JPS63302796A - Frequency changer - Google Patents

Frequency changer

Info

Publication number
JPS63302796A
JPS63302796A JP62137931A JP13793187A JPS63302796A JP S63302796 A JPS63302796 A JP S63302796A JP 62137931 A JP62137931 A JP 62137931A JP 13793187 A JP13793187 A JP 13793187A JP S63302796 A JPS63302796 A JP S63302796A
Authority
JP
Japan
Prior art keywords
voltage
motor
frequency
phase current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62137931A
Other languages
Japanese (ja)
Inventor
Takahiro Ishigami
石上 貴裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62137931A priority Critical patent/JPS63302796A/en
Publication of JPS63302796A publication Critical patent/JPS63302796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve operating efficiency, to prevent overexcitation and to reduce noise, by fluctuating the voltage applied in correspondence with the fluctuation of a load coupled to an AC motor. CONSTITUTION:A current sensor 16 detects the input current, i.e. the phase current, of an AC motor 5. Its output waveform is digitized with an A/D conversion circuit 18 through a current detection circuit 17, taken into a microcomputer 10 and compared with phase current data 10a. The microcomputer 10 produces a PWM wave in accordance with a frequency command 19 and an output voltage setting 10b. The voltage value applied in the same frequency is thereby varied and in accordance with the fluctuation of a load the applied voltage is fluctuated.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、例えば交流!動機の可変速制御に用いる周
波数可変装置に関するものである。
This invention, for example, AC! The present invention relates to a frequency variable device used for variable speed control of a motive force.

【従来の技術】[Conventional technology]

