JPS63302327A - Method and apparatus for monitoring shaft torsional vibration of rotary electric machine - Google Patents
Method and apparatus for monitoring shaft torsional vibration of rotary electric machineInfo
- Publication number
- JPS63302327A JPS63302327A JP13807887A JP13807887A JPS63302327A JP S63302327 A JPS63302327 A JP S63302327A JP 13807887 A JP13807887 A JP 13807887A JP 13807887 A JP13807887 A JP 13807887A JP S63302327 A JPS63302327 A JP S63302327A
- Authority
- JP
- Japan
- Prior art keywords
- torsional vibration
- shaft
- torque
- rotating
- electric machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 17
- 230000004907 flux Effects 0.000 claims abstract description 21
- 238000004804 winding Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000012806 monitoring device Methods 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は回転電機の軸ねじり振動監視の方法及びその装
置に係り、特にタービン発電機の軸ねじり振動の監視に
好適な軸ねじり振動監視の方法及びその装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and apparatus for monitoring shaft torsional vibration of a rotating electric machine, and particularly to a shaft torsional vibration monitoring method suitable for monitoring shaft torsional vibration of a turbine generator. The present invention relates to a method and an apparatus thereof.
回転電機においてはその回転電機が単体で運転されるこ
とは少なぐ、例えばタービン発電機のようにタービンと
発電機が結合され前記軸系のもとで運転される場合が多
い。In the case of a rotating electric machine, it is rare that the rotating electric machine is operated alone; for example, in a turbine generator, a turbine and a generator are often combined and operated under the shaft system.
このように軸受の長い回転電機においては、信頼性の観
点から運転中における各軸部分の状況。In rotating electric machines with long bearings, the status of each shaft part during operation is important from a reliability perspective.
例えば各部の温度や振動、又軸受部の潤滑油の供給状態
などを充分に監視しておく必要がある。For example, it is necessary to sufficiently monitor the temperature and vibration of each part, as well as the supply status of lubricating oil to the bearings.
その重要な監視要素の一つに軸ねじり振動の監視がある
。One of the important monitoring elements is monitoring of shaft torsional vibration.
この軸ねじり振動監視についての方法や装置としては今
までにも数多くの考案がなされ、一部実施はされている
。その代表的なものとして、次のものがよく知られてい
る。すなわち特開昭58−22923号公報にも記載さ
れているように、軸方向にある間隔を保って軸ねじり検
出器を設けておき、軸のねじりを検出するとともに1回
転軸系に作用する外力を測定し、これらの値から回転軸
系の任意の点におけるねじり振動を推定するものである
。Many methods and devices for monitoring shaft torsional vibration have been devised and some have been put into practice. The following are well known as representative examples. That is, as described in Japanese Patent Application Laid-Open No. 58-22923, shaft torsion detectors are provided at certain intervals in the axial direction to detect the torsion of the shaft and to detect the external force acting on the shaft system for one rotation. is measured, and the torsional vibration at any point in the rotating shaft system is estimated from these values.
このものであっても充分軸ねじり振動を測定監視するこ
とは可能なのであるが、前述したようにこの種軸系の長
いものとなると、多くの点を測定する必要がありその検
出器の数が増すこと、また検出器の取付位置も特定部分
に制限されること、また特に既設の回転電機に設けよう
とする場合には、回転体側にも測定のための部品や装置
が設けられることから、さらに取付位置が制限されその
設置が極めて難しい場合があることなどまた多くの問題
を残している。Although it is possible to sufficiently measure and monitor shaft torsional vibration with this type of shaft system, as mentioned above, when this type of shaft system is long, it is necessary to measure many points, and the number of detectors increases. In addition, the mounting position of the detector is limited to a specific part, and especially when installing it on an existing rotating electric machine, parts and equipment for measurement are also installed on the rotating body side. Furthermore, many problems remain, such as the fact that the mounting position is limited and installation may be extremely difficult.
この問題点を解決するものとして最近次のようなものが
考え出され実用化されつつある。すなわち回転電機の電
気トルク、機械トルクを求め、この値をもとに回転軸系
の運動方程式を逐次解き。Recently, the following methods have been devised to solve this problem and are being put into practical use. In other words, find the electric torque and mechanical torque of the rotating electric machine, and then solve the equation of motion of the rotating shaft system sequentially based on these values.
