JPS63303019A - Production of preform for metal base composite material - Google Patents

Production of preform for metal base composite material

Info

Publication number
JPS63303019A
JPS63303019A JP62136533A JP13653387A JPS63303019A JP S63303019 A JPS63303019 A JP S63303019A JP 62136533 A JP62136533 A JP 62136533A JP 13653387 A JP13653387 A JP 13653387A JP S63303019 A JPS63303019 A JP S63303019A
Authority
JP
Japan
Prior art keywords
preform
whiskers
reinforced
binder
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62136533A
Other languages
Japanese (ja)
Inventor
Akinori Nagata
永田 晃則
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62136533A priority Critical patent/JPS63303019A/en
Publication of JPS63303019A publication Critical patent/JPS63303019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a preform for metal base composite material without developing any defect by compacting an integrated body of reinforced fiber composing of outer circumferential part of fiber group for reinforcing bound with binder and center part of high quality reinforced fiber group. CONSTITUTION:The integrated body of reinforced fiber composing of whiskers of SiC, etc., and the other staples is compacted to the prescribed volume ratio to obtain the preform for impregnating into matrix metal. Then, this partition cylinder 14 is inserted in a forming die 11 having long cylindrical shape and the SiC whiskers 20 bound with the binder around thereof and the top and bottom parts thereof, and the high quality whiskers 21 in the center part of the die 11 are charged. Next, the above partition cylinder 14 is pulled out upward. After that, the above reinforced fiber integrating body is compacted in the forming die 11 from upper and lower sides with pressurized pistons 12, 17. By this method, the preform, which can form the reinforced forming material without developing any crack at the time of forming and any defect at the time of compositing by high pressure casting, is obtd.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明は、金属1!複合材料を高圧鋳造法(溶浸法)に
よって製造する場合に使用するウィスカその他の短al
lIl1等からなるプリフォームの製造方法に係り、特
に^信頼性の製品の製造に好適な金属基複合材料用プリ
フォームの製造方法に関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention is directed to the manufacture of metal 1! composite materials by high-pressure casting (infiltration).
The present invention relates to a method for manufacturing a preform made of lIl1, etc., and particularly to a method for manufacturing a preform for a metal matrix composite material suitable for manufacturing reliable products.

(従来の技術) マトリックス金属中にウィスカ等の短aiIffあるい
は長繊維を複合化した金属基複合材料が色々な分野で注
目されている。特に、アルミニウム(AJ)系の複合材
料は軒昂、高強麿であるうえに、高温特性にも優れてい
るため、宇宙機器、ロボット、自動11部品等の広い分
野で利用されている。
(Prior Art) Metal matrix composite materials in which short aiIff such as whiskers or long fibers are composited in a matrix metal are attracting attention in various fields. In particular, aluminum (AJ)-based composite materials are durable, highly durable, and have excellent high-temperature properties, so they are used in a wide range of fields such as space equipment, robots, and automatic parts.

この金属基複合材料の製造方法として、PI浸法、粉末
法、拡散法等が知られている。このうち、溶浸法はウィ
スカ等の強化繊維を集積したプリフォームにマトリック
ス金属の溶泪を加圧含浸する方法であり、大量生産に適
し、一部実用化されている。
As methods for manufacturing this metal matrix composite material, PI dipping method, powder method, diffusion method, etc. are known. Among these, the infiltration method is a method in which a preform in which reinforcing fibers such as whiskers are accumulated is impregnated with matrix metal melt under pressure, and is suitable for mass production and has been put into practical use in some cases.