第4図は、例えば特開昭60−229696号公報に示
された従来の周波数可変装置における形態を表すブロッ
ク図で、第5図は従来の周波数可変装置における交流出
力の電圧対周波数特性(以後、v/Fパターンと呼ぶ)
の線図である。 第5図において、商用交流電源1から整流回路2および
平滑口Ri3を介して、直流が得られ、この直流が例え
ばトランジスタ形のインバータ4によって交流に変換さ
れ、その交流出力によって交流ffi動機5が駆動され
る。交流型¥IJ機5には図示していない機械的負荷が
連結される。インパーク4の制御゛装置として、マイク
ロコンピュータ10(以後、マイコンと呼ぶ)および制
御回N511が設けられている。 マイコン10は図示していない入力手段によって入力さ
れる周波数信号、すなわち交流電動機5を所望の回転速
度とするのに必要なインパーク4の出力周波数F2を表
す信号を、その直前までのインバータ出力周波数F、を
表す信号と比較して、周波数を上昇制御する(、F2>
F、の時)のか下降制御する(F2<F+の時)のかを
判断し、その判断結果を方向判断信号Rとして送出する
と共に、周波数F、からF2までを適当なステップに分
別してそれを表す信号すなわち周波数信号Qを適当なタ
イミングすなわち時間感覚で逐次制御回路11に送出す
る。制御回路11には、上昇制御用電圧設定器12、下
降制御用電圧設定器13、両型圧設定器12,13の出
力を選択的に取出す切換スイッチ14、およびこの切換
スイッチ14によって取出された信号と上記の周波数信
号Qとに従ってインバータ4にこれを所定周波数、所定
電圧に制御するための制御信号を供給する波形成形回路
15が設けられている。切換スイッチ14はマイコン1
0からの方向判断信号Rにより、上昇制御(F2>Fl
)の時は電圧設定器12側に切換えられ、下降制御(F
2 <F l )の時は電圧設定器136Wに切換えら
れる。 電圧設定器12は第5図の周波数上昇時のV/F特性U
Pに従ってマイコン10からの入力周波数に対応する電
圧V。Pを表す信号を出力し、同様に電圧設定器13は
周波数下降時のV/F特性DOWNに従って入力周波数
に対応する電圧voow、を表す信号を出力する。 以上のように構成された第5図の装置によれば、インバ
ータ4の出力は、周波数上昇時には第4図のUP特性に
よるV/F特性に従ってI11御され、周波数下降時に
は同図のDOWN特性によるV/F特性に従って制御さ
れる。従って、負荷特性や電源変動などを考慮し、周波
数制御方向に従い適当なUP特性及びDOWN特性を与
えることにより、負荷特性や電源変動のいかんにかかわ
らず、電動機のブレークダウン現象を防止することがで
きる。 従って電動機のブレークダウンにより過?1流保護回路
が動作するということがな(なり、より高品質の運転を
継続することができる。
FIG. 4 is a block diagram showing the form of a conventional frequency variable device disclosed in, for example, Japanese Unexamined Patent Publication No. 60-229696, and FIG. 5 is a voltage versus frequency characteristic (hereinafter referred to as , called v/F pattern)
FIG. In FIG. 5, direct current is obtained from a commercial AC power supply 1 via a rectifier circuit 2 and a smoothing port Ri3, and this direct current is converted into alternating current by, for example, a transistor type inverter 4, and the alternating current output powers an alternating current ffi motor 5. Driven. A mechanical load (not shown) is connected to the AC type IJ machine 5. As a control device for the impark 4, a microcomputer 10 (hereinafter referred to as a microcomputer) and a control circuit N511 are provided. The microcomputer 10 receives a frequency signal inputted by an input means (not shown), that is, a signal representing the output frequency F2 of the impark 4 necessary to bring the AC motor 5 to a desired rotational speed, and converts it into the inverter output frequency up to the immediately preceding frequency signal. The frequency is increased by comparing it with the signal representing F (, F2>
It determines whether to perform downward control (when F2<F+) or to perform downward control (when F2<F+), and sends out the judgment result as a direction judgment signal R, and also divides frequencies F and F2 into appropriate steps and represents it. A signal, that is, a frequency signal Q, is sequentially sent to the control circuit 11 at an appropriate timing, that is, in terms of time. The control circuit 11 includes a changeover switch 14 that selectively takes out the outputs of the voltage setting device 12 for increasing control, the voltage setting device 13 for decreasing control, and the outputs of both type pressure setting devices 12 and 13, and A waveform shaping circuit 15 is provided for supplying a control signal to the inverter 4 to control it to a predetermined frequency and a predetermined voltage according to the signal and the frequency signal Q described above. The changeover switch 14 is the microcomputer 1
Climb control (F2>Fl
), the switch is made to the voltage setting device 12 side, and the downward control (F
2 <F l ), the voltage setting device is switched to 136W. The voltage setting device 12 has a V/F characteristic U when the frequency increases as shown in FIG.
A voltage V corresponding to the input frequency from the microcomputer 10 according to P. Similarly, the voltage setter 13 outputs a signal representing the voltage voow corresponding to the input frequency in accordance with the V/F characteristic DOWN when the frequency decreases. According to the device shown in FIG. 5 configured as described above, the output of the inverter 4 is controlled by I11 according to the V/F characteristic according to the UP characteristic shown in FIG. 4 when the frequency increases, and according to the DOWN characteristic shown in the same figure when the frequency decreases. Controlled according to V/F characteristics. Therefore, by considering load characteristics, power supply fluctuations, etc., and providing appropriate UP and DOWN characteristics according to the frequency control direction, motor breakdown can be prevented regardless of load characteristics or power supply fluctuations. . Therefore, is it caused by breakdown of the electric motor? There is no possibility that the first-stream protection circuit will operate (this means that higher-quality operation can continue).

【発明が解決しようとする問題点] 従って、従来技術の問題点としては、2N類のV/Fデ
ータをメモリに記憶し、周波数の上昇時と下降時にV/
Fデータを使い分けているが、交流型Wh機に連結され
る機械的負荷の変動にはV/F特性を変化できないよう
に構成されていた。そのため前記機械的負荷の軽い時は
、過励磁となり、交流M動機の入力電流(以後、相電流
と呼ぶ)が増加し、また負荷の重い時には、印加電圧不
足で相電流の増加に到るなど、交流電動機の運転効率が
低下するという問題点があった。 この発明は、上記のような問題点を解消するためになさ
れたもので、交流電動機に連結される負荷の増減に対応
して、印加電圧を増減できる装置を得ることを目的とす
る。 【問題点を解決するための手段】 この発明における周波数可変装置は、交流電動機の相電
流を検出し、マイコンに相電流の値を読み込む手段と、
同一周波数における印加電圧値を可変できる手段から、
相電流が最小となる印加電圧で交流m動機を駆動するも
のである。
Problems to be Solved by the Invention] Therefore, the problem with the prior art is that 2N class V/F data is stored in the memory, and when the frequency increases and decreases, the V/F data is
Although the F data is used differently, the V/F characteristics cannot be changed in response to changes in the mechanical load connected to the AC wh machine. Therefore, when the mechanical load is light, overexcitation occurs and the input current of the AC M motor (hereinafter referred to as phase current) increases, and when the load is heavy, the phase current increases due to insufficient applied voltage. However, there was a problem in that the operating efficiency of the AC motor decreased. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a device that can increase or decrease the applied voltage in response to an increase or decrease in the load connected to an AC motor. [Means for solving the problem] The frequency variable device according to the present invention includes means for detecting the phase current of an AC motor and reading the value of the phase current into a microcomputer;
From means that can vary the applied voltage value at the same frequency,
The AC motor is driven with the applied voltage that minimizes the phase current.

