JPS633013B2 - - Google Patents

Info

Publication number
JPS633013B2
JPS633013B2 JP59023675A JP2367584A JPS633013B2 JP S633013 B2 JPS633013 B2 JP S633013B2 JP 59023675 A JP59023675 A JP 59023675A JP 2367584 A JP2367584 A JP 2367584A JP S633013 B2 JPS633013 B2 JP S633013B2
Authority
JP
Japan
Prior art keywords
zinc
alloy
extreme pressure
load
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59023675A
Other languages
Japanese (ja)
Other versions
JPS60169536A (en
Inventor
Takeo Segawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2367584A priority Critical patent/JPS60169536A/en
Publication of JPS60169536A publication Critical patent/JPS60169536A/en
Publication of JPS633013B2 publication Critical patent/JPS633013B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、摺動部材用亜鉛合金に関するもので
ある。詳しくは、亜鉛、アルミニウム、銅から成
る金属元素に珪素とマグネシウムとを混じて鋳造
し、耐摩耗性、耐荷重性にすぐれ、とくに境界潤
滑条件下ですぐれた軸受性能を発揮する摺動部材
用亜鉛合金に関する。 従来、亜鉛−アルミニウムあるいは亜鉛−アル
ミニウム−銅から成る亜鉛合金は種々開発が進め
られてきており、構造部材用としては亜鉛−4%
アルミニウム−0.05%マグネシウムあるいは亜鉛
−4%アルミニウム−1%銅−0.05%マグネシウ
ム(百分比は重量%で表わし、以後も同様とす
る)などのいわゆるZAMAK系合金がよく知ら
れている。 軸受などの摺動部材用としては、第2次世界大
戦中に開発された亜鉛−32%アルミニウム−3%
銅から成る軸受合金、あるいはALZEN305合金
と呼ばれる亜鉛−28〜32%アルミニウム−5〜6
%銅などがある。 これら軸受用亜鉛合金は、その機械的強度が改
善されていて、耐摩耗性についても青銅に匹敵す
るかこれを上廻る性能を有すると言われている
が、耐荷重性とくに高負荷条件下における耐凝着
性に難点があつた。 一般に、亜鉛−アルミニウム系合金は、銅合金
に比較して比重が小さく、融点も低いから鋳造が
楽であり、また材料価格も安価であるなど幾つか
の特長を有している反面、銅合金ほど軸受などの
摺動部材用途に使用されていないのは、この耐凝
着性に劣る点がその大きな理由の一つである。 最近、亜鉛−アルミニウム、あるいは亜鉛−ア
ルミニウム−銅系の摺動部材用合金の耐摩耗性、
耐荷重性の向上をはかるため種々の開発がなされ
ており、珪素を0.05〜0.3%含む軸受合金(特公
昭58−11498)、珪素2〜4%とチタン0.1〜0.5%
とを含む軸受合金(特公昭51−11017)、珪素2〜
4%とジルコニウム0.5〜1.0%とを含む軸受合金
(特公昭51−47412)、そして析出する珪素の結晶
微細化を狙いとして珪素0.5〜7%に硼素0.005〜
1%を添加した軸受合金(特開昭58−52454)そ
の他同様に珪素の結晶微細化を目的として燐化合
物を添加した軸受合金(特開昭59−1647)などが
知られており、一部実用化されている。 摺動部材用亜鉛合金に添加される珪素は、とく
に高負荷条件下における耐凝着性を改善し、耐摩
耗性、耐荷重性の向上に寄与することが上述した
一連の開発実験の結果明らかとなつている。 本発明者の実験によれば、たとえば特開昭58−
52454に係わる軸受用亜鉛合金は、機械構造用炭
素鋼を相手材とし、すべり速度3m/minで
SAE30番エンジン油を始動時に摺動面に塗布し、
推力荷重を負荷させるという条件で、340Kg/cm2
の荷重に耐えるという結果を得ている。この荷重
値は、同一条件での軸受用鉛青銅や高力黄銅の耐
荷重性を上廻わるものである。 ただし、このような高負荷で、しかも潤滑油の