軸ねじり振動を計算するのである。すなわちこれを第2
図を用いてもう少し詳しく説明すると、この図は、ター
ビン発電機の場合のスプリング・マス・モデルを示した
もので、/は発電機を、また2はタービンを示している
。この発電機及びタービンは軸を介して結合されている
わけであるが、この軸系は等節約にはねじりばね定数K
(K、。It calculates shaft torsional vibration. In other words, this is the second
To explain in more detail using a figure, this figure shows a spring mass model in the case of a turbine generator, where / indicates the generator and 2 indicates the turbine. This generator and turbine are connected via a shaft, and this shaft system has a torsional spring constant K for equal savings.
(K.
、+1)とねじり減衰定数D (D、、ヨ+1)に置換
えることができる。, +1) and the torsional damping constant D (D,, yo+1).
したがって一般に回転軸系における軸ねじり振動は、次
式の運動方程式にて表わされるから、この方程式にこれ
らの
−KILL、 l+2(δ1+1−61+2)+DI、
t”t (δ、−51+1)t
十T s ・・・(1)ここで
、
δi :回転軸捩り角の変化分[radlKIパ捩リバ
ネ定数
すigD+五二減衰定数
Mk :慣性定数
i=1〜m −1
j=2〜m
K=1〜m
定数に、D及び電気トルクの変動分子l (あるし)
は機械トルクの変動分)を当て°軸ねじり振動を求める
のである。Therefore, in general, shaft torsional vibration in a rotating shaft system is expressed by the equation of motion of the following equation, so these equations include -KILL, l+2(δ1+1-61+2)+DI,
t"t (δ, -51+1)t 10Ts...(1) where, δi: Change in rotational axis torsion angle [radlKI torsional spring constant igD+52 damping constant Mk: inertia constant i=1 ~m −1 j = 2 ~ m K = 1 ~ m In the constant, D and electric torque fluctuation numerator l (there is)
is the variation in mechanical torque) to find the axial torsional vibration.
このように電気トルクの変動(あるいは機械トルクの変
動あるいは両者)を用い、この運動方程式をルンゲ・フ
ッタ・ギル法、あるいは台形法などの数値解析手法にて
計算していくのである。尚第2図の場合には発電機・タ
ービンの回転軸系に5つの質点M1〜M5が存在してい
るので、5図の2階微分方程式を解くことになるが、こ
の場合には以下の10個の1階微分方程式系を逐次解い
ていくことになろう。In this way, the electric torque fluctuations (or mechanical torque fluctuations, or both) are used to calculate this equation of motion using numerical analysis methods such as the Runge-Futter-Gill method or the trapezoidal method. In the case of Figure 2, there are five mass points M1 to M5 in the rotating shaft system of the generator/turbine, so the second-order differential equation in Figure 5 must be solved, but in this case, the following You will be solving a system of 10 first-order differential equations one after another.
M IS M 5
以上のように電気トルクの変動、機械トルクの変動をと
らえることにより、回転軸系の軸ねじり振動を演算監視
することが可能であり、このものであると前述したもの
、すなわち軸ねじり検出器を用いたもののように特に回
転軸系に特殊な部品や装置を設ける必要もなく、又検出
器の取付は場所に頭を悩ます必要もなく実用に際しては
非常に有効なものである。M IS M 5 By capturing the electric torque fluctuations and mechanical torque fluctuations as described above, it is possible to calculate and monitor the shaft torsional vibration of the rotating shaft system. Unlike those using torsion detectors, there is no need to provide any special parts or equipment to the rotating shaft system, and there is no need to worry about where to mount the detector, making it very effective in practice.
しかしこのものでもこの度の綿密な実験の結果法のよう
な難点があることが明らかとなったのである。However, as a result of careful experiments, it has become clear that this method also has some drawbacks.
すなわちこのものでは正常な運転時においては、たとえ
送電系統の擾乱による電気トルクの変動、タービンの駆
動蒸気または、ガスによる機械トルクの変動があったと
しても、それらの値は小さいことから回転軸系に作用す
る捩り振動は小さく特に問題になることはないのである
が反面送電系統に発生した地絡事故、それに伴う系統再
開路等による系統擾乱の場合には、発電機の電気トルク
の変動となり、タービン発電機の回転軸系に大きな捩り
振動を励起する。In other words, during normal operation, even if there are fluctuations in electric torque due to disturbances in the power transmission system, or fluctuations in mechanical torque due to turbine drive steam or gas, these values are small, so the rotating shaft system The torsional vibration that acts on the power transmission system is small and does not pose a particular problem, but on the other hand, in the case of a ground fault that occurs in the power transmission system or a system disturbance due to the grid being restarted, etc., the electric torque of the generator will fluctuate. Excites large torsional vibrations in the rotating shaft system of the turbine generator.