【作  用】[For production]

交流電動機の周波数が安定した状態で、交流電動機の印
加電圧を振った時の相電流値を、マイコンに読み込むこ
とにより、この発明における相電流が最小となる印加電
圧を得る。
By reading into a microcomputer the phase current values obtained when the voltage applied to the AC motor is varied while the frequency of the AC motor is stable, the applied voltage that minimizes the phase current in the present invention is obtained.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を説明する。第1図はこの発
明の全体構成を表す図、第2図はこの発明における交流
M動機5の相電流が最小となる印加電圧の決定動作を表
すフローチャート図である。 第1図において、商用交流電源1から整流回路2、平滑
回路3を介して直流が得られ、この直流がインバータ4
によって交流に変換され、交流電動機5が駆動されろ。 そして交流電動機5には、図示していない負荷トルク変
動をもつ機械的負荷が連結される。インバータ4の#御
装置として、マイコン10と波形成形回路15が設けら
れている。また交流M動機5の入力電流すなわち相電流
を検出する電流センサ16が設けられており、その出力
波形はri流流出出回路17介してA/D変換回路18
でデジタル化され、マイコン10に取込まれ、相電流デ
ータ比較10aされる。マイコン10は周波数指令19
と出力電圧設定10bに従ってPWM波生酸生成10c
。 次に相電流データから出力電圧を決定するマイコン10
の動作を、フローチャート図に沿って説明する。第2図
において、[Alでは周波数F1電圧voutで交流電
動機5を駆動している。周波数が安定していたら、出力
電圧Voutを、VMAXまで上げる(B1(vMAx
は周波数Fで駆動可能な最大電圧値)。 出力電圧が変化したら、前記手段によって相電流値を読
み込み、メモリにストアする。出力電圧Voutをある
一定値ΔV下げ、続いて相電流値を読み込み、メモリに
順にストアしていく。以後繰り返し、出力電圧Vout
カVHI N  (VM I Nは周波数Fにおける駆
動可能な最小出力電圧)である時の相ri流値の読み込
みまで終了したらEC)へ進む。 ここで読み込んだ相電流データの最小値を判断10aし
、その時の出力電圧Voutを新しい出力電圧設定とす
る(Dl。 また新しい出力電圧を設定
An embodiment of this invention will be described below. FIG. 1 is a diagram showing the overall configuration of the present invention, and FIG. 2 is a flowchart showing the operation for determining the applied voltage that minimizes the phase current of the AC M motor 5 in the present invention. In FIG. 1, direct current is obtained from a commercial AC power supply 1 via a rectifier circuit 2 and a smoothing circuit 3, and this direct current is supplied to an inverter 4.
The current is converted into alternating current, and the alternating current motor 5 is driven. A mechanical load (not shown) having load torque fluctuation is connected to the AC motor 5. A microcomputer 10 and a waveform shaping circuit 15 are provided as control devices for the inverter 4. Further, a current sensor 16 is provided to detect the input current, that is, the phase current, of the AC motor 5, and its output waveform is transmitted to the A/D converter circuit 18 via the RI current/output circuit 17.
The phase current data is digitized, taken into the microcomputer 10, and compared with phase current data 10a. Microcomputer 10 has frequency command 19
PWM wave acid generation 10c according to output voltage setting 10b
. Next, the microcomputer 10 determines the output voltage from the phase current data.
The operation will be explained using a flowchart. In FIG. 2, in [Al, the AC motor 5 is driven at a frequency F1 voltage vout. If the frequency is stable, increase the output voltage Vout to VMAX (B1(vMAX
is the maximum voltage that can be driven at frequency F). When the output voltage changes, the phase current value is read by the means and stored in the memory. The output voltage Vout is lowered by a certain value ΔV, and then the phase current values are read and sequentially stored in the memory. After that, repeat the output voltage Vout
When the reading of the phase ri current value when VHIN (VM IN is the minimum drivable output voltage at frequency F) is completed, the process proceeds to EC). Here, the minimum value of the read phase current data is determined 10a, and the output voltage Vout at that time is set as the new output voltage setting (Dl. Also, the new output voltage is set.

