JPS63300903A - System for speeding up interference decision making - Google Patents

System for speeding up interference decision making

Info

Publication number
JPS63300903A
JPS63300903A JP13486587A JP13486587A JPS63300903A JP S63300903 A JPS63300903 A JP S63300903A JP 13486587 A JP13486587 A JP 13486587A JP 13486587 A JP13486587 A JP 13486587A JP S63300903 A JPS63300903 A JP S63300903A
Authority
JP
Japan
Prior art keywords
interference
rectangular
speeding
rectangular parallelepiped
planes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13486587A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sakakibara
義宏 榊原
Yusuke Takagi
勇輔 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13486587A priority Critical patent/JPS63300903A/en
Publication of JPS63300903A publication Critical patent/JPS63300903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To accurately decide interference between even very close bodies at a high speed by approximating a sensor and a work as rectangular prismatic sets, and projecting constitution planes of both on respective coordinate systems in three axial directions. CONSTITUTION:Sensors (41-48) as measurement heads and works (51-58) are approximates as rectangular prismatic sets as shown in a figure (d), and an orthogonal coordinate system O-xyz which include three independent sides of a rectangular prism as its axes is assumed for one or both of the sensors and works. The constitution planes of the opposite solid are projected on a two-dimensional plane including those axes as normals as shown in figures (a)-(c), and if there is even one combination of interferring planes whose projections are all put one over another, the interference between rectangular prisms is decided. Then plane confrontation is checked not by a combination of all planes of both rectangular prismatic bodies, but a combination of irreducible planes facing each other, thereby determining whether or not cubic bodies interfere with each other. If both rectangular prismatic bodies are parallel to each other, one rectangular prismatic body is rotated slightly around the three axes to limit the combination of the planes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、三次元計測装置におけるオフラインティーチ
ングにより作成された計測ヘッドの移動経路の適・不適
検証に係り、特に、面対面の干渉チェックをする際に、
干渉判別すべき面の組合せ数を限定するのに好適な干渉
判別における高速化方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to verifying the suitability or inadequacy of a movement path of a measurement head created by off-line teaching in a three-dimensional measuring device, and in particular, to checking for surface-to-surface interference. When doing,
The present invention relates to a method for increasing the speed of interference determination suitable for limiting the number of combinations of surfaces to be subjected to interference determination.

〔従来の技術〕[Conventional technology]