供給が不十分(始動時に塗布)という条件がその
まま実使用時の条件として適用されると、しばし
ば性能のバラ付きを生じ上述したような結果が得
られ難い。 本発明者の実験によれば、たとえば極圧添加剤
が混入された潤滑油を使用しても、このような性
能のバラ付きを完全には押えることができなかつ
た。 本発明者は、潤滑油の供給が不十分であり、し
かも低速、高負荷条件であつて潤滑油による流体
膜の形成が困難な条件、すなわち摺動部材の実使
用時にしばしば遭遇する境界潤滑条件下での性能
向上について鋭意研究を進め、本発明をなすに至
つたものである。 すなわち、本発明は亜鉛を残部とし、アルミニ
ウム3〜30%、銅0.5〜5%、珪素0.2〜5%、マ
グネシウム0.0005〜1%を混じて鋳造したことを
特徴とする摺動部材用亜鉛合金を提供するもので
ある。 この合金組成のものは、とくに硫黄系の極圧添
加剤に敏感で、合金および相手材摩擦面にすぐれ
た極圧膜を形成して耐凝着性を著しく改善し、耐
摩耗性、耐荷重性の向上に寄与する。 以下、順を追つて本発明の合金組成および極圧
添加剤について説明する。 本発明の合金組成のうち、アルミニウムは合金
の靭性そして硬さを高め、摺動部材としての耐摩
耗性、耐荷重性を向上させる。本発明では3%と
くに4%の添加でその効果が顕著になり、20%程
度までは添加量とともに効果は向上するが、20%
を越えると効果は鈍化する。一方、このアルミニ
ウムは、その添加量とともに湯流れ性が悪くなる
傾向があり、とくに30%を越えると鋳造性を著し
く害し、収縮や内部欠陥が生じ易くなるばかりで
なく耐凝着性を損なう。このような理由で、本発
明ではその添加量を3〜30%とした。 銅は、亜鉛−アルミニウム合金に対して、その
機械的強度を向上させ、摺動部材として耐摩耗
性、耐荷重性の向上に寄与する。その添加量は、
0.5%ですでに効果が顕われ、添加量とともに効
果は大となるが5%越えて添加すると合金の寸法
安定性を損ない、また硬さを増して脆くなるか
ら、本発明では銅成分は0.5〜5%とした。 亜鉛−アルミニウム合金、あるいは亜鉛−アル
ミニウム−銅合金に対して添加される珪素の効果
については、上述した特公昭51−11017、特開昭
58−52454その他において詳しく述べられている
ように、摺動部材としての耐凝着性の改善による
耐摩耗性、耐荷重性の向上である。 本発明においても、珪素は全く同様の目的で添
加することに変りはないが、もう一つの重要な目
的はマグネシウムとの相乗作用による極圧膜形成
能の向上を狙いとしている点である。詳述すれば
使用する潤滑油中の極圧添加剤とくに硫黄系極圧
添加剤による極圧膜の形成をもつとも効果的かつ
確実にする点である。 マグネシウムを加えることなく、珪素のみを添
加した合金では、極圧剤が配合された潤滑油を使
用しても、合金側に極圧膜の形成が認められるだ
けで、相手材には認められない。 相手材に極圧膜の形成が無くても、耐凝着性は
相当に改善されていて、管理された試験条件のも
とでは十分な性能を発揮するが、実使用時には性
能のバラ付きを生ずる。 ここで、珪素に加えてマグネシウムを添加し、
極圧剤が配合された潤滑油を使用すると、極圧膜
は合金側および相手材側の双方に形成される。 極圧膜が相手材側にも形成された組合わせにお
いては、例外なしに耐摩耗性、耐荷重性が著しく
向上しており、特開昭58−52454に関してすでに
述べた試験条件と同一条件で試験した結果、耐荷
重性は300Kg/cm2を大きく越え、400Kg/cm2の負荷
においても使用に耐えることを確認した。 珪素を加えたものが、合金側にのみ極圧膜が形
成され、マグネシウムを共添すると何故相手側に
も形成されるかについては詳かではないが、オー
ジエ電子分光分析による解析の結果、合金側およ
び相手材側の双方に形成された極圧膜の成分は同
一であつて、合金を構成する成分元素のほか、炭
素、硫黄および酸素を検出した。 この解析結果から、相手材側に形成された極圧
膜は、合金側に形成される極圧膜成分が摺動時に
相手材側に移着してそこに形成されたと解するこ
とができる。 試験の結果、いずれの側の極圧膜もきわめて薄
いもので、10-3mm程度であり、下地と一体になつ
て強固に形成されていた。 この極圧膜は、亜鉛および相手材の処女面に比
較して潤滑油の濡れ性にすぐれ、そこに潤滑油を
良好に保持する。 珪素とマグネシウムとを添加した本発明の亜鉛
合金は、相手材との摺動時にこの極圧膜同志の摺
接となり、しかもそこに潤滑油膜をも形成し易い
から、双方の摺動面を強固に保護し、高負荷条件
下での凝着が防止され、耐摩耗性、耐荷重性を高