ところがこの電気トルクを用いるものは、この最も激し
いねじり振動を生じたときに監視が一時的に検出精度が
低下してしまうのである。However, in those that use electric torque, the detection accuracy of monitoring temporarily decreases when the most severe torsional vibration occurs.
すなわちこのものは電気トルクTeの検出が、発電機の
端子電圧・電流をPT −CTを使用して検出し、発電
機出力を求め、そしてこの発電機出力Pを定格回転角速
度ω0で割ることによりなされている。すなわち
Te=P/ω0
= (eaia+ebib+ecic) / (110
−(3)で求め・られる。したがってたとえば、短絡事
故が生じた場合、発電機の端子電圧は瞬時に大きく変化
低下することから、算出される検出トルクTeも小さな
値となり、事故時の最も激しい軸ねじり振動が生じてい
るときにその軸ねじり振動の検出精度が著しく悪くなり
、監視の意味をなさなくなつてしまうのである。In other words, the electric torque Te can be detected by detecting the terminal voltage and current of the generator using PT-CT, finding the generator output, and dividing this generator output P by the rated rotational angular speed ω0. being done. That is, Te=P/ω0 = (eaia+ebib+ecic)/(110
− It can be determined by (3). Therefore, for example, if a short-circuit accident occurs, the terminal voltage of the generator will instantly change and drop significantly, so the calculated detected torque Te will also be a small value, and it will be The detection accuracy of the shaft torsional vibration becomes extremely poor, and the monitoring becomes meaningless.
本発明はこれにかんがみなされたもので、通常運転中は
勿論のこと、たとえ最悪の系統短絡が生じたとしても、
充分軸ねじり振動の監視が精度良くできるこの種回転電
機の軸ねじり振動監視装置を提供するにある。The present invention was designed with this in mind, and it is possible to use the
It is an object of the present invention to provide a shaft torsional vibration monitoring device for a rotary electric machine of this type that can sufficiently monitor shaft torsional vibration with high precision.
すなわち、本発明はトルク検出に際し、電圧の過渡的な
変動に関係のない電機子電流を取り入れて電機子磁束を
もとめ、この値をもとにトルク演1.. ’、 :>
、、j%磁トルクを求めるとともに、この電磁トルク値
より軸ねじり振動を演算して、軸ねじり振動を監視する
ようにしたのである。That is, when detecting torque, the present invention calculates the armature magnetic flux by taking in the armature current unrelated to transient fluctuations in voltage, and calculates the torque equation 1 based on this value. .. '、:>
,,j% Magnetic torque is determined, and the shaft torsional vibration is calculated from this electromagnetic torque value to monitor the shaft torsional vibration.
このようにすると、軸ねじり振動の算出に必要なトルク
値は、電機子磁束により算出されることから、たとえ回
転電機の端子電圧に過渡的変化があったとしても充分電
磁トルクは算出され、いかなる条件下においても精度よ
く軸ねじり振動の監視が可能となるのである。In this way, the torque value required to calculate the shaft torsional vibration is calculated from the armature magnetic flux, so even if there is a transient change in the terminal voltage of the rotating electrical machine, the electromagnetic torque will be calculated sufficiently, and any This makes it possible to monitor shaft torsional vibration with high accuracy even under various conditions.
以下図示した実施例に基づいて本発明の詳細な説明する
。第1図にはタービン発電機に適用された場合の軸ねじ
り振動監視装置がブロック線図で示されている。The present invention will be described in detail below based on the illustrated embodiments. FIG. 1 shows a block diagram of a shaft torsional vibration monitoring device when applied to a turbine generator.
発電機1は原動機であるタービン2と結合されその電気
的出力は出力ライン3を介して系統に接続されている。The generator 1 is coupled to a turbine 2 which is a prime mover, and its electrical output is connected to the grid via an output line 3.
軸ねじり振動監視装置はトルク検出装置4と軸ねじり振
動評価装置5とを備えている。The shaft torsional vibration monitoring device includes a torque detection device 4 and a shaft torsional vibration evaluation device 5.
