JPS63302509A - Manufacture of ceramic capacitor - Google Patents

Manufacture of ceramic capacitor

Info

Publication number
JPS63302509A
JPS63302509A JP13818687A JP13818687A JPS63302509A JP S63302509 A JPS63302509 A JP S63302509A JP 13818687 A JP13818687 A JP 13818687A JP 13818687 A JP13818687 A JP 13818687A JP S63302509 A JPS63302509 A JP S63302509A
Authority
JP
Japan
Prior art keywords
layer
oxidizing
thick
semiconductor
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13818687A
Other languages
Japanese (ja)
Other versions
JPH0563089B2 (en
Inventor
Tatsuo Sunaga
須永 達夫
Hiroshi Kishi
弘志 岸
Masami Shimakata
島方 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP13818687A priority Critical patent/JPS63302509A/en
Publication of JPS63302509A publication Critical patent/JPS63302509A/en
Publication of JPH0563089B2 publication Critical patent/JPH0563089B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized large-capacitance ceramic capacitor, mechanical strength of which is held even when a dielectric layer is thinned and which has large insulation resis tance and large withstanding voltage, at low cost through a simple process by combining reducing baking treatment and oxidizing baking treatment regarding the double layer body of a irreversible oxidizing thick-film non-baked body and a reversible oxidizing thick-film non-baked body and forming the dielectric layer and a semiconductor layer. CONSTITUTION:The double layer body 13 of a irreversible oxidizing thick-film non-baked body 11 and a reversible oxidizing thick-film non-baked body 12 is shaped, reducing baking treatment and oxidizing baking treatment are combined regarding the double layer body 13, and a dielectric layer 12' is formed from the reversible oxidizing thick-film non-baked body 12 while a semiconductor layer 11' is shaped from the irreversible oxidizing thick-film non-baked body 11, thus shaping a ceramic capacitor body 16 consisting of the dielectric layer 12' and the semiconductor layer 11'. The double layer body 13 such as the double layer green sheet 13 of the non-baked body 11 such as an irreversible oxidizing thick-film green sheet 11 composed of SrTiO3, Nb2O5 and GeO2 and the non-baked body 12 such as a reversible oxidizing thick-film green sheet 12 made up of SrTiO3, CaTiO3 and CuO is baked in a reducing atmosphere and changed into a semiconductor, and baked in an oxidizing atmosphere, thus manufacturing the ceramic capacitor body 13' consisting of the dielectric layer 12' such as a dielectric ceramic layer 12' and the semiconductor layer 11' such as a semiconductor ceramic layer 11'.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁器コンデンサの製造方法に係り、特に小型
、大容量化を可能にする磁器コンデンサの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a ceramic capacitor, and more particularly to a method of manufacturing a ceramic capacitor that enables smaller size and larger capacity.

従来の技術 電気機器の軽薄短小化が行われており、その部品の小型
化が要望されている。磁器コンデンサについてもこの小
型化が行われているが、そのために高容量化の工夫がな
されている。特に民生用電気機器を中心に広(使用され
ている磁器コンデンサには平板状のものと円柱状のもの
が知られているが、誘電体層形状を一定とすると厚みを
薄くしなければ高容量が得られない。
BACKGROUND OF THE INVENTION Electrical equipment is becoming lighter, thinner, shorter and smaller, and there is a demand for smaller parts. Magnetic capacitors are also being miniaturized, and efforts are being made to increase their capacitance. Widely used, especially in consumer electrical equipment (Plat-shaped and cylindrical types are known for the ceramic capacitors used, but if the dielectric layer shape is kept constant, the capacitance will increase unless the thickness is thinned.) is not obtained.

ところが、例えば第5図に示すように、円筒の誘電体層
lに電極2.3を形成した中空型の円筒コンデンサでは
、誘電体層1を薄くし過ぎると機械的強度が低下するた
め割れたりするので好ましくない。このta械的強度を
保つためにはその厚さは最低0.25mは必要とされて
いる。
However, as shown in FIG. 5, for example, in a hollow cylindrical capacitor in which an electrode 2.3 is formed on a cylindrical dielectric layer 1, if the dielectric layer 1 is made too thin, the mechanical strength decreases and it may crack. Therefore, it is not desirable. In order to maintain this mechanical strength, a minimum thickness of 0.25 m is required.

そこで、この誘電体層を薄くしても機械的強度を保つこ
とができる還元再酸化型半導体磁器コンデンサが開発さ
れている。この還元再酸化型半導体磁器コンデンサは、
例えば特開昭56−79423号公報に記載されている
ように、第6図(イ)に示す如く磁器材料を焼成して焼
結体を形成し、これを還元して半導体磁器基板4を作成
し、この両生面にガラスフリフト含有の銀5を付与して
から再酸化して表面に酸化層6を形成し、さらに第6図
(ロ)に示す如く一方の再酸化層を削除してその後にオ
ーム性電極7を形成したものである。
Therefore, reduction and reoxidation type semiconductor ceramic capacitors have been developed that can maintain mechanical strength even if the dielectric layer is made thinner. This reduction and reoxidation type semiconductor ceramic capacitor is
For example, as described in Japanese Patent Application Laid-Open No. 56-79423, a sintered body is formed by firing a porcelain material as shown in FIG. Then, silver 5 containing glass drift is applied to this bifocal surface, and then reoxidized to form an oxide layer 6 on the surface, and then one of the reoxidized layers is removed as shown in FIG. 6(b). After that, an ohmic electrode 7 is formed.

