JPS63302503A - Method and device for laser-trimming - Google Patents

Method and device for laser-trimming

Info

Publication number
JPS63302503A
JPS63302503A JP62138155A JP13815587A JPS63302503A JP S63302503 A JPS63302503 A JP S63302503A JP 62138155 A JP62138155 A JP 62138155A JP 13815587 A JP13815587 A JP 13815587A JP S63302503 A JPS63302503 A JP S63302503A
Authority
JP
Japan
Prior art keywords
laser
acousto
drive signal
trimming
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138155A
Other languages
Japanese (ja)
Other versions
JPH0693402B2 (en
Inventor
Minoru Fujimoto
実 藤本
Akira Hashimoto
章 橋本
Kiyoe Iwaki
岩木 清栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62138155A priority Critical patent/JPH0693402B2/en
Publication of JPS63302503A publication Critical patent/JPS63302503A/en
Publication of JPH0693402B2 publication Critical patent/JPH0693402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To enable the deflection and variation of the output of laser lights at high speed by a method wherein an acousto-optic optical deflection element is arranged into the optical path of laser lights, the frequency of a drive signal transmitted over the deflection element is changed and a trimming line is controlled while the power of the drive signal is altered and laser power applied onto a work is controlled. CONSTITUTION:When laser lights are condensed onto a work 7 and the work is trimmed, acousto-optic optical deflection elements (AOD) 3, 4 are disposed into the optical path of laser lights. The frequency of a drive signal transmitted over the AODs 3, 4 is altered, the angle of diffraction is changed, a trimming line is controlled while the power, of the drive signal sent to the AODs 3, 4 is varied, and laser power applied onto the work 7 is controlled. An element utilizing the single crystal anisotropic Bragg diffraction phenomenon of tellurium dioxide, etc., is employed as said AODs 3, 4, and two elements are mounted for deflecting laser in the X axis and Y axis directions. Accordingly, response at high speed in approximately 10mus is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光を用いてワーク(例えばハイブリッド
IC等)をトリミングするレーザトリミング装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser trimming device that trims a workpiece (eg, a hybrid IC, etc.) using laser light.

〔従来技術〕[Prior art]

レーザ光を用いてトリミングする装置において、レーザ
光を偏向させる方法としては、ガルバノメータ型ビーム
ポジショナを用いる方法が知れている。この具体的公知
例としては、特開昭58−123702がある。これを
第4図に示す。
In a device that performs trimming using a laser beam, a method using a galvanometer type beam positioner is known as a method for deflecting the laser beam. A specific known example of this is JP-A-58-123702. This is shown in FIG.

第4図において、レーザ発振器10から出たレーザ光は
、ビームを拡大するビームエキスパンダ11を介して、
光を偏向させるガルバノメータ型ビームポジショナ12
A、12Bへ送られる。ビ−ムポジショナより出たレー
ザ光は、スキャンレンズ13.ミラー14を介してハイ
ブリッドIC16上の印刷抵抗体17Aへ照射される。
In FIG. 4, a laser beam emitted from a laser oscillator 10 passes through a beam expander 11 that expands the beam.
Galvanometer type beam positioner 12 that deflects light
Sent to A and 12B. The laser beam emitted from the beam positioner is transmitted through the scan lens 13. The light is applied to the printed resistor 17A on the hybrid IC 16 through the mirror 14.

