a thermally conductive paste is interposed between the temperature control section (29) and the heat exchanger (32).

かくすることにより、管内の温度上昇を温度制御部(2
9)において任意にコントロール可能となり40〜80
℃に制御することが可能となった。勿論第1図の気相反
応装置において、基板からの輻射熱により紫外光源(9
)それ自体が加熱される場合はこの管の外側に線状に密
接して水冷管を設けることは有効である。
By doing this, the temperature rise inside the pipe is controlled by the temperature control section (2).
9) can be controlled arbitrarily at 40 to 80
It became possible to control the temperature at ℃. Of course, in the gas phase reactor shown in Figure 1, the ultraviolet light source (9
) When the tube itself is heated, it is effective to provide a water-cooled tube in close linear contact with the outside of this tube.

この第1図の装置を用いた実施例においては反応生成物
として珪素の如き半導体を作る場合生成物気体として珪
化物気体であるシラン(SinHtn**n≧2)、ハ
ロゲン化珪素01xSi、h−x(X−0〜5 )+H
XSizC1i−x(X” O〜5 )+HxSiiP
s−x (X= 0〜8 )。
In an example using the apparatus shown in FIG. 1, when a semiconductor such as silicon is produced as a reaction product, the product gas is silane (SinHtn**n≧2), halogenated silicon 01xSi, h- x(X-0~5)+H
XSizC1i-x(X”O~5)+HxSiiP
s-x (X=0-8).

11xSizC1m−x (X −0〜8 )を用いた
。さらに非生成物気体のキャリアガスとして水素、窒素
、アルゴンまたはヘリュームを用いた。
11xSizC1m-x (X-0 to 8) was used. Furthermore, hydrogen, nitrogen, argon, or helium was used as a carrier gas for the non-product gas.

反応生成物として窒化物(窒化珪素、窒化アルミニュー
ム、窒化ガリューム、窒化インジューム、窒化アンチモ
ン)を作る場合には、生成物気体としてそれぞれ51g
n5.AI(IIs)*+Ga(CHs)+、In(C
L)i。
When producing nitrides (silicon nitride, aluminum nitride, gallium nitride, indium nitride, antimony nitride) as reaction products, 51 g of each product gas is used.
n5. AI(IIs)*+Ga(CHs)+, In(C
L)i.

5n(CHs)e、5b(C)Iりxを用い、また反応
にあずかる非生成物気体としてアンモニアまたはヒドラ
ジンを供給した。また反応にあずからない非生成物気体
(水素またはへリューム)をキャリアガスとして供給し
た。
5n(CHs)e, 5b(C)Irix were used, and ammonia or hydrazine was supplied as a non-product gas participating in the reaction. In addition, a non-product gas (hydrogen or helium) that does not participate in the reaction was supplied as a carrier gas.

反応生成物として酸化物(酸化珪素、リンガラス、ボロ
ンガラス、酸化アルミニューム、酸化インジューム、酸
化スズ、酸化アンチモン、またはこれらの混合物)を作
る場合、反応にあずかる非生成物気体として酸化物(N
gO,Ot、NOまたはN02)を用いた。この場合、
生成物気体としてそれぞれ珪化物(SiJi+ 5iz
Fi、5ttC1i)、アルミニューム化物(AI(C
Hs)s、^1 (CzHs) s) 、インジューム
化物(In(CH3)a+In(CJs)s)、スズ化
物 (Sn(CHs)4.Sn (CJs)a)、アン
チモン化物(Sb(CH3)+、5b(C!Hs)s)
を用いた。そして反応にあずからない非生成物気体とし
ての水素またはヘリュームをキャリアガスとして供給し
た。又必要に応じてフォスヒン(pH3)。
When producing an oxide (silicon oxide, phosphorous glass, boron glass, aluminum oxide, indium oxide, tin oxide, antimony oxide, or a mixture thereof) as a reaction product, the oxide ( N
gO, Ot, NO or N02) were used. in this case,
Silicide (SiJi+ 5iz
Fi, 5ttC1i), aluminum compound (AI(C
Hs)s, ^1 (CzHs) s), indium compound (In(CH3)a+In(CJs)s), stannide (Sn(CHs)4.Sn(CJs)a), antimonide (Sb(CH3) +, 5b(C!Hs)s)
was used. Then, hydrogen or helium as a non-product gas not participating in the reaction was supplied as a carrier gas. Also, phosphin (pH 3) if necessary.

ジボラン(Bgo、)を供給した。Diborane (Bgo, ) was fed.