このようにすると、半導体磁器基板の両生面に再酸化層
を介して電極を有する構造のものに比べ、静電容量は2
倍になるので小型化、高容量化の点からは好ましい。
In this way, compared to a structure in which electrodes are provided on both surfaces of the semiconductor ceramic substrate via a reoxidation layer, the capacitance is reduced by 2.
Since it is twice as large, it is preferable from the viewpoint of miniaturization and high capacity.

発明が解決しようとする問題点 しかしながら、このような従来の半導体磁器コンデンサ
の製法は、半導体基板の表面を再酸化するときに100
0−1050℃に加熱し電極材料のガラスを気相拡散さ
せるが、これは行うにはその温度コントロールが容易で
ないのみらず、その再酸化層の厚さが10μm以下にな
ると酸化の不完全な部分を生じ、絶縁抵抗、耐電圧性に
問題を生じる。また、再酸化層の主面の一方の側を削除
する工程が・必要となり、工程が煩雑になるという問題
点がある。
Problems to be Solved by the Invention However, in the conventional manufacturing method of semiconductor ceramic capacitors, when reoxidizing the surface of the semiconductor substrate,
The glass electrode material is heated to 0-1050°C to undergo vapor phase diffusion, but this is not only difficult to control the temperature, but if the thickness of the re-oxidized layer is less than 10 μm, the oxidation may be incomplete. This causes problems with insulation resistance and voltage resistance. Furthermore, a step of removing one side of the main surface of the re-oxidized layer is required, resulting in a problem that the step becomes complicated.

本発明は、誘電体層が薄くても機賊的強度を保持し、絶
縁抵抗、耐電圧の大きい小型大容量の磁器コンデンサを
簡単な工程で安価に得られる製法を提供することにある
An object of the present invention is to provide a method for manufacturing a small, large-capacity ceramic capacitor that maintains mechanical strength even when the dielectric layer is thin, has high insulation resistance, and has high withstand voltage and can be obtained at low cost through simple steps.

問題点を解決するための手段 本発明は、上記問題点を解決するために、非可逆酸化性
厚膜未焼成体と可逆酸化性厚膜未焼成体の二層体を形成
し、該二層体について還元焼成処理と酸化焼成処理を併
用することにより可逆酸化性厚膜未焼成体から誘電体j
%tを形成するとともに非可逆酸化性厚膜未焼成体から
半導体層を形成し、該誘電体層及び半導体層からなる磁
器コンデンサ本体を形成する工程を有することを特徴と
する磁器コンデンサの製造方法を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention forms a two-layer body of an irreversibly oxidizable thick film green body and a reversibly oxidizable thick film green body, and By using a combination of reduction firing treatment and oxidation firing treatment, it is possible to convert reversibly oxidizable thick film green bodies into dielectric materials.
%t and forming a semiconductor layer from an irreversibly oxidized thick film green body, and forming a ceramic capacitor body made of the dielectric layer and the semiconductor layer. I will provide a.

作用 一旦逼元されると酸化処理を行っても酸化されない非可
逆酸化性厚膜未焼成体と酸化、還元自在の可逆酸化性厚
膜未焼成体との二層体について、酸化処理と還元処理を
併用したので、可逆酸化性厚膜未焼成体の酸化により誘
電体層を形成でき、不可逆酸化性厚膜未焼成体の還元に
より半導体層を形成できる。この際誘電体層を薄くして
も半導体層で補強でき、また誘電体層の形成も酸化条件
を良く選択できるのでその均一性も確保できる。
Oxidation treatment and reduction treatment of a two-layer body consisting of an irreversible oxidizing thick-film green body that does not oxidize even after oxidation treatment once concentrated and a reversible oxidizing thick-film green body that can be oxidized and reduced. Since these are used in combination, a dielectric layer can be formed by oxidizing the reversibly oxidizable thick film green body, and a semiconductor layer can be formed by reducing the irreversibly oxidizable thick film green body. In this case, even if the dielectric layer is made thin, it can be reinforced with a semiconductor layer, and since the oxidation conditions for forming the dielectric layer can be well selected, uniformity can be ensured.

実施例 次ぎに本発明の実施例を第1図乃至第4図に基づいて説
明する。
Embodiment Next, an embodiment of the present invention will be explained based on FIGS. 1 to 4.

実施例1 第1図中、11は非可逆酸化性厚膜グリーンシート、■
2は可逆酸化性厚膜グリーンシートで両者は加熱圧着成
型され、厚膜二層グリ−シート13が形成されている。
Example 1 In Fig. 1, 11 is an irreversible oxidizing thick film green sheet;
Reference numeral 2 denotes a reversible oxidizable thick-film green sheet, and both are molded under heat and pressure to form a thick-film two-layer green sheet 13.