従来、三次元計測装置における、計測ヘッドの移動径路
の教示には、ティーチングプレーバック方式が用いられ
ていた。しかし、多数の点列や形状計測では、多くの教
示点を入力せねばならず、一点一点の教示に多くの時間
をさいていた。この問題点を解決するため、CADデー
タをもとにしたオフラインティーチングにより数値を入
力する教示方式を採用することが有効である。しかし、
このオフラインティーチングによって作成される計測ヘ
ッド移動データには、しばしば計測ヘッドが通過できな
い径路や、ワークと衝突してしまう位置を入力するよう
な誤まりが生じる。よって、従来このデータで計測を実
行する場合には、ワークを設置せずに動作させ、計測ヘ
ッドの移動径路を目視で検証するか、移動速度を遅くし
て、衝突しそうな所で緊急停止の装作をする用意をしな
がら移動径路を確認する作業を必要とした。なお、この
種の問題をシミュレーションによって干渉のチェックを
事前に行うことを目的とした干渉チェック法に関しては
、例えば、特開昭61−127007号、特開昭58−
22690号公報が挙げられ、また、この種の他の方法
としては、コミュニケーションズオブザアソシエーショ
ンフオーコンピューティングマシナリー、22−1(1
979)第3ページから第9ページ(Communic
ations of theACM Januaryl
 979 vol、22 Na 1)において論じられ
ている。
Conventionally, a teaching playback method has been used to teach the movement path of a measurement head in a three-dimensional measurement device. However, when measuring a large number of point sequences or shapes, it is necessary to input many teaching points, which requires a lot of time to teach each point. In order to solve this problem, it is effective to adopt a teaching method in which numerical values are input through offline teaching based on CAD data. but,
The measurement head movement data created by this offline teaching often contains errors such as entering a path that the measurement head cannot pass or a position where it will collide with a workpiece. Therefore, conventionally, when performing measurements using this data, it is necessary to operate the measurement head without setting the workpiece and visually verify the movement path of the measurement head, or to slow down the movement speed and make an emergency stop at a point where a collision is likely. It was necessary to confirm the travel route while preparing for the installation. Regarding interference checking methods for the purpose of pre-checking interference in this type of problem by simulation, for example, Japanese Patent Laid-Open Nos. 61-127007 and 58-
22690, and other methods of this type include Communications of the Association for Computing Machinery, 22-1 (1).
979) Pages 3 to 9 (Communic
ations of the ACM January
979 vol, 22 Na 1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、これら従来技術は、干渉判定の対象物を四角柱や
円柱で近似し、それらの中心間の距離を用いて干渉の判
定を行う方式をとっているが、本発明の計測装置では、
ワークにセンサを接近させて測定をする必要があるが、
従来技術ではこの微少な間隔を判定するような場合の精
度に関して配慮がされておらず、接近作業における誤判
定率の高さに問題があった。また、他の従来技術では、
干渉判定の対象物の面や辺を数式表現して、これらの交
点や交線を計算して干渉を調べているが、干渉判定の対
象物の形状が複雑になったり、計測点が多い場合におけ
る干渉判定時間の長時間化の問題があった。
Now, in these conventional techniques, the object for interference determination is approximated by a square prism or a cylinder, and interference is determined using the distance between the centers of these.However, in the measuring device of the present invention,
It is necessary to bring the sensor close to the workpiece for measurement.
In the prior art, no consideration was given to the accuracy when determining such minute intervals, and there was a problem in that the rate of false determinations in close work was high. In addition, in other conventional technologies,
Interference is investigated by expressing the surfaces and sides of the object for collision detection mathematically and calculating their intersection points and lines, but if the shape of the object for collision judgment is complex or there are many measurement points. There was a problem in that the interference detection time was prolonged.

本発明の目的は、ごく接近した物体同土間でも正確に、
かつ、高速に干渉の判定ができるような干渉判別方法を
提供することにある。
The purpose of the present invention is to accurately detect objects that are very close together on the same dirt floor.
Another object of the present invention is to provide an interference determination method that allows interference to be determined at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、計測ヘッドとワークを直方体の集合で記述
し、次いで、いずれ一方、または双方に対して直方体の
独立な三辺を軸とする直交座標系をとり、これら各軸を
法線としてもつ二次元平面に対して相方の立体の構成面
を投影し、その後、各投影図形間の重なりを判別して立
体間の干渉の有無を決定することと、双方の位置の構成
面同士の干渉から立体間の干渉を判別する際に最小限の
面の組合せとして、向い合った面の間だけで面対面干渉
チェックをすることと、もし、干渉判別の対象となる直
方体同士が、互いに平行な位置にあった場合には、片側
の直方体を三軸のまわりに少し回転させて、向い合う面
の組合せ数を減少させ、こうして得られる向い合う面の
組合せに対し1面対面の干渉チェックをして立体間の干
渉を判別することにより達成される。
The above purpose is to describe the measurement head and the workpiece as a set of rectangular parallelepipeds, then create a Cartesian coordinate system with the three independent sides of the rectangular parallelepiped as axes for one or both, and have each of these axes as the normal. The constituent surfaces of the other solid are projected onto a two-dimensional plane, and then the overlap between each projected figure is determined to determine whether there is interference between the two solids, and the interference between the constituent surfaces at both positions is determined. When determining interference between solids, it is necessary to check surface-to-surface interference only between opposing surfaces as the minimum combination of surfaces, and if the rectangular parallelepipeds that are the object of interference determination are located parallel to each other. If this happens, rotate one side of the rectangular parallelepiped a little around the three axes to reduce the number of combinations of opposing surfaces, and check for interference between one surface and the resulting combination of opposing surfaces. This is achieved by determining interference between solids.