めることができたものと考えられる。 本発明で珪素は、0.2%未満の添加では耐凝着
性の改善効果が顕れず、5%を越えて添加すると
摩擦係数を増大させるばかりでなく、鋳造性を損
なう。また、晶出する珪素の形状が粗大化し靭性
を損なう。このような観点から、珪素は0.2〜5
%、就中0.5〜2%の添加がもつとも好ましい。 マグネシウムは、きわめて微量の添加で有効で
ある。 本発明者は、使用する金属地金とくに亜鉛およ
びアルミニウム地金について吟味し、可及的に不
純物を含まない純度99.99%以上の地金を使用し、
これに種々の添加元素を加えて試験した結果、上
述したようにこのマグネシウムが珪素と相乗効果
を発揮することを見出したものである。 マグネシウムは、0.0005%ですでに効果が顕れ
始めるが、相手材側に形成される極圧膜の色調は
極く薄い。0.001%以上になると極圧膜の色調は
濃くなり、とくに0.004%の添加で再現性よく400
Kg/cm2の高負荷に耐えるようになるが、それ以上
添加しても耐摩耗性、耐荷重性に及ぼす効果はほ
とんど変らない。 これは、このような高負荷においては、極圧膜
の形成がなされても、この合金母体が摺動部材と
しての限界領域に達したとも考えられる。 マグネシウムを1%以上添加すると、合金鋳造
時の湯流れ性を悪くし、得られた合金の脆さを増
し耐衝撃性を損なうから、その添加量は0.0005〜
1%とくに0.004〜0.5%が好ましい。 つぎに、極圧添加剤について述べる。一般に、
極圧添加剤と称される物質には、塩素系、リン系
そして硫黄系の物質があるが、本発明においては
硫黄系極圧添加剤が有効であつた。 硫黄系極圧添加剤としては、アルキルサルフア
イド類、メルカプタン類、そしてチオリン酸塩類
を例示することができ、いずれも有効であるが、
とくにジアルキルジチオリン酸亜鉛が良好な結果
を示した。 これら極圧剤は、基油とくに鉱油に対しておお
むね1%前後添加することにより、効果が顕著で
あつた。 メルカプタン類は、蒸気圧の高いものが多く、
しかも悪臭を有するから、実使用には不向きであ
るかも知れない。 以下、実施例について説明する。 純度99.99%のアルミニウム地金と、純度99.96
%以上の電気銅地金と、アルミニウム−25%珪素
母合金とを黒鉛ルツボを用いて800℃の温度で溶
解させ、この溶湯中に純度99.99%の亜鉛地金と
アルミニウム−x%マグネシウム(x=1〜10)
母合金とを投入して溶解させ、これを金型に鋳込
んだ。 合金の鋳造性、材料強度、耐摩耗性、耐荷重性
などの総合的検討結果から、比較的バランスのと
れた合金組成として、亜鉛を残部としアルミニウ
ム10%、銅1%、珪素1%と一定にして、マグネ
シウム成分の添加量を種々変えて以下に示す試験
条件でその影響を耐荷重性の面から試験した。 表は、その試験結果を示し、各成分は鋳造前の
配合比をもつて示してある。 試験条件: 試験片−鋳造して得られた丸棒試料から、内径
10.5mm、外径16.5mm、長さ12mmの円筒ブツシユ
を削り出し、その端面をすべり面とした 相手材−機械構造用炭素鋼S45C すべり速度−3m/min 荷重−5時間ごとに20Kg/cm2づつ累積負荷、推力
荷重 潤滑−SAE30番エンジン油(ジアルキルジチオ
リン酸亜鉛1%を含む)を始動時に試験片すべ
り面に塗布、以後給油なし 試験機−鈴木式スラスト試験機
The present invention relates to a zinc alloy for sliding members. Specifically, it is made by casting metal elements consisting of zinc, aluminum, and copper mixed with silicon and magnesium, and has excellent wear resistance and load resistance, and is used for sliding parts that exhibits excellent bearing performance, especially under boundary lubrication conditions. Regarding zinc alloys. Various zinc alloys consisting of zinc-aluminum or zinc-aluminum-copper have been developed in the past, and zinc-4% alloys have been used for structural members.