導体(アルミニューム、タングステン、モリブデン、チ
タンまたはその珪化物)を作る場合は非生成気体として
水素、アルゴンまたはヘリュームを用いた。生成物気体
としてそれぞれAI(C113)3゜WF &1 W 
(Ct)Is) s+ MoCl5. MO(CH3)
 s 1TIC14+ T i (CHs) s又はそ
れらと5illi+5itPh+5iHzC1□、5i
Faとの混合物を供給した。反応にあずからない非生成
物気体である水素をキャリアガスとして供給した。
When making conductors (aluminum, tungsten, molybdenum, titanium, or their silicides), hydrogen, argon, or helium was used as a non-product gas. AI(C113)3゜WF &1W as product gas respectively
(Ct)Is) s+ MoCl5. MO(CH3)
s 1TIC14+ T i (CHs) s or them and 5illi+5itPh+5iHzC1□, 5i
A mixture with Fa was supplied. Hydrogen, which is a non-product gas that does not participate in the reaction, was supplied as a carrier gas.

被膜の形成プロセスは、まづ基板(14)を基板支持体
(7)に配置した後反応室(2)内を排気系(8)によ
り真空状態に初期排気を行った。
In the film formation process, first, the substrate (14) was placed on the substrate support (7), and then the inside of the reaction chamber (2) was initially evacuated to a vacuum state by the exhaust system (8).

その後、光源室に対し逆流による反応性気体の光源室内
への混入防止のため、まず非生成物気体を100〜15
00cc/分の流量で光源室に導入し、同時に反応にあ
ずかる非生成物気体例えばN113を反応室に同様に供
給した。この状態で約30分放置し気体の光分解により
活性の水素、弗素を発生させ基板の被形成面の光エッチ
ングを行った。すると被形成面上の酸化物を除去し、光
照射によるエツチングが可能となり、表面を清浄に保つ
ことができた。その後反応性気体のうちの生成物気体を
供給した。
After that, in order to prevent reactive gases from entering the light source chamber due to backflow, first add 100 to 150% of the non-product gas.
The light source was introduced into the light source chamber at a flow rate of 0.00 cc/min, and at the same time, a non-product gas, such as N113, participating in the reaction was similarly supplied to the reaction chamber. The substrate was left in this state for about 30 minutes, and active hydrogen and fluorine were generated by photolysis of the gas, and the surface of the substrate to be formed was photoetched. This removed the oxide on the surface to be formed, making etching possible by light irradiation and keeping the surface clean. Thereafter, the product gas of the reactive gases was fed.

反応用光源は合成石英管の低圧アーク放電水銀灯(9)
とし、この水銀灯の少なくとも一部分には温度制御部(
29)を設けた。その紫外光源は、合成石英製の低圧水
銀灯(185nm、 254nmの波長を発光する発光
長40c園、照射強度60〜100d /cm”、ラン
プ電力150〜soow)ランプ数16本である。
The light source for the reaction is a low-pressure arc discharge mercury lamp made of synthetic quartz tube (9)
At least a portion of this mercury lamp is equipped with a temperature control section (
29) was established. The ultraviolet light source is 16 low-pressure mercury lamps made of synthetic quartz (emitting wavelengths of 185 nm and 254 nm, emission length 40cm, irradiation intensity 60 to 100 d/cm", lamp power 150 to 200 m2).

このランプは発光による自己発熱と其板よりの輻射熱に
よりランプ管壁の温度は上昇するが、温度制御部(29
)において40〜80℃に制御されているためランプ管
壁の温度が上昇してもランプ内の水銀蒸気圧は185n
■の光の発光が最も強くなる圧力にコントロールされて
いる。
In this lamp, the temperature of the lamp tube wall rises due to self-heating due to light emission and radiant heat from the lamp plate, but the temperature control section (29
), the mercury vapor pressure inside the lamp remains at 185n even if the temperature of the lamp tube wall rises.
■The pressure is controlled to make the light emission the strongest.

この紫外光は、合成石英製の透光性遮蔽板(6)を経て
反応室の反応空間(2)中の反応性気体及び基板(4)
の被形成面上を照射する。
This ultraviolet light passes through a light-transmitting shielding plate (6) made of synthetic quartz to the reactive gas and substrate (4) in the reaction space (2) of the reaction chamber.
irradiate the surface to be formed.