トルク検出装置4は、発電機の端子電圧e、雷電流及び
回転角速度ωを取入れて巻線の所定の相に対する回転角
度γを検出する検出器6と、この回転角度γの関係から
電圧、電流を直軸成分、横軸成分、すなわちd軸とq軸
に変換するdq変換器7と、電機子巻線が生ずる磁束を
計算する磁束演算器8と、この磁束演算器の計算磁束量
よりトルクを求めるトルク演算器9とより形成され、ま
た軸ねじり振動評価装置5は、トルク演算器9の計算ト
ルク値を記憶しておくトルク記憶装置1゜と、このトル
ク値をもとに軸ねじり振動を計算する軸ねじり振動演算
装置11と、軸ねじり振動による疲労寿命を計算する軸
ねじり疲労寿命演算装置12とより形成されている。The torque detection device 4 includes a detector 6 that receives the terminal voltage e, lightning current and rotational angular velocity ω of the generator to detect the rotation angle γ for a predetermined phase of the winding, and detects the voltage and current from the relationship between the rotation angle γ. A dq converter 7 that converts the magnetic flux into a direct axis component and a horizontal axis component, that is, a d-axis and a q-axis, a magnetic flux calculator 8 that calculates the magnetic flux generated by the armature winding, and a torque The shaft torsional vibration evaluation device 5 also includes a torque storage device 1° that stores the torque value calculated by the torque calculator 9, and a shaft torsional vibration evaluation device 5 that calculates the shaft torsional vibration based on this torque value. The shaft torsional vibration calculation device 11 calculates the fatigue life due to the shaft torsional vibration, and the shaft torsional fatigue life calculation device 12 calculates the fatigue life due to the shaft torsional vibration.
このように形成された軸ねじり振動監視装置の動作は、
まず発電機1の端子電圧e、電流i及び回転角速度ωが
測定され1回転子位置検出器11に取り入れられる。こ
こで電圧波形より回転子のd軸の電機子巻線の所定の相
よりの角度γが検出され、次いでdq変換器7にて前記
角度γを用い。The operation of the shaft torsional vibration monitoring device formed in this way is as follows:
First, the terminal voltage e, current i, and rotational angular velocity ω of the generator 1 are measured and taken into the first rotor position detector 11. Here, the angle γ from the predetermined phase of the armature winding of the d-axis of the rotor is detected from the voltage waveform, and then the angle γ is used in the dq converter 7.
電圧e、雷電流はdq変換すなわち直軸成分と横軸成分
に変換される。すなわちこの各軸おける電圧、電流値e
d、eq、id、iqが求められる。The voltage e and lightning current are subjected to dq transformation, that is, converted into a direct axis component and a horizontal axis component. In other words, the voltage and current values e on each axis
d, eq, id, and iq are found.
この場合このciq変換は、一般に知られている次式に
て行なわれる。In this case, this ciq conversion is performed using the following generally known formula.
・・・(4)
・・・(4)
次にこの各軸における電圧、電流値を用い磁束演算器8
にて電機子巻線の磁束φ6.φgが計算される。この計
算は次のようにして行なわれる。すなわち
ra:電機子抵抗
上記中、電機子抵抗ra、各軸における電圧、電流値e
d、eq、id、iq及び回転角速度ωはすべて既知の
値であるので、事前の磁束を初期値として上記式をたと
えばルンゲ・フッタ法にて逐次数値計算することにより
電機子巻線磁束φd。...(4) ...(4) Next, using the voltage and current values on each axis, the magnetic flux calculator 8
The magnetic flux of the armature winding is φ6. φg is calculated. This calculation is performed as follows. In other words, ra: Armature resistance Among the above, armature resistance ra, voltage and current value e on each axis
Since d, eq, id, iq, and rotational angular velocity ω are all known values, the armature winding magnetic flux φd is obtained by sequentially numerically calculating the above equation using the Runge-Futter method, for example, using the predetermined magnetic flux as an initial value.
φqを求めることができる。φq can be found.
この電機子巻線磁束φd、φqが求められると、トルク
演算器9にて電磁トルクTが求められる。When the armature winding magnetic fluxes φd and φq are determined, the electromagnetic torque T is determined by the torque calculator 9.
すなわち同期機の二反作用理論に従い、電機巻線磁束を
直轄磁束φd、横軸磁束φq、電機子電流を直軸成分i
d、横軸成分iqに分解すると電磁トルクTは
T=iq・φd−id・φq ・・・(6)にて
求められる。In other words, according to the two-reaction theory of a synchronous machine, the electric machine winding magnetic flux is the direct magnetic flux φd, the horizontal axis magnetic flux φq, and the armature current is the direct axis component i.
d, and the horizontal axis component iq, the electromagnetic torque T can be obtained as T=iq・φd−id・φq (6).
換言すれば、電機子電流と電機予巻4!磁束とを乗じた
内部誘起電圧の関係からトルク値が求められるのである
。In other words, armature current and electric machine pre-winding 4! The torque value is determined from the relationship between the internal induced voltage and the magnetic flux.