上記非可逆酸化性厚膜グリーンシー)11は、チタン酸
ストロンチウム(SrTiOB5)97.67束量%、
酸化ニオブ(Nb205)1.33N量%、酸化第二ゲ
ルマニウム(Ge02) 1.00m1%のそれぞれの
粉末を配合し、この配合物をエタノールとともに通常の
方法によって混合、粉砕した後乾燥し、その100重量
部に対シバインダーとしてポリビニルアルコールを5M
量部、水10重量部加え、約10時間ボールミルで混合
し、この混合物を押出し成型法によって厚さ約0.3額
のシートに成型した。
The above-mentioned irreversible oxidizing thick film Green Sea) 11 is strontium titanate (SrTiOB5) 97.67% in bundle amount,
Powders of 1.33N of niobium oxide (Nb205) and 1.00ml of germanium oxide (Ge02) were blended, and this blend was mixed with ethanol in a conventional manner, pulverized, and dried. 5M polyvinyl alcohol as binder to weight part
10 parts by weight of water were added and mixed in a ball mill for about 10 hours, and this mixture was molded into a sheet with a thickness of about 0.3 mm by extrusion molding.

また、上記可逆酸化性厚膜グリーンシート12は、チタ
ン酸ストロンチウム(SrTiO2)90 mo1%、
チタン酸カルシウム(CaTi03)9 mo1%、酸
化銅(Cub)l mol %のそれぞれの粉末を配合
し、上記と同様に混合、粉砕した後乾燥し、その100
重輩邪に対してバインダーとしてカルボキシメチルセル
ローズ10重量部、水10重量部加え約15時間ボール
ミルで混合してスラリー化し、ドクターブレード法によ
って厚さ約0.070のシートに成型した。
Further, the reversible oxidizable thick film green sheet 12 is made of strontium titanate (SrTiO2) 90 mo1%,
Powders of 9 mol % of calcium titanate (CaTi03) and 1 mol % of copper oxide (Cub) were blended, mixed and crushed in the same manner as above, and then dried.
10 parts by weight of carboxymethyl cellulose as a binder and 10 parts by weight of water were added to Juhaija and mixed in a ball mill for about 15 hours to form a slurry, which was then formed into a sheet with a thickness of about 0.070 mm by a doctor blade method.

上記厚膜二層グリーンシート13から打ち抜き成型によ
り直径約13nの円板を作製した。
A disk having a diameter of about 13 nm was produced by punching and molding the thick two-layer green sheet 13.

この円板を還元雰囲気(H25vo6%、N295vo
J%)中、1400〜1450℃で約4時間焼成し、半
導体化した。次いで、温度1200〜1300℃の酸化
雰囲気(大気)中で2時間焼成した。これにより、第2
図に示すように可逆酸化性厚膜グリーンシー1−12の
焼成体である誘電体磁器層12°、非可逆酸化性厚膜グ
リーンシート11の焼成体である半導体磁器層11“の
二層焼成体からなる磁器コンデンサ本体13’が作製さ
れる。
This disk was placed in a reducing atmosphere (H25vo6%, N295vo
J%) at 1,400 to 1,450°C for about 4 hours to form a semiconductor. Next, it was fired for 2 hours in an oxidizing atmosphere (atmosphere) at a temperature of 1200 to 1300°C. This allows the second
As shown in the figure, two-layer firing is performed: a dielectric ceramic layer 12°, which is a fired body of reversible oxidizable thick film green sheet 1-12, and a semiconductor ceramic layer 11'', which is a fired body of irreversible oxidizable thick film green sheet 11. A ceramic capacitor main body 13' is produced.

次ぎにこのコンデンサ本体13”の両生面に亜鉛電極ペ
ースト(亜鉛粉末60重量部、バインダーとしてエチル
セルローズ5重量部、ブチルカルピトール35重量部)
を塗布し、乾燥した後に500℃30分間焼付けてリー
ド線接読用電極14.15を形成し、これにより半導体
磁器コンデンサ16が得られる。
Next, zinc electrode paste (60 parts by weight of zinc powder, 5 parts by weight of ethyl cellulose and 35 parts by weight of butyl calpitol as a binder) is applied to both sides of this 13" capacitor body.
is coated, dried, and baked at 500° C. for 30 minutes to form lead wire reading electrodes 14 and 15, thereby obtaining a semiconductor ceramic capacitor 16.

この半導体磁器コンデンサについて、静電容量C(μF
/cat) 、誘電体損失(tanδ)、耐電圧(IR
(Ω)〕を測定し、その結果を表1に上記の配合組成と
ともに示す。
Regarding this semiconductor ceramic capacitor, the capacitance C (μF
/cat), dielectric loss (tanδ), withstand voltage (IR
(Ω)] and the results are shown in Table 1 along with the above formulation.