またこのように温度制御部には外部よりその温度を制御
するための媒体を導入しなければならない、そのため本
発明はこれら媒体の導入を容易にするため、紫外光源ラ
ンプを反応室又は光源室内に直立して設けたものである
In addition, it is necessary to introduce a medium for controlling the temperature into the temperature control section from the outside.Therefore, in order to facilitate the introduction of this medium, the present invention incorporates an ultraviolet light source lamp into the reaction chamber or light source chamber. It is installed upright.

さらに、本発明による具体例を以下の実験例に示す。Furthermore, specific examples according to the present invention are shown in the following experimental examples.

実験例・・・・・シリコン窒化膜の形成例第1図におい
て、反応性気体としてアンモニアを200cc/分、ジ
シランを20cc/分で供給し、基板温度350℃とし
、窒化珪素被膜を作製した。基板は直径5インチのウェ
ハ4枚とした。反応室内圧力は10.0torrとした
Experimental example Formation example of silicon nitride film In FIG. 1, ammonia and disilane were supplied at 200 cc/min and disilane at 20 cc/min as reactive gases, and the substrate temperature was set at 350° C. to form a silicon nitride film. The substrates were four 5-inch diameter wafers. The pressure inside the reaction chamber was 10.0 torr.

反応にあずからない非生成物気体として、窒素を200
 cc/分(15)より導入した。
Nitrogen is used as a non-product gas that does not participate in the reaction.
It was introduced at cc/min (15).

この時得られた膜厚と時間の関係を第5図に示す。The relationship between the film thickness obtained at this time and time is shown in FIG.

同図には本発明の温度制御方式の水銀灯を用いることな
〈従来より公知の水銀灯を用いた場合の結果も示してい
る。この場合、紫外光強度は基板面上で10mW/cm
”以上にはできないため、その場合は第5図曲線(38
)を得、最大膜厚は1000人までであった。
The figure also shows the results obtained when a conventionally known mercury lamp was used instead of using the mercury lamp of the temperature control method of the present invention. In this case, the ultraviolet light intensity is 10 mW/cm on the substrate surface.
In that case, the curve in Figure 5 (38
), and the maximum film thickness was up to 1000 people.

一方本発明は曲線(37)を得、成膜速度が速くかつ最
大膜厚も3000人と従来の3倍の値を得ることができ
た。
On the other hand, the present invention obtained curve (37), and was able to achieve a high film formation rate and a maximum film thickness of 3,000, three times that of the conventional method.

(ホ)効果 本発明は第4図に示すように明らかに従来のランプに比
べ、2倍以上の短波長の紫外光強度が得られることがで
き、その強度が強い最適温度範囲も40℃〜80℃と範
囲が広く、かつ温度制御が非常に楽な温度範囲であると
いう、すばらしい効果を有する。
(e) Effects As shown in Figure 4, the present invention can clearly obtain an ultraviolet light intensity with a short wavelength that is more than twice that of the conventional lamp, and the optimum temperature range for the intensity to be high is also from 40°C to It has a wonderful effect in that it has a wide temperature range of 80°C and is very easy to control.

また本発明の構成により紫外光源ランプの温度制御部へ
の媒体の導入が容易になり装置の構造も非常に簡単にな
るという特徴を有する。
Further, the configuration of the present invention has the feature that it is easy to introduce the medium into the temperature control section of the ultraviolet light source lamp, and the structure of the device is also very simple.

なお本発明は、実施例として窒化珪素の形成を示した。Note that the present invention shows the formation of silicon nitride as an example.

しかしアモルファスシリコン膜、酸化珪素、さらにそれ
らを含む不純物を添加したリンガラスおよびさらにホウ
素ガラスまたはアルミニューム等の多くの種類の半導体
、絶縁物、導体を同じ技術思想を用いて形成することが
できる。またこれ等に示されていない鉄、ニッケル、コ
バルトのカルボニル化物を反応性気体として用い、鉄、
ニッケル、コバルトまたはその化合物の磁性体上のパッ
シベイション用被膜として形成することは有効である。
However, many types of semiconductors, insulators, and conductors, such as amorphous silicon films, silicon oxide, phosphorus glass containing impurities added thereto, boron glass, or aluminum, can be formed using the same technical idea. In addition, iron, nickel, and cobalt carbonyl compounds not shown in these examples are used as reactive gases, and iron, nickel, and cobalt carbonyl compounds are used as reactive gases.
It is effective to form a passivation film on a magnetic material of nickel, cobalt or a compound thereof.

前記した実験例において、珪素半導体の形成に際し、ド
ーパントを同時に添加できる。
In the experimental examples described above, dopants can be added at the same time when forming a silicon semiconductor.