【D)してから、ある一定時
間’ruff過後、相電流を読み込み(El、相電流値
変化がある値61以上あった場合には(Blへもどり、
相電流が最小となる出力電圧を設定し直す。T、より長
い時間T2が経過した場合(Flも同様に出力電圧を設
定し直す。 第3図は、この発明の他の実施例における、交流電動機
の相電流が最小となる印加電圧を決定する動作を表すフ
ローチャー1・図である。 第3図においてIAIでは、周波数F、雷電圧outで
交流電動機を駆動している。周波数が安定していたら、
出力電圧Vout、 Voutよりある値ΔVだけ高い
電圧vout+Δ”pVOutよりΔVだけ低い電圧V
out−ΔVの3Ti圧で交流電動機5を駆動し、その
時の相電流を読み込みメモリにストアする110Vou
t十ΔV″′C駆動した時の電流値をI 十、 Vou
tの時I 6 、 Vout−ΔVの時■−であった場
合、I+。 Io、I−を比較(Clで、■。が小さかった時はVo
utを出力する1F)。また1十が最小の時[0]は、
Vout十ΔVを新しいVoutとしてIB+へもどる
。 そして新しいVout、 Vout十ΔV、vout−
ΔVの3電圧で駆動した時の相電流値を比較し直す。[
Cl。 (Dlにあてはまらない時は、Vout−ΔVをVou
tとして(B)へもどる。このようにして、Igft流
が最小である出力電圧Voutが決定される。 また新しい出力電圧を設定[F lてから、ある一定時
間T、H過後、相電流を読み込み(G)、相電流の変化
がある値61以上あった時には、1B】へもどり、相電
流が最小となる出力電圧を設定し直す。T、より長い時
間T2が経過した場合(Hlも同様に出力電圧を設定し
直す。 【発明の効果] 以上のように、この発明では、交流電動機に連結される
負荷の増減に対応して印加電圧を増減できるように構成
したので、交流電動機の運転効率の向上、また過励磁の
防止になり、騒音の減少という効果が得られる。
After [D], after a certain period of 'ruff has passed, read the phase current (El, and if the phase current value change exceeds a certain value of 61, return to Bl,
Reset the output voltage that minimizes the phase current. T, if a longer time T2 has elapsed (Fl also resets the output voltage in the same way. Figure 3 shows how to determine the applied voltage that minimizes the phase current of the AC motor in another embodiment of this invention. This is a flowchart 1 diagram showing the operation. In Figure 3, IAI drives an AC motor at frequency F and lightning voltage out. If the frequency is stable,
Output voltage Vout, a voltage Vout that is higher by a certain value ΔV than Vout + Δ” A voltage V that is lower than pVOut by ΔV
110Vou drives the AC motor 5 with 3Ti voltage of out-ΔV, reads the phase current at that time and stores it in the memory.
The current value when driven by t ΔV'''C is I 10, Vou
If it is I 6 at time t, and ■- at Vout-ΔV, then I+. Compare Io and I- (in Cl, when ■. is small, Vo
1F which outputs ut). Also, when 10 is the minimum [0],
Return to IB+ with Vout + ΔV as new Vout. And the new Vout, Vout +ΔV, vout−
Compare again the phase current values when driven with three voltages of ΔV. [
Cl. (When it does not apply to Dl, set Vout-ΔV to Vou
Return to (B) as t. In this way, the output voltage Vout at which the Igft current is minimum is determined. Also, after setting a new output voltage [Fl], after a certain period of time T, H, read the phase current (G), and if the change in phase current exceeds a certain value of 61, return to 1B], and the phase current is the minimum. Reset the output voltage. T, when a longer time T2 has elapsed (Hl also resets the output voltage in the same way. [Effects of the Invention] As described above, in this invention, the voltage applied in response to the increase or decrease in the load connected to the AC motor Since the configuration is such that the voltage can be increased or decreased, the operating efficiency of the AC motor can be improved, overexcitation can be prevented, and noise can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の全′体構成を表す図。第2図は第1
図の実施例における交流電動機の相電流が最小となる印
加電圧を決定する動作を表すフローチャー1・図、第3
図は第2の実施例における印加電圧を決定する動作を表
すフローチャート図、第4図は従来例の構成を表す図、
第5図は従来例のイ:/バータ、5・・交[f動m、1
0・・・マイコン、15・・波形成形回路、16・・・
電流センサ、17 ・電流検出回路、18・・・A/、
D変換回路、19・・・周波数指令。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大暑 増雄(外2名ン 第2図 第3図
FIG. 1 is a diagram showing the overall configuration of this invention. Figure 2 is the first
Flowchart 1 and Figure 3 represent the operation of determining the applied voltage that minimizes the phase current of the AC motor in the embodiment shown in the figure.
The figure is a flowchart showing the operation of determining the applied voltage in the second embodiment, and FIG. 4 is a diagram showing the configuration of the conventional example.
Figure 5 shows the conventional example of a:/verter, 5...
0...Microcomputer, 15...Waveform shaping circuit, 16...
Current sensor, 17 ・Current detection circuit, 18...A/,
D conversion circuit, 19...frequency command. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent: Masuo Ohatsu (2 others, Figure 2, Figure 3)