次いでこの電磁トルクTはトルク記憶装置10に一時記
憶され、従来同様、軸ねじり振動演算装置11.軸ねじ
り疲労寿命演算12により軸ねじり振動による寿命評価
が行なわれる。Next, this electromagnetic torque T is temporarily stored in the torque storage device 10, and as in the conventional case, the shaft torsional vibration calculation device 11. A shaft torsional fatigue life calculation 12 performs life evaluation based on shaft torsional vibration.
尚電磁トルクがトルク記憶装置10に一時記憶されるの
は、計算速度の関係からであり、したがってこの電磁ト
ルクを記憶する代りに他の要素を記憶するようにしても
よい。Note that the reason why the electromagnetic torque is temporarily stored in the torque storage device 10 is because of the calculation speed. Therefore, instead of storing this electromagnetic torque, other elements may be stored.
すなわち第4図はその記憶装置関係の他の実施例を示す
もので、この図の場合はトルク検出装置の中に記憶装置
13を設け、各軸における電圧・電流x d+ iqt
edt e qの変換値を記憶するようにしたもので
あり、これであっても前述のものと全く同様の効果を奏
するであろう。又さらには検出電圧eや電流iを記憶す
るようにしてもよいことは勿論である。又演算器の速度
が高速化すれば、記憶装置は省略することに可能であろ
う。That is, FIG. 4 shows another embodiment related to the storage device. In this figure, the storage device 13 is provided in the torque detection device, and the voltage/current x d+ iqt in each axis is
The converted value of edt e q is stored, and even this method will have exactly the same effect as the above-mentioned one. Furthermore, it goes without saying that the detected voltage e and current i may be stored. Furthermore, if the speed of the arithmetic unit becomes faster, it may be possible to omit the storage device.
又以上の説明では各要素の演算に対して夫ケ演算装置を
有するようにした場合について説明してきたが、この演
算装置は兼用するようにすることも可能であろう。第5
図はその一つの例を示したものであり、磁束演算器を軸
ねじり振動演算器とを兼用した場合のものである。すな
わち前述した磁束演算と軸ねじり振動の演算は同−形の
一階の微分方程式であり、両者の演算器を兼ねるように
してもよいであろう。Further, in the above description, a case has been described in which two arithmetic units are provided for each element's arithmetic operation, but it would also be possible to use a dual arithmetic unit. Fifth
The figure shows one example, in which the magnetic flux calculator is also used as the shaft torsional vibration calculator. That is, the aforementioned magnetic flux calculation and shaft torsional vibration calculation are first-order differential equations of the same form, and it may be possible to use the calculation unit for both.
尚以上の説明では電磁トルクからの軸ねじり振動の演算
について説明してきたが、これと同時に機械トルクも合
わせて演算するようにしてもよく、この場合勿論この演
算器は兼用させるようにしてもよいであろう。In the above explanation, the calculation of shaft torsional vibration from electromagnetic torque has been explained, but mechanical torque may also be calculated at the same time, and in this case, of course, this calculation unit may also be used. It would be nice.
次に第3図より、従来の軸ねじり振動監視装置と本発明
の軸ねじり振動監視装置とをその効果より比較してみる
。Next, referring to FIG. 3, a comparison will be made between the conventional shaft torsional vibration monitoring device and the shaft torsional vibration monitoring device of the present invention in terms of their effects.
この図は正常負荷運転時から地絡事故にかけての電気ト
ルクを時間との関係で表わしたもので。This figure shows the electrical torque in relation to time from normal load operation to ground fault.
供試回転電機としては3万KVA相当の模擬回転電機で
軸系全長が10m、回転数が360Orpmのものであ
る。The test rotating electrical machine was a simulated rotating electrical machine with a capacity equivalent to 30,000 KVA, a shaft system total length of 10 m, and a rotation speed of 360 rpm.
図中実線よりなや曲線は、Xは電気トルク、すなわち両
軸端に電磁ピックアップなどの検出器を配置し測定した
結果を、電気トルクに換算したトルクを表わし、時間t
oまでが正常負荷運転の状態である。当然のことながら
この正常負荷運転中における電気トルクは一定の値であ
るが、to時点の地絡事故より電気トルクが振動してい
ることがわかる。この軸ねじり振動を電気トルクあるい
は機械トルクより検出監視しようとするのが最近の傾向
で、図中点線よりなる曲線Yが前述した従来の電気トル
クより軸ねじり振動を検出監視しようとしたもので、こ
れはこの曲線からも明らかなように正常負荷運転時は特
に問題なく精度よく軸ねじり振動は検出されているが、
地絡事故時からは前述もしたように回転電機の端子電圧
が零となることから検出値も零となり事実上電気トルク
が振動状態にあるのに何等検出監視していないことがわ
かる。In the solid line curve in the figure,
The period up to o is the state of normal load operation. Naturally, the electric torque during this normal load operation is a constant value, but it can be seen that the electric torque is oscillating due to the ground fault accident at the time of to. The recent trend is to detect and monitor this shaft torsional vibration using electric torque or mechanical torque, and the curve Y formed by the dotted line in the figure is an attempt to detect and monitor shaft torsional vibration using the conventional electric torque mentioned above. As is clear from this curve, during normal load operation, shaft torsional vibration is detected with high accuracy without any particular problem.