従来、このような溶浸法で使用するプリフォームの製造
方法としては、ウィスカ等を水等の溶媒に混合してスラ
リーをつくり、そのスラリーを成形型に注入して型内で
脱液して乾燥させるいわゆるスラリー法と、ウィスカ等
に水等の若干の溶媒を加え、加圧によって成形するいわ
ゆるプレス法とが知られている。これらの方法のうち、
後者のプレス法では、加圧面付近でのI1m密度が加圧
面から離れた部分よりも轟くなるという不均一性の問題
はあるが、前者のスラリー法に比べて製作時間が極めて
短かく、効率的な方法である。
Conventionally, the method for manufacturing preforms used in such infiltration methods is to mix whiskers, etc. with a solvent such as water to create a slurry, inject the slurry into a mold, and remove the liquid inside the mold. A so-called slurry method in which the material is dried and a so-called press method in which a small amount of a solvent such as water is added to whiskers and the like are molded under pressure are known. Of these methods,
Although the latter pressing method has the problem of non-uniformity in that the I1m density near the pressurizing surface is higher than in areas farther from the pressurizing surface, the production time is extremely short and it is more efficient than the former slurry method. This is a great method.

ところで、軽量強化材料の高品質化を図るためには、強
化uAN中に含まれる不純物やクラスタ状の塊(いわゆ
るダマ)、さらに長さと太さの比(アスペクト比)が小
さな微粉等を除去することが望ましい。
By the way, in order to improve the quality of lightweight reinforced materials, it is necessary to remove impurities and cluster-like lumps (so-called lumps) contained in reinforced uAN, as well as fine powder with a small length-to-thickness ratio (aspect ratio). This is desirable.

しかし、このような不純物等、特にダマが少なくなると
、強化繊維の滑脱性が増し、プリフォームの圧縮強度が
極めて小さくなる。また、Il維同士を結合するバイン
ダとなり得る不純物を除去することによってもプリフォ
ームの圧縮強度が低下する。このため、ダマや不純物の
少ないプリフォームを用いて、プレス法でプリフォーム
を成形する場合、繊維のWJ脱性の増大や繊維間の結合
力の減少により、加圧荷重を除去するときのプリフォー
ムのスプリングバック量が増加する。このため、加圧部
近傍から離れた位置での繊維体積率の差に起因するスプ
リングバック量の違いにより、例えば第4図に示すよう
に、プリフォーム1の外表面に割れ2が多発することが
ある。この傾向は88体積率が大きい程著しい。
However, when such impurities, especially lumps, are reduced, the slipping properties of the reinforcing fibers increase, and the compressive strength of the preform becomes extremely low. Furthermore, the compressive strength of the preform is also reduced by removing impurities that can act as a binder that binds the Il fibers together. For this reason, when molding a preform using a press method using a preform with few lumps and impurities, the increase in WJ debonding of the fibers and the decrease in the bonding force between fibers makes it difficult for the press to remove the pressurized load. The amount of springback in renovation increases. Therefore, due to the difference in the amount of springback caused by the difference in fiber volume fraction at a position away from the vicinity of the pressurizing part, cracks 2 frequently occur on the outer surface of the preform 1, as shown in FIG. 4, for example. There is. This tendency becomes more pronounced as the 88 volume ratio increases.

一方、不純物の少ないプリフォームを用いた場合、プリ
フォームの圧縮強度の低下により、マトリックス金属を
高圧鋳造法によってプリフォーム内に含浸する過程でプ
リフォームに著しい変形や割れが生じ、その結果、複合
材料成形品に強化繊維の存在しない未強化部分が含まれ
ることがある。
On the other hand, when a preform with few impurities is used, due to a decrease in the compressive strength of the preform, significant deformation or cracking occurs in the preform during the process of impregnating the preform with matrix metal by high-pressure casting. Material molded articles may contain unreinforced portions in which reinforcing fibers are not present.

第5図は、このような未強化部分を含む棒状成形品、い
わゆる成形ビレットを示したものである。
FIG. 5 shows a rod-shaped molded product, a so-called molded billet, including such an unreinforced portion.

ウィスカ3で強化された複合化部4がプリフォームの割
れによって分断され、ウィスカ3の存在しないマトリッ
クス金属のみの未強化部分5が生じている。
The composite portion 4 reinforced with the whiskers 3 is divided by cracks in the preform, resulting in an unreinforced portion 5 of only the matrix metal without the whiskers 3.