本発明において、公害問題を無視するならば、水銀バブ
ラを通すことにより被膜成長速度を向上させてもよい。
In the present invention, if pollution problems are ignored, the film growth rate may be improved by passing through a mercury bubbler.

第2図の水銀ランプの形状は蛇管状のみならず円環状、
渦巻き状、櫛状その他の形状が可能である。
The shape of the mercury lamp in Figure 2 is not only a serpentine tube but also an annular shape.
Spirals, combs and other shapes are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体処理装置の概略図第2図は本発
明の水銀灯の概略図を示す。 第3図は従来の低圧水銀灯の発光強度分布図を示す。 第4図は本発明のランプの特性を示す。 第5図は本発明装置で作製した被膜の膜厚と時間の関係
を示す。 2・・・・・・・・・反応室 4・・・・・・・・・基板 5・・・・・・・・・光源室 7・・・・・・・・・基板支持体 9・・・・・・・・・低圧水銀灯 29・・・・・・温度制御部 32・・・・・・熱交換器
FIG. 1 is a schematic diagram of a semiconductor processing apparatus according to the present invention. FIG. 2 is a schematic diagram of a mercury lamp according to the present invention. FIG. 3 shows a luminous intensity distribution diagram of a conventional low-pressure mercury lamp. FIG. 4 shows the characteristics of the lamp of the invention. FIG. 5 shows the relationship between the film thickness and time of the film produced using the apparatus of the present invention. 2...Reaction chamber 4...Substrate 5...Light source chamber 7...Substrate support 9. ......Low pressure mercury lamp 29...Temperature control section 32...Heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 1、蛇管状のバルブ内に水銀が封入され、該バルブの少
なくとも一方の端部付近に該バルブ内の水銀蒸気圧を制
御可能な温度制御部を有する紫外光源用ランプを反応室
内または反応室に隣接した光源室内に前記温度制御部及
び電力導入端子が下側にくるように直立させて設けたこ
とを特徴とする光化学反応処理装置。
1. An ultraviolet light source lamp in which mercury is sealed in a serpentine bulb and has a temperature control section near at least one end of the bulb that can control the mercury vapor pressure in the bulb is placed in or in the reaction chamber. A photochemical reaction processing apparatus characterized in that the temperature control section and the power introduction terminal are installed vertically in an adjacent light source chamber so that they are located on the lower side.
JP13919887A 1987-06-03 1987-06-03 Photochemical reaction treatment device Pending JPS63303073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13919887A JPS63303073A (en) 1987-06-03 1987-06-03 Photochemical reaction treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13919887A JPS63303073A (en) 1987-06-03 1987-06-03 Photochemical reaction treatment device

Publications (1)

Publication Number Publication Date
JPS63303073A true JPS63303073A (en) 1988-12-09

Family

ID=15239840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13919887A Pending JPS63303073A (en) 1987-06-03 1987-06-03 Photochemical reaction treatment device

Country Status (1)

Country Link
JP (1) JPS63303073A (en)

Similar Documents

Publication Publication Date Title
US4509451A (en) Electron beam induced chemical vapor deposition
US5512102A (en) Microwave enhanced CVD system under magnetic field
US6230650B1 (en) Microwave enhanced CVD system under magnetic field
EP1774562B1 (en) System for low-energy plasma-enhanced chemical vapor deposition
US20030186517A1 (en) Method of and apparatus for manufacturing semiconductor device
JPH04234111A (en) Surface processing device and method
JPH0752718B2 (en) Thin film formation method
JPH05117863A (en) Photochemical treatment of material using glow-discharge tube light source
US6673722B1 (en) Microwave enhanced CVD system under magnetic field
KR900009084B1 (en) Low pressure mercurial lamps
US5952061A (en) Fabrication and method of producing silicon films
US4910044A (en) Ultraviolet light emitting device and application thereof
KR920000591B1 (en) Microwave enhanced cvd system
JP2564538B2 (en) Semiconductor processing equipment
JPS63303073A (en) Photochemical reaction treatment device
JPS63303072A (en) Photochemical reaction treatment device
JPH0978244A (en) Plasma cvd method
JPS6289875A (en) Thin film forming device
JPH0660408B2 (en) Thin film manufacturing method and apparatus
JPS62222072A (en) Ultraviolet light source and photochemical reaction process
JP2007081341A (en) Processing apparatus
JP2786224B2 (en) Thin film production apparatus and method
JPS6289874A (en) Formation of thin film
JPS6380463A (en) Optical source por light processing device and its using method
JPS6289876A (en) Formation of thin film