From the time of the ground fault accident, as mentioned above, the terminal voltage of the rotating electrical machine becomes zero, so the detected value also becomes zero, indicating that no detection or monitoring is performed even though the electric torque is in fact in an oscillating state.
これに対して本発明の軸ねじり振動監視装置であると、
曲線Zで示されているように正常負荷状態は勿論のこと
、地絡事故時においても電気トルクの振動とほぼ等しい
振動状態を検出しており。In contrast, the shaft torsional vibration monitoring device of the present invention has
As shown by curve Z, vibration conditions almost equal to the vibrations of electric torque are detected not only under normal load conditions but also during ground faults.
本発明の監視装置がいかに優れているかbかる。We can see how superior the monitoring device of the present invention is.
以上種々述べてきたように、本発明の軸ねじり振動監視
装置によれば、トルクの検出に、電機子電流値と電機子
巻線磁束値とを取り入れ、かつこの両者より′す磁トル
クを算出し、この電磁トルクにより軸ねじり振動を演算
するようになしたから、通常負荷運転中は勿論のこと、
たとえ電気系統に短絡事故が生じたとしても精度よく、
軸ねじり振動の監視が可能なこの種回転電機の軸ねじり
振動監視装置を得ることができる。As described above, according to the shaft torsional vibration monitoring device of the present invention, the armature current value and the armature winding magnetic flux value are incorporated into torque detection, and the magnetic torque is calculated from both. However, since the shaft torsional vibration is calculated using this electromagnetic torque, it can be used not only during normal load operation, but also during normal load operation.
Even if a short-circuit accident occurs in the electrical system, the
It is possible to obtain a shaft torsional vibration monitoring device for this type of rotating electrical machine that is capable of monitoring shaft torsional vibration.
第1図は本発明の軸ねじり振動監視装置の一実施例を示
すブロック線図、第2図はタービン発電機におけるスプ
リング・マス・モデルを示す線図、第3図及び第4図は
本発明の軸ねじり振vjJ監視装置の他の実施例を示す
ブロック線図、第5図は電気系統の事故時における電気
トルクの振動を表わした曲線図である。
1・・・発電機(回転電機)、2・・・タービン、4・
・・トルク検出装置、5・・・軸ねじり振動評価装置、
8・・・磁束演算器、9・・・トルク演算器、11・・
・軸ねじり振動演算装置、12・・・軸ねじり疲労寿命
演算装置。Fig. 1 is a block diagram showing an embodiment of the shaft torsional vibration monitoring device of the present invention, Fig. 2 is a diagram showing a spring mass model in a turbine generator, and Figs. 3 and 4 are diagrams showing an embodiment of the shaft torsional vibration monitoring device of the present invention. FIG. 5 is a block diagram showing another embodiment of the shaft torsional vibration vjJ monitoring device of FIG. 1... Generator (rotating electric machine), 2... Turbine, 4...
...Torque detection device, 5...Shaft torsional vibration evaluation device,
8... Magnetic flux calculator, 9... Torque calculator, 11...
- Shaft torsional vibration calculation device, 12...shaft torsion fatigue life calculation device.