なお、上記静電容量と誘電損失は温度20℃で周波数I
KHzの交流電圧(実効値) 1.OVを印加したとき
の測定値、絶縁抵抗は温度20°Cにおいて直流100
νを印加した後の測定値、耐電圧は直流50Vを1分間
印加した後の測定値である。
Note that the above capacitance and dielectric loss are calculated at a temperature of 20°C and a frequency of I.
KHz AC voltage (effective value) 1. Measured value when applying OV, insulation resistance is DC 100 at a temperature of 20°C.
The measured value after applying ν and the withstand voltage are the measured values after applying 50 V DC for 1 minute.

実施例2〜5 実施例1において、可逆酸化性厚膜グリーンシートの配
合組成を表1のそれぞれに該当する關のとおりにしたこ
とと、その厚みを0.05mmにしたこと以外は同様に
して半導体磁器コンデンサを作製し、これについても実
施例1と同様に測定した結果を表1に示す。
Examples 2 to 5 In the same manner as in Example 1, except that the composition of the reversible oxidizable thick film green sheet was as per the relevant section in Table 1, and the thickness was changed to 0.05 mm. A semiconductor ceramic capacitor was manufactured and measured in the same manner as in Example 1. The results are shown in Table 1.

実施例6〜10 実施例1において、可逆酸化性厚膜グリーンシートの配
合組成を表2のそれぞれに該当する掴のとおりにしたこ
とと、その厚みを0.10mmにしたこと以外は同様に
して半導体磁器コンデンサを作製し、これについても実
施例1と同様に測定した結果を表2に示す。
Examples 6 to 10 In the same manner as in Example 1, except that the composition of the reversible oxidizable thick film green sheet was changed to the corresponding ingredients in Table 2, and the thickness was changed to 0.10 mm. A semiconductor ceramic capacitor was manufactured and measured in the same manner as in Example 1. The results are shown in Table 2.

なお、上記は非可逆酸化性厚膜グリーンシート材料にお
いてTiの原子価を制御するために使用される原子価制
御用の添加物にはNb2O5、GeO2のほかにTa2
05 、WO5,5c20B 、Y2O3、La2O5
、Nd2O5、その他希土類酸化物等の成分を少なくと
も1種用いても良い。
Note that in addition to Nb2O5 and GeO2, the additives used for controlling the Ti valence in the irreversible oxidation thick film green sheet material include Ta2.
05, WO5, 5c20B, Y2O3, La2O5
, Nd2O5, and other rare earth oxides.

また、上記亜鉛電橋を用いたが、このほかにニッケル電
極、銀電極等も使用できる。
Further, although the above-mentioned zinc bridge was used, nickel electrodes, silver electrodes, etc. can also be used.

比較例1 実施例1において、非可逆酸化性厚膜グリーンシートを
使用せず、可逆酸化性厚膜グリーンシートの配合組成を
表3のとおりとし、その厚みを0.250にしたこと以
外は同様にして誘電体単層に電極を設けた半導体磁器コ
ンデンサを作製し、これについても実施例1と同様に測
定した結果を表3に示す。
Comparative Example 1 Same as Example 1 except that the irreversible oxidizable thick film green sheet was not used, the composition of the reversible oxidizable thick film green sheet was as shown in Table 3, and the thickness was set to 0.250. A semiconductor ceramic capacitor having an electrode provided on a dielectric single layer was manufactured using the same method, and the results of measurement in the same manner as in Example 1 are shown in Table 3.

実施例11 実施例1において、非可逆酸化性厚膜グリーンシートの
組成をチタン酸バリウム(i(aT+03)99.3m
o1%、酸化ニオブ(Nb205)0.3 mo1%と
し、押出し成型法によらずドクターブレード法でシート
を形成し、その厚さを0.3鶴とし、また、可逆酸化性
厚膜グリーンシートの組成をチタン酸バリウム(BaT
i05)90.5 mo1%、酸化ネオジム(NdzO
s) 3 mo1%、二酸化チタン(Ti02)6 m
ol %、酸化マンガン(MnO)0.5 mo1%と
しボールミルによる混合を10時間とし、スラリーから
作製されるシートの厚みを0.03mとした以外は同様
にして厚膜二層体グリーンシートを作製し、これから直
径20mmの円板を打ち抜いた後、大気中1350℃で
3時間焼成して焼成体を得た。
Example 11 In Example 1, the composition of the irreversibly oxidizable thick film green sheet was changed to barium titanate (i(aT+03)99.3m
o1%, niobium oxide (Nb205) 0.3 mo1%, a sheet was formed by the doctor blade method rather than the extrusion molding method, and the thickness was 0.3 mo. The composition is barium titanate (BaT
i05) 90.5 mo1%, neodymium oxide (NdzO
s) 3 mo1%, titanium dioxide (Ti02) 6 m
A thick film two-layer green sheet was prepared in the same manner except that the slurry was mixed with 0.5 mol% of manganese oxide (MnO) and 0.5 mol of manganese oxide (MnO) for 10 hours, and the thickness of the sheet made from the slurry was 0.03 m. A disk with a diameter of 20 mm was punched out from this, and then fired in the atmosphere at 1350° C. for 3 hours to obtain a fired body.