So-called ZAMAK alloys such as aluminum-0.05% magnesium or zinc-4% aluminum-1% copper-0.05% magnesium (percentages are expressed in weight percent and the same applies hereinafter) are well known. For sliding parts such as bearings, zinc-32% aluminum-3% was developed during World War II.
Bearing alloy consisting of copper, or zinc-28~32% aluminum-5~6 called ALZEN305 alloy
% copper, etc. These zinc alloys for bearings have improved mechanical strength and are said to have performance comparable to or even better than bronze in terms of wear resistance. There was a problem with adhesion resistance. In general, zinc-aluminum alloys have several advantages compared to copper alloys, such as lower specific gravity and lower melting point, making them easier to cast, and lower material costs. One of the main reasons why it is not used in sliding parts such as bearings is because of its poor adhesion resistance. Recently, the wear resistance of zinc-aluminum or zinc-aluminum-copper alloys for sliding members has been improved.
Various developments have been made to improve load resistance, including bearing alloys containing 0.05% to 0.3% silicon (Japanese Patent Publication No. 11498/1986), 2% to 4% silicon, and 0.1% to 0.5% titanium.
Bearing alloy containing (Special Publication No. 51-11017) silicon 2~
A bearing alloy containing 0.5% to 1.0% of zirconium and 0.5% to 1.0% of zirconium (Japanese Patent Publication No. 51-47412), and 0.5% to 7% of silicon and 0.005% to 7% of boron with the aim of making the precipitated silicon crystal finer.
Bearing alloys containing 1% (Japanese Patent Laid-Open No. 58-52454) and bearing alloys containing phosphorus compounds (Japanese Patent Laid-Open No. 59-1647) for the purpose of refining silicon crystals are known. It has been put into practical use. The series of development experiments mentioned above have shown that silicon added to zinc alloys for sliding parts improves adhesion resistance, especially under high load conditions, and contributes to improvements in wear resistance and load carrying capacity. It is becoming. According to the inventor's experiments, for example, JP-A-58-
The zinc alloy for bearings related to 52454 uses carbon steel for mechanical structures as the mating material and has a sliding speed of 3 m/min.
Apply SAE No. 30 engine oil to the sliding surfaces when starting.
Under the condition of applying thrust load, 340Kg/cm 2
The result was that it withstood a load of . This load value exceeds the load capacity of leaded bronze or high-strength brass for bearings under the same conditions. However, if such conditions of high load and insufficient supply of lubricant (applied at startup) are applied as they are during actual use, performance will often vary, resulting in the results described above. Hard to obtain. According to the inventor's experiments, even if a lubricating oil mixed with an extreme pressure additive was used, it was not possible to completely suppress such variations in performance. The inventor of the present invention has proposed a condition in which the lubricating oil supply is insufficient and the lubricating oil is difficult to form a fluid film under low speed and high load conditions, that is, a boundary lubrication condition that is often encountered during actual use of sliding members. The present invention was developed through intensive research into improving the performance of the following. That is, the present invention provides a zinc alloy for sliding members, which is cast with a mixture of 3 to 30% aluminum, 0.5 to 5% copper, 0.2 to 5% silicon, and 0.0005 to 1% magnesium, with zinc as the balance. This is what we provide. This alloy composition is particularly sensitive to sulfur-based extreme pressure additives, forming an excellent extreme pressure film on the friction surface of the alloy and mating material, significantly improving adhesion resistance, and improving wear resistance and load capacity. Contributes to improving sexual performance. Hereinafter, the alloy composition and extreme pressure additive of the present invention will be explained in order. Among the alloy compositions of the present invention, aluminum increases the toughness and hardness of the alloy, and improves the wear resistance and load carrying capacity of the sliding member. In the present invention, the effect becomes noticeable when the addition amount is 3%, especially 4%, and the effect improves with the addition amount up to about 20%, but at 20%
Beyond that, the effect becomes weaker. On the other hand, the flowability of aluminum tends to deteriorate as the amount of aluminum added increases, and in particular, when the amount exceeds 30%, castability is significantly impaired, shrinkage and internal defects are more likely to occur, and adhesion resistance is impaired. For this reason, in the present invention, the amount added is set at 3 to 30%. Copper improves the mechanical strength of the zinc-aluminum alloy and contributes to improving wear resistance and load resistance as a sliding member. The amount added is
The effect is already visible at 0.5%, and the effect increases with the addition amount, but adding more than 5% impairs the dimensional stability of the alloy and increases the hardness, making it brittle. Therefore, in the present invention, the copper content is 0.5%. ~5%. Regarding the effect of silicon added to zinc-aluminum alloy or zinc-aluminum-copper alloy, the above-mentioned Japanese Patent Publication No. 51-11017 and Japanese Patent Application Laid-Open No.