Claims (1)
検出されたトルク値をもとに回転軸の軸ねじり振動を演
算して、回転軸の軸ねじり振動を監視するようになした
回転電機の軸ねじり振動監視方法において、前記トルク
値として回転電機の電機子に流れる電流により求められ
る電磁トルク値を用い、回転軸の軸ねじり振動を演算す
るようにしたことを特徴とする回転電機の軸ねじり振動
監視方法。 2、回転電機の回転軸に作用するトルクを検出し、この
検出されたトルク値をもとに回転軸の軸ねじり振動を演
算して、回転軸の軸ねじり振動を監視するようになした
回転電機の軸ねじり振動監視方法において、前記トルク
検出装置のトルク検出に際し、回転電機の端子電圧、電
流及び回転子の回転角速度値を取入れ、この3者より回
転電機の内部誘起電圧を求め、この内部誘起電圧よりト
ルク値を求めるようにしたことを特徴とする回転電機の
軸ねじり振動監視方法。 3、回転電機の回転軸に作用するトルクを検出し、この
検出されたトルク値をもとに回転軸の軸ねじり振動を演
算して、回転軸の軸ねじり振動を監視するようになした
回転電機の軸ねじり振動監視方法において、前記回転軸
に作用するトルク値を検出するに際し、このトルク値に
、回転電機の電機子巻線磁束より求められる電磁トルク
を当てがうようにしたことを特徴とする回転電機の軸ね
じり振動監視方法。 4、回転電機の回転軸に作用するトルクを検出するトル
ク検出装置と、該トルク検出装置にて検出されたトルク
値により回転軸の軸ねじり振動を計算する軸ねじり振動
演算装置と、該軸ねじり振動演算装置の軸ねじり振動計
算結果をもとに回転軸のねじり疲労を評価する軸ねじり
振動疲労寿命演算装置とを備え、回転電機の回転軸系の
軸ねじり振動を監視するようになした回転電機の軸ねじ
り振動監視装置において、前記トルク検出装置に、電機
子巻線結果の値を取り入れ、かつこの値より電磁トルク
を演算するトルク演算器を設けたことを特徴とする回転
電機の軸ねじり振動監視装置。 5、回転電機の回転軸に作用するトルクを検出するトル
ク検出装置と、該トルク検出装置にて検出されたトルク
値により回転軸の軸ねじり振動を計算する軸ねじり振動
演算装置と、該軸ねじり振動演算装置の軸ねじり振動計
算結果をもとに回転軸のねじり疲労を評価する軸ねじり
振動疲労寿命演算装置とを備え、回転電機の回転軸系の
軸ねじり振動を監視するようになした回転電機の軸ねじ
り振動監視装置において、前記トルク検出装置に回転電
機の端子電圧を検出する電圧検出手段と、回転電機の電
機子を流れる電流を検出する電流検出手段と、回転子の
回転角速度を検出する回転角速度検出装置と、該回転角
速度検出装置の検出値及び前記電圧検出手段の電圧値及
び電流検出手段の検出値より電磁トルクを演算するトル
ク演算器を設けるようにしたことを特徴とする回転電機
の軸ねじり振動監視装置。[Claims] 1. Detecting the torque acting on the rotating shaft of a rotating electric machine, calculating the shaft torsional vibration of the rotating shaft based on the detected torque value, and monitoring the shaft torsional vibration of the rotating shaft. In the method for monitoring shaft torsional vibration of a rotating electrical machine, the shaft torsional vibration of the rotating shaft is calculated using an electromagnetic torque value obtained from a current flowing through an armature of the rotating electrical machine as the torque value. A method for monitoring shaft torsional vibration of rotating electric machines. 2. A rotating system that monitors the torsional vibration of the rotating shaft by detecting the torque acting on the rotating shaft of the rotating electric machine and calculating the torsional vibration of the rotating shaft based on the detected torque value. In the shaft torsional vibration monitoring method of an electric machine, when detecting torque with the torque detection device, the terminal voltage, current, and rotational angular velocity value of the rotor of the rotating electric machine are taken in, the internal induced voltage of the rotating electric machine is determined from these three, and the internal induced voltage of the rotating electric machine is determined from these three factors. A method for monitoring shaft torsional vibration of a rotating electric machine, characterized in that a torque value is determined from an induced voltage. 3. A rotating device that monitors the torsional vibration of the rotating shaft by detecting the torque acting on the rotating shaft of the rotating electric machine and calculating the torsional vibration of the rotating shaft based on the detected torque value. A method for monitoring shaft torsional vibration of an electric machine, characterized in that when detecting a torque value acting on the rotating shaft, an electromagnetic torque determined from the armature winding magnetic flux of the rotating electric machine is applied to this torque value. A method for monitoring shaft torsional vibration of rotating electric machines. 4. A torque detection device that detects the torque acting on the rotating shaft of a rotating electric machine, a shaft torsional vibration calculation device that calculates the shaft torsional vibration of the rotating shaft based on the torque value detected by the torque detection device, and the shaft torsion This rotating machine is equipped with a shaft torsional vibration fatigue life calculation device that evaluates the torsional fatigue of the rotating shaft based on the shaft torsional vibration calculation results of the vibration calculation device, and is designed to monitor the shaft torsional vibration of the rotating shaft system of a rotating electric machine. Shaft torsion vibration monitoring device for an electric machine, characterized in that the torque detection device is provided with a torque calculator that takes in a value of an armature winding result and calculates an electromagnetic torque from this value. Vibration monitoring equipment. 