〔作用〕[Effect]

この場合、センサとワークを直方体の集合で近似して、
各座標系に対して三軸方向に両方の構成面を一つずつ投
影することで、少くとも一軸方向の投影図形同士が重な
らなければ、それらの構成面同士は非干渉であることが
判明する。
In this case, the sensor and workpiece are approximated by a set of rectangular parallelepipeds,
By projecting both constituent planes one by one in the three-axis directions for each coordinate system, it was found that the constituent planes do not interfere with each other unless the projected figures in at least one axis overlap. do.

また、面対面のチェックを、センサ側直方体とワーク側
直方体の全面の組合せでやらずに、互い互いに向き合っ
た面同士のみで実行して立体同士の干渉を判定するため
1面対面の組合せのチェック回数が一立体間で36回か
ら18回に減少し。
In addition, the surface-to-surface check is not performed on the combination of the entire surface of the sensor-side rectangular parallelepiped and the work-side rectangular parallelepiped, but is performed only on the surfaces facing each other to determine interference between solids. The number of times decreased from 36 times to 18 times in one space.

計算時間を少くすることができる。また、互いに平行な
位置にある直方体同士の場合、向い合う面(直角な面同
士も含む)はセンサ面−面に対して五面あるため、−立
体間で三十回の面対面チェックが必要であるが、片側の
立体を三軸まわりに微少回転させた時に向い合う面との
間で、もとの平行位置のままチェックすることで18回
のチェックですみ、計算時間を短縮することができる。
Computation time can be reduced. In addition, in the case of rectangular parallelepipeds that are parallel to each other, there are five opposing surfaces (including perpendicular surfaces) to the sensor surface, so 30 face-to-face checks are required between the two solids. However, by slightly rotating one solid around the three axes and checking the original parallel position between the opposing surfaces, only 18 checks are required, reducing calculation time. can.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

第6図は、本発明の干渉チェック方式を、三次元ワーク
形状測定機に適用した場合の一実施例を示すシステム構
成図である。
FIG. 6 is a system configuration diagram showing an embodiment in which the interference check method of the present invention is applied to a three-dimensional workpiece shape measuring machine.

測定点を教示“するためにワーク形状とセンサの移動位
置、角度を入力するデータ入力装置22を持つ。干渉判
別システムでは、センサとワークの形状およびセンサの
移動位置、角度をこのデータ入力装置21を使って入力
する。このデータによリセンサの移動をシミュレートし
干渉の判別をする干渉判別表@22と、この判別結果を
表示しオペレータに知らせる干渉判別結果表示装置23
と、干渉が生じる場合に、それを回避するためにデータ
を修正するデータ修正装置24から干渉判別システムが
構成される。
In order to teach measurement points, the data input device 22 is used to input the shape of the workpiece, the moving position and angle of the sensor. This data is used to simulate the movement of the re-sensor and determine interference, using an interference determination table @22, and an interference determination result display device 23 that displays the determination results and informs the operator.
An interference determination system is constituted by a data modification device 24 that modifies data in order to avoid interference when interference occurs.

第1図(d)は、本発明の干渉チェック方式を三次元ワ
ーク形状測定機に適用した場合における。
FIG. 1(d) shows a case where the interference check method of the present invention is applied to a three-dimensional workpiece shape measuring machine.

−測定位置でのセンサ近似直方体40とワーク近似直方
体50の位置関係を示した斜視図である。
- It is a perspective view showing the positional relationship between the sensor approximation rectangular parallelepiped 40 and the workpiece approximation rectangular parallelepiped 50 at the measurement position.