As described in detail in 58-52454 and others, the abrasion resistance and load carrying capacity are improved by improving the adhesion resistance as a sliding member. In the present invention, silicon is added for exactly the same purpose, but another important purpose is to improve the extreme pressure film forming ability through a synergistic effect with magnesium. Specifically, the purpose is to ensure that the extreme pressure film is formed effectively and reliably by the extreme pressure additive, particularly the sulfur-based extreme pressure additive, in the lubricating oil used. For alloys with only silicon added without magnesium, even if a lubricant containing an extreme pressure agent is used, an extreme pressure film will only form on the alloy side, but not on the other material. . Even if there is no formation of an extreme pressure film on the mating material, the adhesion resistance is considerably improved, and it exhibits sufficient performance under controlled test conditions, but there may be variations in performance during actual use. arise. Here, in addition to silicon, magnesium is added,
When a lubricating oil containing an extreme pressure agent is used, an extreme pressure film is formed on both the alloy side and the mating material side. In combinations in which an extreme pressure film was also formed on the mating material side, the wear resistance and load resistance were significantly improved without exception, and the test conditions were the same as those already mentioned for JP-A-58-52454. As a result of the test, it was confirmed that the load capacity greatly exceeded 300Kg/cm 2 and it could withstand use even under a load of 400Kg/cm 2 . It is not clear why an extreme pressure film is formed only on the alloy side when silicon is added, but an extreme pressure film is formed on the other side when magnesium is co-added, but as a result of analysis by Augier electron spectroscopy, it has been found that The components of the extreme pressure films formed on both the side and the mating material side were the same, and in addition to the constituent elements constituting the alloy, carbon, sulfur, and oxygen were detected. From this analysis result, it can be understood that the extreme pressure film formed on the mating material side was formed by the extreme pressure film component formed on the alloy side transferring to the mating material side during sliding. Test results showed that the extreme pressure membranes on either side were extremely thin, approximately 10 -3 mm, and were strongly integrated with the base. This extreme pressure film has superior lubricating oil wettability compared to the virgin surfaces of zinc and the mating material, and retains the lubricating oil there well. The zinc alloy of the present invention containing silicon and magnesium comes into sliding contact with the extreme pressure films when it slides with the other material, and also easily forms a lubricating oil film there, so it strengthens both sliding surfaces. This is thought to have prevented adhesion under high load conditions, improving wear resistance and load carrying capacity. In the present invention, if less than 0.2% silicon is added, the effect of improving adhesion resistance will not be apparent, and if it is added more than 5%, it will not only increase the friction coefficient but also impair castability. Moreover, the shape of crystallized silicon becomes coarse and toughness is impaired. From this point of view, silicon is 0.2 to 5
%, particularly preferably 0.5 to 2%. Magnesium is effective when added in extremely small amounts. The inventor carefully examined the metal base metals used, particularly zinc and aluminum base metals, and used a base metal with a purity of 99.99% or higher that does not contain impurities as much as possible,
As a result of testing with various additive elements added to this, it was discovered that this magnesium exhibits a synergistic effect with silicon, as described above. Magnesium already starts to show its effect at 0.0005%, but the color tone of the extreme pressure film formed on the other material side is extremely pale. When the concentration exceeds 0.001%, the color tone of the extreme pressure film becomes darker, and especially when the addition is 0.004%, the reproducibility of 400
It can withstand high loads of Kg/cm 2 , but even if more than that is added, the effect on wear resistance and load carrying capacity will hardly change. This is because, under such a high load, even if an extreme pressure film is formed, this alloy matrix may have reached its limit as a sliding member. If more than 1% of magnesium is added, it will impair the flowability during alloy casting, increase the brittleness of the resulting alloy, and impair impact resistance, so the amount added should be 0.0005~
1%, particularly 0.004 to 0.5% is preferred. Next, we will discuss extreme pressure additives. in general,
Substances called extreme pressure additives include chlorine-based, phosphorus-based, and sulfur-based substances, and sulfur-based extreme pressure additives were effective in the present invention. Examples of sulfur-based extreme pressure additives include alkyl sulfides, mercaptans, and thiophosphates, all of which are effective.