次いで還元雰囲気(N295 vo1%、H25voJ
%)中、1200℃で2時間熱処理し、半導体化した。
Next, a reducing atmosphere (N295 vo1%, H25voJ
%) at 1200° C. for 2 hours to convert it into a semiconductor.

さらに上記焼成体を大気中1100℃で2時間熱処理し
た。これにより実施例1の第1図(ロ)と同様に可逆酸
化性厚膜グリーンシートの焼成体である誘電体磁器層、
非可逆酸化性厚膜グリーンシートの焼成体である半導体
磁器層の二層焼成体からなる磁器コンデンサ本体が作製
される。
Further, the fired body was heat-treated at 1100° C. for 2 hours in the atmosphere. As a result, as in FIG. 1 (b) of Example 1, the dielectric ceramic layer, which is the fired body of the reversibly oxidizable thick film green sheet,
A ceramic capacitor body is produced which is made of a two-layer fired body of semiconductor ceramic layers, which is a fired body of irreversibly oxidizable thick film green sheets.

次いで上記磁器コンデンサ本体の両面に銀ペースト(1
1!粉末60fi量部、バインダーとしてポリビニルア
ルコール15重量部、水25重量部)を塗布・乾燥して
から800℃30分で焼付け、電極を形成した半導体磁
器コンデンサを作製した。
Next, silver paste (1
1! 60 parts of powder, 15 parts by weight of polyvinyl alcohol as a binder, and 25 parts by weight of water) were coated and dried, and then baked at 800° C. for 30 minutes to produce a semiconductor ceramic capacitor with electrodes formed thereon.

これについても実施例1と同様に測定した結果を表4に
示す。
This was also measured in the same manner as in Example 1, and the results are shown in Table 4.

実施例12〜13 実施例11において、可逆酸化性厚膜グリーンシートの
厚さを表のそれぞれの該当する欄に記載したとおりにし
たこと以外は同様にして半導体磁器コンデンサを作製し
、これについても実施例1と同様に測定した結果を表4
に示す。
Examples 12 to 13 Semiconductor ceramic capacitors were produced in the same manner as in Example 11, except that the thickness of the reversible oxidizable thick film green sheet was as described in the respective appropriate columns of the table, and Table 4 shows the results measured in the same manner as in Example 1.
Shown below.

比較例2 特開昭56−79423号公報に記載されているような
第6図(ロ)に示す還元再酸化型コンデンサにおいて、
再酸化層(誘電層)を実施例11と同様にほぼ10μ鶴
にした場合の電気特性について実施例1と同様に測定し
た結果を表4に示す。
Comparative Example 2 In the reduction-reoxidation type capacitor shown in FIG. 6(b) as described in JP-A-56-79423,
Table 4 shows the results of measuring the electrical properties in the same manner as in Example 1 when the re-oxidation layer (dielectric layer) was made to have a thickness of approximately 10 μm as in Example 11.

上記実施例11−13においては、非可逆酸化性厚膜グ
リーンシートは、その組成においてBaTiO3に原子
価制御剤としてNb2o5を使用したが、このほかに0
.1〜0.5 mo1%のLa、 Nd等の希土類元素
の酸化物、Ta205 、WO5、MoO3、GeO2
のうちの少なくとも1種類を添加したものも使用でき、
またそのシートの厚さも0.2〜0.4鶴にすることが
できる。また可逆酸化性厚膜グリーンシートは、その組
成においてBaTiO3にTiO2、MnO、Nd20
Bを加えたが、BaTi03−Ln系酸化物−Ti02
、ただしLnはしa、Nd、 Ce等の希土類元素を示
す系にMnを添加してなる材料も使用でき、そのシート
の厚さも0.02〜0.1鶴にすることができる。また
、これらの非可逆酸化性厚膜グリーンシートと可逆酸化
性厚膜グリーンシートを加熱圧着して二層体にした後大
気中で焼成する条件は、1300〜1450℃、2〜3
時間、ついで還元雰囲気中で焼成する条件は、1200
〜1300℃、1〜2時間、さらに再酸化条件は110
0〜1200℃、1〜2時間の範囲で行うことが例示で
きる。また、電極は銀電極のみならず、亜鉛電極その他
実施例1−10の変形例で例示した材料の電極を使用す
ることができる。
In the above Examples 11-13, the irreversible oxidation thick film green sheet used Nb2o5 as a valence control agent in BaTiO3 in its composition, but in addition to this, Nb2o5 was used as a valence control agent.
.. 1 to 0.5 mo1% of La, oxide of rare earth elements such as Nd, Ta205, WO5, MoO3, GeO2
Products containing at least one of these can also be used.
Moreover, the thickness of the sheet can also be set to 0.2 to 0.4 mm. In addition, the composition of the reversible oxidizable thick film green sheet is BaTiO3, TiO2, MnO, and Nd20.
Although B was added, BaTi03-Ln-based oxide-Ti02
However, a material made by adding Mn to a system showing rare earth elements such as Ln, a, Nd, and Ce can also be used, and the thickness of the sheet can also be 0.02 to 0.1 mm. In addition, the conditions for heating and pressing these irreversible oxidizing thick film green sheets and reversible oxidizing thick film green sheets to form a two-layer body and then firing in the atmosphere are 1300 to 1450°C, 2 to 3
The conditions for firing in a reducing atmosphere are 1200
~1300℃, 1-2 hours, and reoxidation conditions are 110℃
For example, it may be carried out at 0 to 1200°C for 1 to 2 hours. Further, as the electrode, not only a silver electrode but also a zinc electrode and other electrodes made of the materials exemplified in the modified examples of Examples 1-10 can be used.