ビームポジショナ12A、12Bに所要の信号を送るこ
とにより光路を操作して、抵抗体17Aを切断してトリ
ミングする。
By sending required signals to the beam positioners 12A and 12B, the optical path is manipulated to cut and trim the resistor 17A.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように従来技術には、以下に示すような欠点があ
る。その第1は、ガルバノメータ型ビームポジショナ1
2A、12Bは、その原理がコイルに電流を流しその電
磁力により回転させるものであるため、制御信号に対し
ての応答性が悪いことである。第5図に示したように、
ビームポジショナにステップ状の制御信号(回転指令)
Ssを与えると、ポジショナの位置はカーブS、で示し
たような減衰振動をする。このため、ポジショナへ回転
指令を与えた後、T時間遅れた後にレーザ照射するよう
な制御方法をとらないと所定の箇所にレーザ照射できな
い。この遅れ時間T20〜Loomsがあるため、従来
装置では、高速のトリミング作動が不可能である。
As mentioned above, the conventional technology has the following drawbacks. The first is a galvanometer type beam positioner 1.
2A and 12B are based on the principle that a current is passed through the coil and the electromagnetic force is used to rotate the coil, so the response to the control signal is poor. As shown in Figure 5,
Step control signal (rotation command) to beam positioner
When Ss is given, the positioner's position undergoes a damped oscillation as shown by curve S. Therefore, a predetermined location cannot be irradiated with laser unless a control method is adopted in which laser irradiation is performed after a delay of T after a rotation command is given to the positioner. Due to this delay time T20~Looms, high-speed trimming operation is not possible with the conventional device.

第2の欠点は、抵抗体の切断線幅、あるいは、加工孔径
を変える場合に、従来装置ではレーザ発振器の出力自体
を変えることが必要なことである。
A second drawback is that when changing the cutting line width of the resistor or the diameter of the machined hole, the conventional device requires changing the output of the laser oscillator itself.

すなわち、トリミング装置ではよく使われているYAG
レーザの従来例においては、レーザ発振器内の励起ラン
プ電流値を変えてレーザ出力を変更する。ところがラン
プ電流を変えると出力が安定するまでに時間がかかるた
め、この点においても、高速でレーザ出力可変とするこ
とは不可能である。
In other words, YAG, which is often used in trimming devices.
In conventional lasers, the laser output is changed by changing the excitation lamp current value within the laser oscillator. However, since it takes time for the output to stabilize when the lamp current is changed, it is impossible to vary the laser output at high speed in this respect as well.

本発明は上記のような従来技術のもつ欠点を除去し、高
速でレーザ光の偏向及び出力変更を可能ならしめたレー
ザ・トリミング方法、及びレーザトリミング装置を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser trimming method and a laser trimming device that eliminate the above-mentioned drawbacks of the prior art and make it possible to deflect and change the output of laser light at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的を達成するために創作した本発明に係るレー
ザ・トリミング方法は、レーザ光をワーク上に集光せし
めてトリミングを行う方法において、上記レーザ光の光
路中に音響光学光偏向素子を配置し、該音響光学光偏向
素子に与える駆動信号の周波数を変更して回折角を変化
させてトリミングラインを制御するとともに、該音響光
学光偏向素子に与える駆動信号のパワーを変更してワー
ク上に照射されるレーザパワーを制御するものである。
A laser trimming method according to the present invention created to achieve the above-mentioned object is a method of trimming by focusing a laser beam on a workpiece, in which an acousto-optic light deflection element is arranged in the optical path of the laser beam. Then, the frequency of the drive signal given to the acousto-optic light deflection element is changed to change the diffraction angle to control the trimming line, and the power of the drive signal given to the acousto-optic light deflection element is changed to control the trimming line. This controls the irradiated laser power.

また、上記の方法を実施するための創作した本発明のレ
ーザ・トリミング装置は、 (a) レーザ光の光路上に少なくとも2個の音響光学
光偏向素子、及び、上記音響光学光偏向素子のそれぞれ
に駆動パワーを与えるドライバを設け、 (b)前記少なくとも2個の音響光学光偏向素子は互い
に偏向方向を直交せしめるように配置し。
Further, the created laser trimming device of the present invention for carrying out the above method includes: (a) at least two acousto-optic light deflection elements on the optical path of the laser beam, and each of the above-mentioned acousto-optic light deflection elements. (b) the at least two acousto-optic light deflection elements are arranged so that their deflection directions are orthogonal to each other;

かつ、 (c)前記のドライバは、駆11+信号の周波数および
パワーを調節し得る構造のものとした。
and (c) the driver has a structure capable of adjusting the frequency and power of the driver 11+ signal.