(発明が解決しようとする問題点) 従来、高圧鋳造法により繊維強化金属基複合材料を製造
する場合、不純物等を除去したI11/Iiを用いると
、プリフォーム成形時にプリフォームに割れが生じたり
、プリフォームの圧縮強度が小さいためにマトリックス
を含浸する段階で大きな変形や割れなどが生じ、成形品
中に未強化部分等の欠陥が生じるという問題があった。
(Problems to be Solved by the Invention) Conventionally, when manufacturing fiber-reinforced metal matrix composite materials by high-pressure casting, using I11/Ii from which impurities etc. have been removed, cracks may occur in the preform during preform molding. However, due to the low compressive strength of the preform, large deformations and cracks occur during the matrix impregnation stage, resulting in defects such as unreinforced parts in the molded product.

本発明はこのような事情に鑑みてなされたもので、繊維
のJfJ脱性が大きく、lIH間の結合性が小さな強化
繊維を用いる場合でも、プリフォーム成形時の割れを防
止することができ、また高圧鋳造による複合化の際に未
強化部分等の欠陥が生じることのない強化成形品を得る
ことができる金B基複合材料用プリフォームの製造方法
を提供することを目的とする。
The present invention has been made in view of these circumstances, and even when reinforcing fibers with large JfJ debonding properties and low IIH bonding properties are used, cracks can be prevented during preform molding. Another object of the present invention is to provide a method for manufacturing a preform for a gold B-based composite material, which can produce a reinforced molded product that does not have defects such as unreinforced portions during composite formation by high-pressure casting.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、ウィスカその他の類1雑からなる強化繊維の
集積体を所定体積率に圧縮形成し、マトリックス金属含
浸用のプリフォームを製造する方法において、前記強化
vanの集積体の性状を外周部分と内側部分とで異なら
せ、外周部分の集積体は強化繊維がバインダで結合され
た補強用mII群とし、内側部分は不純物の少ない強化
!11fiで充たされた高品位繊維群とし、この両aJ
AH群からなる集積体全体を圧縮成形することにより、
所定体積率のプリフォームを製造することを特徴とする
(Means for Solving the Problems) The present invention provides a method for manufacturing a preform for matrix metal impregnation by compressing and forming an aggregate of reinforcing fibers containing whiskers and other miscellaneous materials to a predetermined volume ratio. The properties of the reinforced van aggregate are different between the outer circumferential part and the inner part, and the outer circumferential aggregate is made of reinforcing mII group in which reinforcing fibers are bonded with a binder, and the inner part is reinforced with less impurities! A high-grade fiber group filled with 11fi, both aJ
By compression molding the entire aggregate consisting of AH groups,
The method is characterized in that a preform with a predetermined volume ratio is manufactured.

(作用) プリフォームの外周部をバインダ添加の集積体で構成す
ることにより、プリフォーム外周部の繊維結合力が大き
くなり、不純物かダマ等の少ない9質なウィスカ等のプ
リフォームをプレス法によって成形する場合でも、プリ
ングバック聞が小さく、さらに圧縮強度が小太き(なり
、プリフォーム表面層に割れが生じたり、複合化過程で
プリフォームの割れが生じたりすることを防止できる。
(Function) By configuring the outer periphery of the preform with a binder-added aggregate, the fiber bonding force at the outer periphery of the preform is increased, and a preform with a high quality of whiskers, etc., with few impurities or lumps can be produced by the pressing method. Even when molding, the pullback is small and the compressive strength is small, which prevents cracks in the preform surface layer and cracks in the preform during the compounding process.