(この頁以下余白) 実施例15 上記は平板状半導体磁器コンデンサについて述べたが、
第3図に示すように、非可逆酸化性グリーン円柱部17
を可逆酸化性グリーン円筒部18に挿入して加熱圧着し
て二層グリーン体19を形成し、ついでこれを上記実施
例1又は実施例11と同様にして還元焼成処理と酸化焼
成処理を併用して第4図に示すように誘電体層18゛ 
 と半導体層17゛ の二層焼成体からなる磁器コンデ
ンサ本体19’を形成し、さらに電極20.21を形成
して半導体磁器コンデンサ22を作製することもできる
。なお、可逆酸化性グリーン円筒部、非可逆酸化性グリ
ーン円柱部の材料は上記各実施例で示したものを同様に
して使用することができる。
(Margins below this page) Example 15 Although the above description was about a flat semiconductor ceramic capacitor,
As shown in FIG. 3, irreversible oxidizing green columnar part 17
was inserted into the reversible oxidizable green cylindrical portion 18 and bonded under heat and pressure to form a two-layer green body 19, which was then treated in the same manner as in Example 1 or Example 11 above, using a combination of reduction firing treatment and oxidation firing treatment. As shown in FIG.
The semiconductor ceramic capacitor 22 can also be manufactured by forming the ceramic capacitor main body 19' made of a two-layer fired body of the semiconductor layer 17' and the semiconductor layer 17', and further forming the electrodes 20 and 21. The materials for the reversible oxidizable green cylindrical part and the irreversible oxidizable green cylindrical part can be the same as those shown in the above embodiments.

上記結果から、実施例のものは、非可逆酸化性厚膜グリ
ーンシート0.31mと可逆酸化性厚膜グリーンシート
0.03〜0.I nからなる焼成体の磁器コンデンサ
本体の厚み&!’0.25f1以上となり、これは比較
例の単層のコンデンサ本体より厚くすることができ、物
理的機械的強度を十分に保つことができる。
From the above results, it can be seen that in the examples, the irreversible oxidizable thick film green sheet is 0.31 m and the reversible oxidizable thick film green sheet is 0.03 to 0.3 m. Thickness of the fired ceramic capacitor body consisting of In &! '0.25f1 or more, which can be made thicker than the single-layer capacitor body of the comparative example, and can maintain sufficient physical and mechanical strength.

また、可逆酸化性厚膜グリーンシートから形成される誘
電体層も0.1 n以下であるので静電容量も太き(で
きる、さらに半導体層の比抵抗も十分に小さいために損
失(tan δ)も小さくできる。
In addition, since the dielectric layer formed from the reversibly oxidizable thick film green sheet has a thickness of 0.1 n or less, the capacitance is also large (possible), and the resistivity of the semiconductor layer is also sufficiently small, so loss (tan δ ) can also be made smaller.

なお、本発明で未焼成体とは、それぞれの材料にバイン
ダー等を加えたもの、あるいはその有機物を燃焼除去処
理をしたものの両方を含む。
In the present invention, the unfired body includes both those obtained by adding a binder or the like to each material, or those obtained by burning and removing the organic substances.

発明の詳細 な説明したように、本発明によれば、可逆酸化性厚膜未
焼成体及び非可逆酸化性厚膜未焼成体はそれぞれをシー
トや円筒体又は棒状に成型することができ、しかも可逆
酸化性厚膜未焼成体は肉薄にし非可逆酸化性厚膜未焼成
体は肉厚にして重ね、これに焼成処理を行うことができ
る。これにより誘電体層を薄くできるとともに、その強
度を厚い半導体層により補強することができる。また誘
電体層を例えば10μmの厚さとすると従来の単層型磁
器コンデンサの誘電体層の厚さが機械的強度の点から2
50μl11以上であることに比べ、その厚さを約25
分の1にとることができ、その静電容量を約25倍大き
くすることができる。
As described in detail, according to the present invention, the reversibly oxidizable thick film green body and the irreversibly oxidizable thick film green body can each be formed into a sheet, cylinder, or rod shape, and The reversibly oxidizable thick film green body can be thinned and the irreversibly oxidizable thick film green body can be thickened and stacked one on top of the other, and the firing process can be performed on these. This allows the dielectric layer to be made thinner and its strength to be reinforced by the thicker semiconductor layer. Furthermore, if the dielectric layer is, for example, 10 μm thick, the thickness of the dielectric layer of a conventional single-layer ceramic capacitor is 2 μm in terms of mechanical strength.
Compared to 50 μl11 or more, its thickness is about 25 μl.
The capacitance can be increased by about 25 times.