5. A torque detection device that detects the torque acting on the rotating shaft of a rotating electric machine, a shaft torsional vibration calculation device that calculates the shaft torsional vibration of the rotating shaft based on the torque value detected by the torque detection device, and the shaft torsion This rotating machine is equipped with a shaft torsional vibration fatigue life calculation device that evaluates the torsional fatigue of the rotating shaft based on the shaft torsional vibration calculation results of the vibration calculation device, and is designed to monitor the shaft torsional vibration of the rotating shaft system of a rotating electric machine. In the shaft torsional vibration monitoring device for an electric machine, the torque detection device includes a voltage detection means for detecting a terminal voltage of the rotating electric machine, a current detection means for detecting a current flowing through an armature of the rotating electric machine, and a rotational angular velocity of the rotor. A rotation angular velocity detection device for detecting rotational angular velocity, and a torque calculator for computing electromagnetic torque from the detection value of the rotation angular velocity detection device, the voltage value of the voltage detection means, and the detection value of the current detection means. Electrical machinery shaft torsional vibration monitoring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13807887A JPS63302327A (en) | 1987-06-03 | 1987-06-03 | Method and apparatus for monitoring shaft torsional vibration of rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13807887A JPS63302327A (en) | 1987-06-03 | 1987-06-03 | Method and apparatus for monitoring shaft torsional vibration of rotary electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63302327A true JPS63302327A (en) | 1988-12-09 |
JPH0476615B2 JPH0476615B2 (en) | 1992-12-04 |
Family
ID=15213442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13807887A Granted JPS63302327A (en) | 1987-06-03 | 1987-06-03 | Method and apparatus for monitoring shaft torsional vibration of rotary electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63302327A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009228607A (en) * | 2008-03-25 | 2009-10-08 | Tokyo Electric Power Co Inc:The | Shaft torsion determination device and shaft torsion determination method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750249A (en) * | 1980-09-09 | 1982-03-24 | Sumitomo Metal Ind Ltd | Production of clad steel ingot |
-
1987
- 1987-06-03 JP JP13807887A patent/JPS63302327A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750249A (en) * | 1980-09-09 | 1982-03-24 | Sumitomo Metal Ind Ltd | Production of clad steel ingot |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009228607A (en) * | 2008-03-25 | 2009-10-08 | Tokyo Electric Power Co Inc:The | Shaft torsion determination device and shaft torsion determination method |
Also Published As
Publication number | Publication date |
---|---|
JPH0476615B2 (en) | 1992-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10298100B2 (en) | Shaft-mounted monitor for monitoring rotating machinery | |
Schoen et al. | Effects of time-varying loads on rotor fault detection in induction machines | |
Eltabach et al. | A comparison of external and internal methods of signal spectral analysis for broken rotor bars detection in induction motors | |
JP6353694B2 (en) | Deterioration diagnosis system | |
US8674683B2 (en) | Power angle monitor | |
Dorrell et al. | Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostics | |
US20130033215A1 (en) | Apparatus and method for permanent magnet electric machine condition monitoring | |
Laadjal et al. | Online diagnosis and discrimination of stator faults in six-phase induction motors based on voltage symmetrical components | |
US4282756A (en) | Apparatus for estimating the strain on an inaccessible portion of a rotating shaft | |
US4862749A (en) | Shaft torsional vibration monitor for a multi-mass rotary shaft system | |
Finley et al. | Motor vibration problems: How to diagnose and correct vibration errors | |
Salah et al. | Stator current analysis of a squirrel cage motor running under mechanical unbalance condition | |
JPS63302327A (en) | Method and apparatus for monitoring shaft torsional vibration of rotary electric machine | |
Chai et al. | Misalignment detection of rotor system based on adaptive input-output model identification of motor speed | |
Nejadpak et al. | A vibration-based diagnostic tool for analysis of superimposed failures in electric machines | |
Undrill et al. | Turbine-generator impact torques in routine and fault operations | |
CN114062910A (en) | Motor online diagnosis system and method | |
Schoen | On-line current-based condition monitoring of three-phase induction machines | |
Salah et al. | Stator current signature analysis to monitor shaft misalignment in induction motor speed-controlled | |
Finley et al. | Motor vibration problems—Understanding and identifying | |
Nemec et al. | Simplified model of induction machine with broken rotor bars | |
Bossio et al. | Fault detection for variable-speed wind turbines using vibrations and electrical measurements | |
Shnibha et al. | Smart technique for induction motors diagnosis by monitoring the power factor using only the measured current | |
Liu et al. | The frequency response of parallel misalignment in PMSM test bench | |
Patole et al. | Modelling of healthy and faulty three phase induction motor in LabVIEW |