また、プリフォームの輸送時等に、振動やWJ撃等によ
るプリフォームの割れを防止することも可能となる。さ
らに、長期保存時に見られるプリフォーム表層部の微小
割れをも防止可能となり、後の高圧鋳造による複合化過
程で生じる大きな割れの誘発要因も除去できる。。
Furthermore, it is also possible to prevent the preform from cracking due to vibration, WJ impact, etc. during transportation of the preform. Furthermore, it is possible to prevent micro-cracks in the surface layer of the preform that occur during long-term storage, and also to eliminate the factors that cause large-scale cracks that occur during the later compounding process by high-pressure casting. .

(実施例) 以下、本発明の一実施例を第1図〜第3図を参照して説
明する。なお、この実施例では、強化繊維としてSiC
ウィスカを用い、これにより形成したプリフォームにマ
トリックス金属としてA1合金(6061Aオ)を加圧
含浸させる場合についてのものである。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3. In addition, in this example, SiC was used as the reinforcing fiber.
This is about the case where a preform formed using a whisker is impregnated with A1 alloy (6061A) as a matrix metal under pressure.

第1図(A)〜([)はプリフォームの製造工程を順次
に示している。
FIGS. 1(A) to 1([) sequentially show the manufacturing process of the preform.

5iCCクイスカのプリフォームの成形は2方向プレス
法により行なう、即ち、縦長円筒状にプリフォーム成形
型11の下部より加圧ピストン12を挿入し、上部より
薄肉の仕切り円筒14を入れ、加圧ピストン12の上端
面に設けた環状の溝13に固定する(第1図(A))。
The molding of the 5iCC Quisca preform is carried out by a two-way press method. That is, a pressure piston 12 is inserted from the bottom of the preform mold 11 into a vertically long cylindrical shape, a thin partition cylinder 14 is inserted from the top, and the pressure piston 12 (FIG. 1(A)).

次に、シリカ(Si02)系のバインダ(例えば商品名
[スノーテックス−xsJ )を含めた水溶液をSiC
ウィスカに少a加えて、均一に撹拌したバインダ添加の
SiCウィスカ20を、プリフォーム成形型11と仕切
り円IP114との間に詰め、仕切り円fil 14の
内側にはバインダ無添加のSiCウィスカ21を詰める
(第1図(B))。このSiCウィスカ21は、最初5
%程度の5i02が表面に存在していたちのを、例えば
フッ酸洗浄等することにより、5i02ffiを1i1
0程度に低減させた高品位のものである。
Next, an aqueous solution containing a silica (Si02)-based binder (for example, trade name [Snowtex-xsJ)] is applied to SiC.
In addition to a small amount of whiskers, SiC whiskers 20 with binder added and stirred uniformly are packed between the preform mold 11 and the partition circle IP114, and SiC whiskers 21 without binder are added to the inside of the partition circle fil 14. (Figure 1 (B)). This SiC whisker 21 is initially 5
% of 5i02 present on the surface, for example, by cleaning with hydrofluoric acid, 5i02ffi is reduced to 1i1.
It is of high quality and has been reduced to about 0.

次に、プリフォーム成形型1の上端部にSiCウィスカ
押えリング15を嵌合するとともに、その押えリング1
5の内周側からSiCウィスカ21を押えピストン16
で押圧し、仕切り円fi 14をプリフォーム成形型1
1から上方に引き抜く(第1図(C))。
Next, the SiC whisker holding ring 15 is fitted to the upper end of the preform mold 1, and the holding ring 1
5, press the SiC whisker 21 from the inner circumferential side of the piston 16.
Press the partition circle fi 14 with the preform mold 1.
1 and pull it upward (Fig. 1 (C)).

その後、プリフォーム成形型11の上部な断面積の大き
い加圧ピストン17を装着し、SiCウィスカ20.2
1が所定のJ!雑鉢体積率なるまで圧縮成形する(第1
図(D))。成形後、片方の加圧ピストンを用いて、プ
リフォーム成形型内よりSiCウィスカのプリフォーム
23を取り出す(第1図(E))。
After that, a pressure piston 17 with a large cross-sectional area is attached to the upper part of the preform mold 11, and a SiC whisker 20.2 is attached to the upper part of the preform mold 11.
1 is the predetermined J! Compression molding until the volume ratio is reached (first stage)
Figure (D)). After molding, the SiC whisker preform 23 is taken out from the preform mold using one of the pressure pistons (FIG. 1(E)).