このように酸化されて誘電体層となる厚みが予めその焼
成前のシートや円筒の厚みにより規定され、その酸化条
件を任意に定められるので、従来の還元再酸化型半導体
磁器コンデンサのように酸化によって生じる誘電体層の
厚みが温度条件によって変わるようなことはなく、酸化
不十分という欠陥を持つことの少ない均一な誘電体層を
形成することができ、従来の還元再酸化型の半導体コン
デンサに比べ例えば2〜4倍の静電容量が得られるのみ
ならず、特に誘電体層を薄くしたときに従来の還元再酸
化型磁器コンデンサに見られる耐電圧性の劣価、絶縁抵
抗の低下が起こらない。
In this way, the thickness of the dielectric layer that is oxidized is predetermined by the thickness of the sheet or cylinder before firing, and the oxidation conditions can be set arbitrarily. The thickness of the dielectric layer produced by this method does not change depending on temperature conditions, and a uniform dielectric layer with fewer defects due to insufficient oxidation can be formed, making it possible to form a uniform dielectric layer that is less likely to have defects caused by insufficient oxidation. Not only can a capacitance that is 2 to 4 times higher than that of conventional capacitors be obtained, but also, especially when the dielectric layer is made thinner, the inferior voltage resistance and decrease in insulation resistance that are observed in conventional reduction-reoxidation type ceramic capacitors do not occur. do not have.

また、従来の還元再酸化型半導体磁器コンデンサの場合
のように再酸化層の一部を削除する工程がなく、その製
造工程を簡略化し、能率化することができる。
Further, there is no step of removing part of the reoxidation layer unlike in the case of conventional reduction and reoxidation type semiconductor ceramic capacitors, and the manufacturing process can be simplified and made more efficient.

このようにして誘電体層を一方の側のみに有する平板状
、円柱状半導体磁器コンデンサを提供でき、しかも小型
化、高容量化できるので、小型化した電気機器に要求さ
れる種々のコンデンサとしてのいろいろな温度特性の実
現が可能であり、温度補償用から高誘電率用まで全ての
特性のコンデンサを提供することができる。
In this way, it is possible to provide a flat or cylindrical semiconductor ceramic capacitor having a dielectric layer on only one side, and it can also be made smaller and have a higher capacity, so it can be used as various capacitors required for miniaturized electrical equipment. Various temperature characteristics can be realized, and capacitors with all characteristics from temperature compensation to high dielectric constant can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体磁器コンデンサの製
造過程の二層体グリーンシートを示す断面図、第2図は
この実施例の半導体磁器コンデンサの断面図、第3図(
イ)、(ロ)は他の実施例の円柱型半導体磁器コンデン
サの二層グリーン体を示す斜視図及び側面図、第4図(
イ)、(ロ)、(ハ)はこの実施例の円柱型半導体磁器
コンデンサの斜視図、断面図、側面図、第5図(イ)、
(ロ)、(ハ)は従来の単層型磁器コンデンサの斜視図
、断面図、側面図、第6図(イ)、(ロ)は従来の還元
再酸化型磁器コンデンサの各製造工程における構造を示
す図である。 図中、11は非可逆酸化性厚膜グリーンシート、12は
可逆酸化性厚膜グリーンシート、13は厚膜二層グリー
ンシート、11°は半導体磁器層、12゛ は誘電体6
’ff器層、13°は磁器コンデンサ本体、14.15
は電極、16は半導体磁器コンデンサ、17は非可逆酸
化性グリーン円柱部、18は可逆酸化性グリーン円筒部
、19は二層グリーン体、17゛ は半導体層、18′
は誘電体層、20.21は電極、22は半導体磁器コン
デンサである。 昭和62年06月03日 第1図 第2図 第3図 第5図
FIG. 1 is a cross-sectional view showing a two-layer green sheet in the manufacturing process of a semiconductor ceramic capacitor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor ceramic capacitor according to this embodiment, and FIG.
A) and (B) are a perspective view and a side view showing a two-layer green body of a cylindrical semiconductor ceramic capacitor according to another embodiment, and FIG.
A), (B), and (C) are perspective views, cross-sectional views, and side views of the cylindrical semiconductor ceramic capacitor of this embodiment;
(B) and (C) are perspective views, cross-sectional views, and side views of conventional single-layer ceramic capacitors, and Figures 6 (A) and (B) are the structures of conventional reduction-reoxidation type ceramic capacitors in each manufacturing process. FIG. In the figure, 11 is an irreversible oxidation thick film green sheet, 12 is a reversible oxidation thick film green sheet, 13 is a thick film double layer green sheet, 11° is a semiconductor ceramic layer, 12゛ is a dielectric material 6
'FF layer, 13° is the ceramic capacitor body, 14.15
16 is an electrode, 16 is a semiconductor ceramic capacitor, 17 is an irreversible oxidizing green cylinder part, 18 is a reversible oxidizing green cylinder part, 19 is a two-layer green body, 17゛ is a semiconductor layer, 18'
2 is a dielectric layer, 20 and 21 are electrodes, and 22 is a semiconductor ceramic capacitor. June 3, 1988 Figure 1 Figure 2 Figure 3 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)非可逆酸化性厚膜未焼成体と可逆酸化性厚膜未焼
成体の二層体を形成し、該二層体について還元焼成処理
と酸化焼成処理を併用することにより可逆酸化性厚膜未
焼成体から誘電体層を形成するとともに非可逆酸化性厚
膜未焼成体から半導体層を形成し、該誘電体層及び半導
体層からなる磁器コンデンサ本体を形成する工程を有す
ることを特徴とする磁器コンデンサの製造方法。
(1) By forming a two-layer body of an irreversibly oxidizable thick-film green body and a reversibly oxidizable thick-film green body, and using a combination of reduction firing treatment and oxidation firing treatment on the two-layer body, the reversible oxidation thickness is It is characterized by comprising the steps of forming a dielectric layer from the film green body, forming a semiconductor layer from the irreversibly oxidizable thick film green body, and forming a ceramic capacitor body composed of the dielectric layer and the semiconductor layer. A method of manufacturing a porcelain capacitor.
(2)二層体について還元焼成処理と酸化焼成処理の併
用は該二層体を還元雰囲気中で焼成して各々の層の半導
体層を形成した後酸化雰囲気中で焼成して可逆酸化性厚
膜半導体を酸化することにより誘電体層を形成すること
を特徴とする特許請求の範囲第1項記載の磁器コンデン
サの製造方法。
(2) Combining reduction firing treatment and oxidation firing treatment for a two-layer body involves firing the two-layer body in a reducing atmosphere to form a semiconductor layer for each layer, and then firing it in an oxidizing atmosphere to obtain a reversible oxidation thickness. 2. The method of manufacturing a ceramic capacitor according to claim 1, wherein the dielectric layer is formed by oxidizing a film semiconductor.
(3)二層体について還元焼成処理と酸化焼成処理の併
用は該二層体を酸化雰囲気中で焼成した後還元性雰囲気
中で焼成することにより各層を半導体化し、さらに酸化
雰囲気中で焼成することにより可逆酸化性厚膜半導体を
再酸化して誘電体層を形成することを特徴とする特許請
求の範囲第1項記載の磁器コンデンサの製造方法。
(3) Combining reduction firing treatment and oxidation firing treatment for a two-layer body involves firing the two-layer body in an oxidizing atmosphere, then firing it in a reducing atmosphere to convert each layer into a semiconductor, and then firing it in an oxidizing atmosphere. 2. A method of manufacturing a ceramic capacitor according to claim 1, wherein the dielectric layer is formed by reoxidizing a reversibly oxidizable thick film semiconductor.
(4)可逆酸化性厚膜未焼成体は可逆酸化性半導体厚膜
未焼成体であることを特徴とする特許請求の範囲第1項
、第2項又は第3項記載の磁器コンデンサの製造方法。
(4) The method for manufacturing a ceramic capacitor according to claim 1, 2 or 3, wherein the reversibly oxidizable thick film green body is a reversibly oxidizable thick film green body. .
JP13818687A 1987-06-03 1987-06-03 Manufacture of ceramic capacitor Granted JPS63302509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13818687A JPS63302509A (en) 1987-06-03 1987-06-03 Manufacture of ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13818687A JPS63302509A (en) 1987-06-03 1987-06-03 Manufacture of ceramic capacitor