Claims (1)

【特許請求の範囲】[Claims] 交流電動機の相電流を検出してマイクロコンピュータに
読み込む手段、同一周波数における印加電圧を可変でき
る手段と、交流電動機の相電流が最小である印加を見つ
け出す手段とを備えたことを特徴とする周波数可変装置
A frequency variable device characterized by comprising means for detecting the phase current of the AC motor and reading it into a microcomputer, means for varying the applied voltage at the same frequency, and means for finding the application where the phase current of the AC motor is the minimum. Device.
JP62137931A 1987-06-01 1987-06-01 Frequency changer Pending JPS63302796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137931A JPS63302796A (en) 1987-06-01 1987-06-01 Frequency changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137931A JPS63302796A (en) 1987-06-01 1987-06-01 Frequency changer

Publications (1)

Publication Number Publication Date
JPS63302796A true JPS63302796A (en) 1988-12-09

Family

ID=15210035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137931A Pending JPS63302796A (en) 1987-06-01 1987-06-01 Frequency changer

Country Status (1)

Country Link
JP (1) JPS63302796A (en)

Similar Documents

Publication Publication Date Title
US6626002B1 (en) Controller for PWM/PAM motor, air conditioner, and method of motor control
JPH05227795A (en) Controller and control method for induction motor
JPH06105563A (en) Motor driver and air conditioner using the same
US4785225A (en) Control apparatus for an induction motor
JP3205762B2 (en) Grid-connected inverter controller
US4758938A (en) PWM inverter controller for starting and driving an AC motor
JPH0728559B2 (en) Operation method of variable speed power generation system
JP3934982B2 (en) Power supply
JPS63302796A (en) Frequency changer
JPH0715966A (en) Electric motor drive device
JPH06230838A (en) Method for controlling variable speed inverter
JPH0341029B2 (en)
JP3263962B2 (en) DC braking system
JP2000270558A (en) Dc-voltage setting device for inverter/converter
JPS6216093A (en) Inverter device
JP3261717B2 (en) Inverter control method and control device
JPH04351492A (en) Controller for induction motor
JPH03256592A (en) Pwm power converter
JPH10295095A (en) Motor controller
JPH07194183A (en) Power controller for induction motor
JP2659365B2 (en) Control method of pulse width modulation control inverter
JPS62123987A (en) Drive control method for motor for compressor
JPH05236795A (en) Controller and control method for induction motor
JPH1132496A (en) Motor-controlling device
JPH03226297A (en) Controller for air-conditioner