そして、乾燥器により、プリフォーム23内の水分を除
去して、円筒状プリフォームの外部がバインダ添加のS
iCウィスカで補強されているプリフォームを得る。
Then, the moisture inside the preform 23 is removed using a dryer, and the outside of the cylindrical preform is coated with binder-added S.
Obtain a preform reinforced with iC whiskers.

第2図は、l#!/1体積率が20%のプリフォームに
ついでの圧縮変形と破壊強瓜を調べた結果を示している
。即ち、プリフォームの高さをLo、直径をD(二L0
)とし、プリフォーム外周の補強部厚さtとする。そし
て、2t/D−αとし、このαを種々変えた複数の試料
につき、荷重W、による収縮量ΔLと圧力との関係を調
べた。この結果、バインダが無添加の場合の座屈強度(
圧力)が10Kgf/−以下であるのに対し、バインダ
添加の補強部厚さtを増加するにつれて、その座即強度
と縮み剛性が増大することが認められた。
Figure 2 shows l#! 1 shows the results of investigating compressive deformation and fracture strength of a preform with a volume ratio of 20%. That is, the height of the preform is Lo, and the diameter is D (2L0
), and the thickness of the reinforcing part on the outer periphery of the preform is t. Then, the relationship between the amount of shrinkage ΔL due to the load W and the pressure was investigated for a plurality of samples in which α was variously changed. As a result, the buckling strength (
It was found that as the thickness t of the reinforced part with binder added increased, the instantaneous strength and shrinkage rigidity increased while the pressure) was 10 Kgf/- or less.

次に、このようにして製作したプリフォーム23を用い
た複合材料の製造方法を第3図によって説明する。まず
、プリフォーム23を高圧鋳造用金型31内にセットし
、金型31の外周側からヒータ32で加熱する(第3図
(A))。プリフォーム23の全体a!度が600〜6
50℃に達した状態で30〜40分間保持し、その後約
800℃のAI合金瀉33を金型31内に注入し、加圧
ピストン34によってAJ合金′/Q33を加圧する。
Next, a method for manufacturing a composite material using the preform 23 manufactured in this way will be explained with reference to FIG. First, the preform 23 is set in a high-pressure casting mold 31, and heated by the heater 32 from the outer circumferential side of the mold 31 (FIG. 3(A)). Whole preform 23 a! degree is 600~6
The temperature is maintained at 50°C for 30 to 40 minutes, and then the AI alloy 33 at about 800°C is injected into the mold 31, and the AJ alloy'/Q33 is pressurized by the pressurizing piston 34.

この場合の最大加圧力は、第2図に示したプリフォーム
の座屈圧縮応力以下とする。加圧ピストン34が所定ス
トロークで安定停止し、溶湯33がプリフオーム23全
体に含浸して、複合化されたと判断したならば、A1合
金の未含浸部(ボイド)等をなくするため最大加圧50
0〜100100O/−の状態で5〜10分間保持し、
金型31を冷却する。その後、金型31よりSiCウィ
スカで強化されたA1合金(6061AJ)基の複合材
料のビレット35を得る(第3図(B))。
In this case, the maximum pressing force is equal to or less than the buckling compressive stress of the preform shown in FIG. When it is determined that the pressurizing piston 34 has stably stopped at a predetermined stroke and that the molten metal 33 has impregnated the entire preform 23 to form a composite, the maximum pressure is increased to 50 to eliminate unimpregnated areas (voids) of the A1 alloy.
Hold at 0-100100O/- for 5-10 minutes,
The mold 31 is cooled down. Thereafter, a billet 35 of an A1 alloy (6061AJ)-based composite material reinforced with SiC whiskers is obtained from the mold 31 (FIG. 3(B)).