〔作用〕[Effect]

音響光学偏向素子の応答性は、ガルバノメータ型ポジシ
ョナ等に比して著しく速い。その理由は従来技術におけ
るが如く、質量を有する部材を運動させるものではなく
、媒体内を超音波信号が進行することによる媒体の屈折
率変化を利用して、回折格子として作用せしめるもので
あるから、文字通り音速のオーダーで応答するためであ
る。
The response of the acousto-optic deflection element is significantly faster than that of a galvanometer type positioner or the like. The reason for this is that unlike in the prior art, a member with mass is not moved, but the change in refractive index of the medium caused by the propagation of an ultrasonic signal within the medium is used to act as a diffraction grating. This is because the response is literally on the order of the speed of sound.

このため、レーザ・トリミングの高速作動が可能となる
Therefore, high-speed laser trimming operation is possible.

〔実施例〕〔Example〕

第1図は本発明方法を実施するために構成した本発明装
置の1例を模式的に描いた斜視図である。
FIG. 1 is a perspective view schematically depicting an example of the apparatus of the present invention configured to carry out the method of the present invention.

本第1図において、1はレーザ発振器であり、2はレー
ザ光路を変更するためのミラーである。
In FIG. 1, 1 is a laser oscillator, and 2 is a mirror for changing the laser optical path.

3及び4はレーザ光をX軸、Y軸に偏向させるための音
響光学光偏向素子(以下、省略して、 AODと称す。
3 and 4 are acousto-optic optical deflection elements (hereinafter abbreviated as AOD) for deflecting laser light in the X-axis and Y-axis.

)である。このAODには例えば、二酸化テルル等の単
結晶異方ブラック回折現象を利用したものがある。5は
ミラー、6はスキャンレンズである。AOD4から出た
回折光はミラー5及びスキャンレンズ6を介してワーク
(印刷抵抗体)7へ集光、照射される。8A、8BはA
OD3゜4を駆動するためのドライバである。
). For example, some AODs utilize the anisotropic black diffraction phenomenon of a single crystal such as tellurium dioxide. 5 is a mirror, and 6 is a scan lens. The diffracted light emitted from the AOD 4 is focused and irradiated onto a workpiece (printed resistor) 7 via a mirror 5 and a scan lens 6. 8A and 8B are A
This is a driver for driving OD3°4.

このような構成の装置において、AODにドライバから
所定の周波数fをもつ駆動信号が与えられると、第2図
に示したようにAODの1次回折光は偏向し、回折角を
θとするとθ−fとなる。
In a device with such a configuration, when a drive signal with a predetermined frequency f is applied to the AOD from the driver, the first-order diffracted light of the AOD is deflected as shown in FIG. It becomes f.

この駆動信号の周波数を変えることにより、ワークであ
る印刷抵抗体7上の所定の位置ヘレーザ光を照射できる
By changing the frequency of this drive signal, a predetermined position on the printed resistor 7, which is the workpiece, can be irradiated with laser light.

次に、ワーク上へ照射されるレーザパワーを変えるには
AODへドライバーから与えられる駆動パワーを変えれ
ば良い。この原理を第3図を用いて説明する。
Next, in order to change the laser power irradiated onto the workpiece, it is sufficient to change the driving power given to the AOD from the driver. This principle will be explained using FIG. 3.

第3図はAODの駆動パワーと回折効率(1次回折光パ
ワー/入力パワー)を示した図表である。
FIG. 3 is a chart showing the driving power and diffraction efficiency (first-order diffracted light power/input power) of the AOD.

駆動パワーP1〜Pa  (PI >P2 >Ps )
により回折効率が変わり、この原理を用いてワーク上へ
照射レーザパワーを増減調節できる。
Drive power P1~Pa (PI > P2 > Ps)
The diffraction efficiency changes, and using this principle, the laser power irradiated onto the workpiece can be increased or decreased.