In particular, zinc dialkyldithiophosphate showed good results. The effects of these extreme pressure agents were significant when they were added to the base oil, particularly mineral oil, in an amount of approximately 1%. Many mercaptans have high vapor pressure,
Moreover, since it has a bad odor, it may be unsuitable for actual use. Examples will be described below. 99.99% purity aluminum base metal and 99.96 purity
% or more of electrolytic copper ingot and aluminum-25% silicon master alloy are melted at a temperature of 800℃ using a graphite crucible, and in this molten metal, zinc ingot with a purity of 99.99% and aluminum-x% magnesium (x =1~10)
The mother alloy was added and melted, and this was cast into a mold. Based on the results of a comprehensive study of the alloy's castability, material strength, wear resistance, load resistance, etc., we found a relatively balanced alloy composition with zinc as the balance, 10% aluminum, 1% copper, and 1% silicon. The effect of the addition of the magnesium component was varied in terms of load resistance under the test conditions shown below. The table shows the test results, and each component is shown with its mixing ratio before casting. Test conditions: Test piece - From a round bar sample obtained by casting, the inner diameter
A cylindrical bushing of 10.5 mm, outer diameter 16.5 mm, and length 12 mm was machined, and its end surface was used as a sliding surface.Mating material: S45C carbon steel for machine structures.Sliding speed: 3 m/min.Load: 20 Kg/cm 2 every 5 hours. Cumulative load and thrust load lubrication - SAE No. 30 engine oil (containing 1% zinc dialkyldithiophosphate) is applied to the sliding surface of the test piece at startup, no lubrication thereafter Test machine - Suzuki thrust test machine

【表】 表において、比較例No.8およびNo.9は、本発明
の亜鉛合金と同条件で鋳造した丸棒から削り出し
て得たもの、No.10およびNo.11は市販の丸棒から削
り出したものである。 耐荷重性の評価については、新たに荷重を累積
負荷したのち、さらにその次の荷重を累積負荷す
るまでの間(5時間後)に、著しい摩擦熱の上昇
や異常摩耗の発生、そして異常摩擦音の発生が無
い場合に当該荷重をクリアしたものとした。 なお、最大荷重の400Kg/cm2については、使用
した試験機の能力の限度であるので、当該荷重に
おいて所定時間(5時間)を正常に経過した場合
に、400Kg/cm2<と表示した。 以上説明したように、本発明の摺動部材用亜鉛
合金は、とくに硫黄系の極圧添加剤が配された潤
滑油の存在下で、きわめてすぐれた性能を発揮す
る。
[Table] In the table, Comparative Examples No. 8 and No. 9 are obtained by cutting round bars cast under the same conditions as the zinc alloy of the present invention, and No. 10 and No. 11 are commercially available round bars. It was carved out from. Regarding the evaluation of load resistance, after a new load was applied cumulatively, and until the next cumulative load was applied (5 hours later), there was a significant increase in frictional heat, occurrence of abnormal wear, and abnormal friction noise. The load was deemed to have been cleared if no occurrence of this occurred. Note that the maximum load of 400Kg/cm 2 is the limit of the capacity of the testing machine used, so when the specified time (5 hours) has passed normally under that load, it is indicated as 400Kg/cm 2 <. As explained above, the zinc alloy for sliding members of the present invention exhibits extremely excellent performance, especially in the presence of a lubricating oil containing a sulfur-based extreme pressure additive.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で亜鉛を残部とし、アルミニウム3〜
30%、銅0.5〜5%、珪素0.2〜5%そしてマグネ
シウム0.0005〜1%を混じて鋳造したことを特徴
とする摺動部材用亜鉛合金。
1 weight ratio, zinc is the balance, aluminum is 3~
30% copper, 0.5 to 5% copper, 0.2 to 5% silicon, and 0.0005 to 1% magnesium.