このようにして成形するビレット35は、加圧ピストン
34による加圧力をプリフォーム23の座屈圧力以上と
すると、ビレット35上部にプリフォームの割れが生じ
、SiCウィスカの含まれない未強化部が存在する。一
方、この割れを防止するために加圧力を低くすると、A
7合金1ii33はプリフォーム23の最下部まで含浸
しないばかりか、その領域以外にも多数の未含浸部が存
在する。これは低い加圧力では、複雑なウィスカ交錯部
分の各内実でAノ合金溶泪の表面張力に打勝って侵透さ
せるだけの加圧力が与えられないからである。
In the billet 35 formed in this way, if the pressure applied by the pressure piston 34 is greater than the buckling pressure of the preform 23, the preform will crack at the upper part of the billet 35, and the unreinforced portion that does not contain SiC whiskers will be formed. exist. On the other hand, if the pressing force is lowered to prevent this cracking, A
7 alloy 1ii33 not only does not impregnate the lowest part of the preform 23, but also there are many unimpregnated parts outside of that area. This is because a low pressure cannot provide sufficient pressure to overcome the surface tension of the A-alloy melt and penetrate into each substance of the complex intersecting portions of whiskers.

このように、ボイドが多数存在するる場合は、引張り強
さは勿論のこと、疲労とクリープ特性が茗しく悪く、マ
トリックス金属であるA1合金の強度特性さえも得られ
ない。
In this way, when a large number of voids exist, not only the tensile strength but also the fatigue and creep properties are poor, and even the strength properties of the A1 alloy, which is the matrix metal, cannot be obtained.

このような理由から、加圧ピストン34による加圧力は
高い程好ましいが、数多くの実験結果より判断して、最
小圧力として、30〜40KIf/−は必要である。
For these reasons, the higher the pressure applied by the pressure piston 34, the more preferable it is, but judging from the results of numerous experiments, a minimum pressure of 30 to 40 KIf/- is necessary.

下記の表は材料別の引張り強さの試験結果を比較して示
したものである。
The table below compares the tensile strength test results for each material.

(■):含浸圧力1ONfff/ad (If):   、   50に9f/dマトリツクス
金属である6061AlのT6熱処理材と、本実施例の
A1基複合材成形品でAノ溶湯の含浸圧力が10Kgf
/−のもの(S i CW/6061A!!−T6 (
n))と、プリフォームの外周部を補強し、その圧力を
50 Ky f /−としたのもの(S iCW/60
61AJ−T6 (I[))とにつき、それぞれ複合材
料の特性を列挙しCいる。
(■): Impregnation pressure 1ONfff/ad (If): , 50 to 9 f/d The impregnation pressure of molten metal A is 10 Kgf for the T6 heat-treated material of 6061Al, which is a matrix metal, and the A1 base composite molded product of this example.
/- (S i CW/6061A!!-T6 (
n)), and one in which the outer periphery of the preform is reinforced and the pressure is 50 Ky f /- (SiCW/60
61AJ-T6 (I[)), the characteristics of each composite material are listed.

上記の表からも明らかな如く、粗成形品(I)では強度
のばらつきが大きく、マトリックス金属と大差はないが
、含浸圧力を上屏させた粗成形品(■)ではSICウィ
スカ強化6061AI合金の本来の特性に近い値が得ら
れている。
As is clear from the table above, the rough molded product (I) has a large variation in strength and is not much different from the matrix metal, but the rough molded product (■) with increased impregnation pressure has a strength of 6061AI alloy reinforced with SIC whiskers. Values close to the original characteristics have been obtained.