AODは音響光学媒体内を超音波信号が進行することに
より、媒体の屈折率を周期的に変化させ光に対して回折
格子となることを利用したものであるから、媒体中を超
音波が伝搬する時間で応答性が決まり、前述の二酸化テ
ルルを用いた素子では、10μs程度の高速応答が可能
である。故にこの種のAODを用いて本発明を実施する
ことにより、従来装置においては、loms程度の応答
で偏向させていたものが、その1/1000の高応答性
をもって高速偏向、パワー変更が可能となり、超高速の
トリミング可能となった。
AOD utilizes the fact that when an ultrasound signal travels through an acousto-optic medium, the refractive index of the medium changes periodically and acts as a diffraction grating for light, so the ultrasound propagates through the medium. The response time is determined by the time required for the response to occur, and the above-mentioned element using tellurium dioxide is capable of a high-speed response of about 10 μs. Therefore, by implementing the present invention using this type of AOD, it is now possible to perform high-speed deflection and power changes with a response as high as 1/1000, whereas conventional devices were able to deflect with a response of about LOMS. , ultra-high-speed trimming is now possible.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のレーザトリミング方法に
よれば、レーザ光を高速で偏向させたり高速で出力を変
えたりすることができ、レーザ・トリミング作動を高速
で行い得る。また、本発明のレーザ・トリミング装置に
よれば、上記の方法を容易に実施してその効果を充分に
発揮させることが出来る。
As described in detail above, according to the laser trimming method of the present invention, the laser beam can be deflected at high speed, the output can be changed at high speed, and the laser trimming operation can be performed at high speed. Further, according to the laser trimming device of the present invention, the above method can be easily implemented and its effects can be fully exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーザトリミング装置の1実施例
を模式的に描いた斜視図、第2図及び第3図は上記実施
例の作用を説明するための図表である。 第4図は従来例のレーザ・トリミング装置を示す模式的
な斜視図、第5図は上記従来例の不具合を説明するため
の図表である。 1・・・レーザ発振器、2・・・ミラー、3.4・・・
音響光学光偏向素子、5・・・ミラー、6・・・スキャ
ンレンズ。 7・・・ワークである印刷抵抗体。
FIG. 1 is a perspective view schematically depicting one embodiment of a laser trimming device according to the present invention, and FIGS. 2 and 3 are charts for explaining the operation of the above embodiment. FIG. 4 is a schematic perspective view showing a conventional laser trimming device, and FIG. 5 is a chart for explaining the problems of the conventional example. 1... Laser oscillator, 2... Mirror, 3.4...
Acousto-optic light deflection element, 5...mirror, 6...scan lens. 7...Printed resistor as workpiece.

Claims (1)

【特許請求の範囲】 1、レーザ光をワーク上に集光せしめてトリミングを行
う方法において、上記レーザ光の光路中に音響光学光偏
光素子を配置し、該音響光学光偏向素子に与える駆動信
号の周波数を変更して回折角を変化させてトリミングラ
インを制御するとともに、該音響光学光偏向素子に与え
る駆動信号のパワーを変更してワーク上に照射されるレ
ーザパワーを制御することを特徴とするレーザ・トリミ
ング方法。 2、レーザ光をワーク上に集光せしめてトリミングを行
う装置において、 (a)レーザ光の光路上に少なくとも2個の音響光学光
偏向素子、及び、上記音響光学光偏向素子のそれぞれに
駆動パワーを与えるドライバを設け、 (b)前記少なくとも2個の音響光学光偏向素子は互い
に偏向方向を直交せしめるように配置し、かつ、 (c)前記のドライバは、駆動信号の周波数およびパワ
ーを調節し得る構造のものとしたこと、を特徴とするレ
ーザ・トリミング装置。
[Claims] 1. A method for trimming by condensing a laser beam onto a workpiece, in which an acousto-optic polarizing element is disposed in the optical path of the laser beam, and a drive signal is applied to the acousto-optic polarizing element. The trimming line is controlled by changing the frequency of the beam to change the diffraction angle, and the power of the drive signal applied to the acousto-optic optical deflection element is changed to control the laser power irradiated onto the workpiece. Laser trimming method. 2. In an apparatus that performs trimming by focusing a laser beam onto a workpiece, (a) at least two acousto-optic light deflection elements are provided on the optical path of the laser light, and a drive power is applied to each of the acousto-optic light deflection elements. (b) the at least two acousto-optic light deflection elements are arranged such that their deflection directions are orthogonal to each other; and (c) the driver adjusts the frequency and power of the drive signal. 1. A laser trimming device characterized by having a structure that obtains the desired results.
JP62138155A 1987-06-03 1987-06-03 Laser trimming method and trimming apparatus Expired - Lifetime JPH0693402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138155A JPH0693402B2 (en) 1987-06-03 1987-06-03 Laser trimming method and trimming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138155A JPH0693402B2 (en) 1987-06-03 1987-06-03 Laser trimming method and trimming apparatus