JP2367584A 1984-02-10 1984-02-10 Zinc alloy for sliding member Granted JPS60169536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2367584A JPS60169536A (en) 1984-02-10 1984-02-10 Zinc alloy for sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2367584A JPS60169536A (en) 1984-02-10 1984-02-10 Zinc alloy for sliding member

Publications (2)

Publication Number Publication Date
JPS60169536A JPS60169536A (en) 1985-09-03
JPS633013B2 true JPS633013B2 (en) 1988-01-21

Family

ID=12117054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2367584A Granted JPS60169536A (en) 1984-02-10 1984-02-10 Zinc alloy for sliding member

Country Status (1)

Country Link
JP (1) JPS60169536A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131515A (en) * 1990-09-20 1992-05-06 Sankyo Seiki Mfg Co Ltd Bearing device
JPH0670264B2 (en) * 1990-10-05 1994-09-07 三井金属鉱業株式会社 Low melting point hard zinc alloy and mold made of the alloy
DE4316755A1 (en) * 1993-05-19 1994-11-24 Metallgesellschaft Ag Zinc-aluminium casting alloy
CN103484722B (en) * 2013-09-30 2015-04-22 苏州利达铸造有限公司 Pressure casting and heat treatment process of zinc alloy
CN103526075B (en) * 2013-09-30 2015-03-11 苏州利达铸造有限公司 Novel bearing zinc alloy
CN103952590A (en) * 2014-05-12 2014-07-30 王新海 Rare-earth aluminum-zinc alloy containing silicon and manganese and modification process of alloy
CN110387487B (en) * 2019-08-02 2021-05-25 常州大学 Preparation method of die-casting zinc alloy with high hardness and high toughness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495095A (en) * 1972-04-27 1974-01-17
JPS54112325A (en) * 1978-02-22 1979-09-03 Oiles Industry Co Ltd Zinc alloy for bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495095A (en) * 1972-04-27 1974-01-17
JPS54112325A (en) * 1978-02-22 1979-09-03 Oiles Industry Co Ltd Zinc alloy for bearing

Also Published As

Publication number Publication date
JPS60169536A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
JP4055177B2 (en) Aluminum alloy for die casting with excellent mechanical strength and ball joint device using the same
US5762728A (en) Wear-resistant cast aluminum alloy process of producing the same
WO2020261636A1 (en) Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
KR20060130762A (en) Aluminum alloy excellent in wear resistance and sliding member using the same
BRPI0717012A2 (en) SLIDE BEARING
JPS6320903B2 (en)
JPS633013B2 (en)
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
US4153756A (en) Aluminum-base bearing alloy and composite
US5665480A (en) Copper-lead alloy bearing
US5000915A (en) Wear-resistant copper alloy
US5925315A (en) Aluminum alloy with improved tribological characteristics
US4994235A (en) Wear-resistance aluminum bronze alloy
US5069874A (en) Method for reducing high-load, low-speed wear resistance in sliding members
JPH07179968A (en) Aluminum alloy for sliding material
JPS626736B2 (en)
JP2016204711A (en) HIGH STRENGTH HYPEREUTECTIC Al-Si ALLOY AND DIE CAST USING THE SAME
JPS58113342A (en) Bearing aluminum alloy
RU2039116C1 (en) Aluminium-base alloy
RU2030475C1 (en) Aluminium-base antifriction alloy
NO164289B (en) WASHED SEALED LID CONTAINER.
RU1770432C (en) Aluminium based alloy
JPS61117244A (en) Sliding aluminum alloy
JPH11500183A (en) Aluminum alloy with improved tribological properties
JP4290849B2 (en) Aluminum alloy with high strength and excellent wear resistance and slidability