なお、強化oIMを結合するバインダを添加することに
よりウィスカ等にクラスタ状の塊(ダマ)が生じ、これ
により、複合部品の品質、特に強度が低くなる場合があ
るが、その場合には、バインダ添加の集積体がプリフォ
ーム外周部のみであることにより、複合化後、この部分
を除去し、良質な金属基複合材料を得ることができる。
Note that adding a binder that binds the reinforced oIM may cause cluster-like lumps (clumps) in whiskers, etc., which may reduce the quality, especially the strength, of the composite part. Since the additive accumulation is only at the outer peripheral part of the preform, this part can be removed after composite formation to obtain a high quality metal matrix composite material.

さらに、使用するバインダの種類によっては、マトリッ
クス金属と反応し、金属元素間との偏析反応を起こすこ
ともあるが、本発明によれば、このような反応域を最小
限に止めることも可能となる。
Furthermore, depending on the type of binder used, it may react with the matrix metal and cause segregation reactions between metal elements, but according to the present invention, it is possible to minimize such reaction areas. Become.

なお、前記実施例では強化m雑としてSiCウィスカを
用いたが、他の各種素材料からなるウィスカ、短IIN
等を用いた金Ti14基複合材料用プリフォームの製造
にも適用できることは勿論である。
In the above embodiments, SiC whiskers were used as the reinforcing material, but whiskers made of various other materials, short IIN
It goes without saying that the present invention can also be applied to the production of preforms for gold-Ti 14-base composite materials using, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、外周部をバインダ添加
の強化繊維で補強したプリフォームとすることにより、
プリフォーム成形時の割れを防止でき、長期間の保存が
可能になり、またプリフォーム輸送時の割れ等も防止す
ることができる。
As described above, according to the present invention, by using a preform whose outer periphery is reinforced with reinforcing fibers containing a binder,
It is possible to prevent cracks during preform molding, enable long-term storage, and prevent cracks during preform transportation.

また、高圧鋳造法による複合化過程でのプリフォームの
割れを防止でき、プリフォームの変形、割れ等による未
強化部分の発生も防止できる。
In addition, it is possible to prevent the preform from cracking during the composite process by high-pressure casting, and it is also possible to prevent the occurrence of unreinforced portions due to deformation, cracking, etc. of the preform.

しかも、高品質化の要望に沿い、不純物の少ない強化繊
維を内部に用いることにより、材料欠陥がなく、静的お
よび動的強度特性に優れた金属基複合材料が製造できる
Furthermore, in line with the demand for higher quality, by using reinforcing fibers with less impurities inside, metal matrix composite materials with no material defects and excellent static and dynamic strength characteristics can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)は本発明の一実施例を示す工程図
、第2図は同実施例によるプリフォームの圧縮変形特性
を示すグラフ、第3図(A)。 (B)は同実施例によるプリフォームを用いた複合化工
程を示す図、第4図は従来の方法により成形したプリフ
ォームの表面層割れを示す図、第5図は複合化成形品の
割れ状態を示す図である。 20・・・バインダで結合されたウィスカ、21・・・
高品位のウィスカ、23・・・プリフォーム。 (A)          (B)         
  (C)↓ ↑ (D)           (E) 第1図 o           5          10
第2図
1(A) to (E) are process diagrams showing one embodiment of the present invention, FIG. 2 is a graph showing compression deformation characteristics of a preform according to the same embodiment, and FIG. 3(A). (B) is a diagram showing the composite process using the preform according to the same example, Figure 4 is a diagram showing cracks in the surface layer of the preform molded by the conventional method, and Figure 5 is a diagram showing cracks in the composite molded product. It is a figure showing a state. 20... Whiskers combined with a binder, 21...
High quality whisker, 23... preform. (A) (B)
(C)↓ ↑ (D) (E) Figure 1 o 5 10
Figure 2

Claims (1)