Publications (2)

Publication Number Publication Date
JPS63302503A true JPS63302503A (en) 1988-12-09
JPH0693402B2 JPH0693402B2 (en) 1994-11-16

Family

ID=15215306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138155A Expired - Lifetime JPH0693402B2 (en) 1987-06-03 1987-06-03 Laser trimming method and trimming apparatus

Country Status (1)

Country Link
JP (1) JPH0693402B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425471B2 (en) 2004-06-18 2008-09-16 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis with cross-axis offset
US7435927B2 (en) 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7629234B2 (en) 2004-06-18 2009-12-08 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots with joint velocity profiling
US7633034B2 (en) 2004-06-18 2009-12-15 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
US7687740B2 (en) 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US7935941B2 (en) 2004-06-18 2011-05-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures
US8148211B2 (en) 2004-06-18 2012-04-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously
US8193468B2 (en) 2001-03-29 2012-06-05 Gsi Group Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US8238007B2 (en) 2001-02-16 2012-08-07 Electro Scientific Industries, Inc. On-the-fly laser beam path error correction for specimen target location processing
US8383982B2 (en) 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots
US8497450B2 (en) 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238007B2 (en) 2001-02-16 2012-08-07 Electro Scientific Industries, Inc. On-the-fly laser beam path error correction for specimen target location processing
US8497450B2 (en) 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput
US8193468B2 (en) 2001-03-29 2012-06-05 Gsi Group Corporation Methods and systems for precisely relatively positioning a waist of a pulsed laser beam and method and system for controlling energy delivered to a target structure
US7425471B2 (en) 2004-06-18 2008-09-16 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis with cross-axis offset
US7435927B2 (en) 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7629234B2 (en) 2004-06-18 2009-12-08 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots with joint velocity profiling
US7633034B2 (en) 2004-06-18 2009-12-15 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
US7687740B2 (en) 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US7923306B2 (en) 2004-06-18 2011-04-12 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots
US7935941B2 (en) 2004-06-18 2011-05-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures
US8148211B2 (en) 2004-06-18 2012-04-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously
US8383982B2 (en) 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots

Also Published As

Publication number Publication date
JPH0693402B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JP4459530B2 (en) Laser processing equipment
JPH11500962A (en) Laser engraving machine
JP3872462B2 (en) Laser processing apparatus and laser processing method
US6763045B2 (en) Apparatus for and method of targeting
JPS63302503A (en) Method and device for laser-trimming
JP3769942B2 (en) Laser processing method and apparatus, and circuit forming method and apparatus for non-conductive transparent substrate
KR102375235B1 (en) Laser processing system and laser processing method
JP3463281B2 (en) Multi-axis laser processing apparatus and laser processing method
JP3617479B2 (en) Laser processing apparatus and processing method thereof
JP4132164B2 (en) Laser drilling machine
JP2002035979A (en) Laser beam device and laser beam processing device
JP3682295B2 (en) Laser processing equipment
WO2018211691A1 (en) Laser machining device
TW202132035A (en) Laser processing apparatus, methods of operating the same, and methods of processing workpieces using the same
JPS61216128A (en) Optical disk device
JPH11267873A (en) Scan optical system of laser light and laser processing device
JP2002252402A (en) Laser oscillator and its laser pulse control method
JP2004167545A (en) Multi-axes laser beam machining apparatus and machining method
JPS63265482A (en) Luminous power controller
WO2024024338A1 (en) Laser processing device, control method, and program
KR20230121726A (en) Apparatus and method for operating an acousto-optic deflector
JPH0322277B2 (en)
JPH06237037A (en) Laser beam machining device
JPH0839283A (en) Laser beam irradiating device and its method
TW202233335A (en) Laser processing device and laser processing method capable of suppressing the degradation of processing quality even if power of the laser beam output from the laser oscillator fluctuates