Publications (2)

Publication Number Publication Date
JPS63302509A true JPS63302509A (en) 1988-12-09
JPH0563089B2 JPH0563089B2 (en) 1993-09-09

Family

ID=15216076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13818687A Granted JPS63302509A (en) 1987-06-03 1987-06-03 Manufacture of ceramic capacitor

Country Status (1)

Country Link
JP (1) JPS63302509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411863A2 (en) * 1989-07-31 1991-02-06 Mitsui Petrochemical Industries, Ltd. Apparatus for monitoring degradation of insulation of electrical installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411863A2 (en) * 1989-07-31 1991-02-06 Mitsui Petrochemical Industries, Ltd. Apparatus for monitoring degradation of insulation of electrical installation

Also Published As

Publication number Publication date
JPH0563089B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP5224147B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JPH1012479A (en) Laminated ceramics capacitor
US4477401A (en) Method of manufacturing a dielectric
JPH11302072A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP2001130957A (en) Semiconductor ceramic, method for producing semiconductor ceramic, and thermistor
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
JP2919360B2 (en) Dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JPS63302509A (en) Manufacture of ceramic capacitor
JPH11302071A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JPH10297967A (en) Dielectric ceramic composition with high dielectric constant and its production
JP3316717B2 (en) Multilayer ceramic capacitors
JPH0261434B2 (en)
JPH0824007B2 (en) Non-reducing dielectric ceramic composition
JPH0824006B2 (en) Non-reducing dielectric ceramic composition
JP2821768B2 (en) Multilayer ceramic capacitors
JPH0332162B2 (en)
JP2803227B2 (en) Multilayer electronic components
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP3071452B2 (en) Dielectric porcelain composition
JPH0472368B2 (en)
JPH088189B2 (en) Method for manufacturing laminated porcelain capacitor