【特許請求の範囲】[Claims]  ウィスカその他の短繊維からなる強化繊維の集積体を
所定体積率に圧縮形成し、マトリックス金属含浸用のプ
リフオームを製造する方法において、前記強化繊維の集
積体の性状を外周部分と内側部分とで異ならせ、外周部
分の集積体は強化繊維がバインダで結合された補強用繊
維群とし、内側部分は不純物の少ない強化繊維で充たさ
れた高品位繊維群とし、この両繊維群からなる集積体全
体を圧縮成形することにより、所定体積率のプリフオー
ムを製造することを特徴とする金属基複合材料用プリフ
オームの製造方法。
In a method for manufacturing a preform for matrix metal impregnation by compressing and forming an aggregate of reinforcing fibers consisting of whiskers and other short fibers to a predetermined volume ratio, The outer peripheral part of the aggregate is a reinforcing fiber group in which reinforcing fibers are bonded with a binder, and the inner part is a high-grade fiber group filled with reinforcing fibers with few impurities, and the entire aggregate consisting of these two fiber groups is 1. A method for manufacturing a preform for a metal matrix composite material, the method comprising manufacturing a preform having a predetermined volume ratio by compression molding.
JP62136533A 1987-05-30 1987-05-30 Production of preform for metal base composite material Pending JPS63303019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136533A JPS63303019A (en) 1987-05-30 1987-05-30 Production of preform for metal base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136533A JPS63303019A (en) 1987-05-30 1987-05-30 Production of preform for metal base composite material

Publications (1)

Publication Number Publication Date
JPS63303019A true JPS63303019A (en) 1988-12-09

Family

ID=15177410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136533A Pending JPS63303019A (en) 1987-05-30 1987-05-30 Production of preform for metal base composite material

Country Status (1)

Country Link
JP (1) JPS63303019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242736A (en) * 1988-03-23 1989-09-27 Suzuki Motor Co Ltd Manufacture of preform for composite material
EP1350857A1 (en) * 2002-03-18 2003-10-08 Fuji Jukogyo Kabushiki Kaisha Preform structure and method of manufacturing a preform formed into metal matrix composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242736A (en) * 1988-03-23 1989-09-27 Suzuki Motor Co Ltd Manufacture of preform for composite material
EP1350857A1 (en) * 2002-03-18 2003-10-08 Fuji Jukogyo Kabushiki Kaisha Preform structure and method of manufacturing a preform formed into metal matrix composite

Similar Documents

Publication Publication Date Title
EP0108213B1 (en) Method for making composite material object by plastic processing
US5198167A (en) Process for producing fiber molding for fiber-reinforced composite materials
EP0108281B1 (en) Silicon carbide whisker composite material with low non whisker particle content and method of manufacture thereof
EP0108216B1 (en) Composite material manufacturing method exothermically reducing metallic oxide in binder by element in matrix metal
US3066365A (en) Destructible reinforced sand core for metal casting
JPS63303019A (en) Production of preform for metal base composite material
Krupnik et al. Studying fiber-reinforced concrete for casting housing parts of pumps
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
US20030029902A1 (en) Reinforced structural elements incorporating fiber-reinforced metal matrix composite wires and methods of producing the same
JPS63169342A (en) Production of metal based composite material
US5776383A (en) Method for producing shaped parts made of a graphitized carbon/carbon composite material
Gohil et al. Emerging techniques for waste residue composites
JPS59111970A (en) Manufacture of reinforcing material formed body for manufacture of composite material
JPS62199739A (en) Production of fibrous formed body for fiber reinforced composite material
JPS60138031A (en) Fibrous molding for composite material
JPH028823B2 (en)
JPH02125825A (en) Preform of short fiber for producing composite material and production thereof
JPS63216936A (en) Manufacture of metal-base composite material
CA2040499A1 (en) Vls silicon carbide whisker reinforced metal matrix composite by the squeeze casting process
KR19980055640A (en) Composite preform and its manufacturing method
JPS6298016A (en) Connecting rod
JPH02301533A (en) Manufacture of composite material
JPS61147824A (en) Manufacture of fiber-reinforced material
JP3619258B2 (en) Manufacturing method of composite reinforcement for functionally graded metal matrix composite