第1図(a)、(b)、(c)は、それぞれX−z、y
−z、x−z面へ第1図(d)の位置のワーク近似直方
体とセンサ近似直方体を投影した図である。
Figure 1 (a), (b), and (c) are X-z and y, respectively.
It is a diagram in which the workpiece approximation rectangular parallelepiped and the sensor approximation rectangular parallelepiped at the position of FIG. 1(d) are projected onto the -z, xz plane.

本発明における干渉チェック方式は、■ワーク及びセン
サを直方体の集合で近似し、■ワーク近似直方体の構成
面とセンサ近似直方体の構成面を一面づつ取り出し、各
面をX  )’l y−Zy X−2、平面に投影し、
■三つの投影面上で二つの直方体構成面の投影図形がす
べて重なれば、面同士の干渉の可能ありと判定し、■面
同士の干渉がある場合に直方体同士の干渉があると判定
するものである。
The interference checking method in the present invention is as follows: (1) approximating the workpiece and the sensor with a set of rectangular parallelepipeds, (2) taking out the constituent surfaces of the workpiece approximating rectangular parallelepiped and the constituent surfaces of the sensor approximating rectangular parallelepiped one by one, and converting each surface to −2, Project onto a plane,
■If the projected figures of the two rectangular parallelepiped planes all overlap on the three projection planes, it is determined that there is a possibility of interference between the surfaces, and ■If there is interference between the surfaces, it is determined that there is interference between the rectangular parallelepipeds. It is something.

本発明は、この干渉チェック方式による面対面の干渉チ
ェック回数を減少させる方法であり、その実施例の手法
を以下詳細に説明する。
The present invention is a method for reducing the number of face-to-face interference checks using this interference check method, and an embodiment thereof will be described in detail below.

まず、第1図(d)に示すように、センサおよびワーク
を直方体の集合で近似して、センサ近似直方体とワーク
近似直方体を一つづつ取り出す。
First, as shown in FIG. 1(d), a sensor and a workpiece are approximated by a set of rectangular parallelepipeds, and one sensor-approximating rectangular parallelepiped and one workpiece-approximating rectangular parallelepiped are extracted.

その後、センサ近似直方体をセンサ駆動位置まで移動す
る。この時、ワークおよびセンサの近位置、方体の各頂
点座標は、ワーク近似直方体の基準点(第1図(d)で
は頂点51を基準点とする)を原点とする座標系0−x
yzに対して記述してデータとして保存する。
Thereafter, the sensor approximation rectangular parallelepiped is moved to the sensor drive position. At this time, the near positions of the workpiece and the sensor, and the coordinates of each vertex of the rectangular parallelepiped are determined by the coordinate system 0-x whose origin is the reference point of the rectangular parallelepiped approximating the workpiece (vertex 51 is the reference point in FIG. 1(d)).
Describe it for yz and save it as data.

一方、センサ胎よびワーク近似直方体の各構成面は、各
直方体の頂点番号の列として記述する。
On the other hand, each constituent surface of the sensor body and the workpiece approximation rectangular parallelepiped is described as a sequence of vertex numbers of each rectangular parallelepiped.

たとえば、第1図(d)のように、センサ近似直方体の
頂点に41〜48、ワーク近似直方体の頂点に51〜5
8の番号を付けた場合、ワーク近似直方体の構成面とセ
ンサ近似直方体の構成面は第1表および第2表に示すよ
うに、頂点番号の列で記述できる。
For example, as shown in FIG. 1(d), 41 to 48 are placed at the vertices of the rectangular parallelepiped approximating the sensor, and 51 to 5 are placed at the vertices of the rectangular parallelepiped approximating the workpiece.
8, the constituent faces of the work approximating rectangular parallelepiped and the constituent faces of the sensor approximating rectangular parallelepiped can be described by columns of vertex numbers, as shown in Tables 1 and 2.

第   1   表 第   2   表 たとえば、ワーク近似直方体の第1番面は、第1表の第
1行のように5152535451という頂点番号の列
で表す。この頂点番号の順番は、近似直方体の面を外か
ら見て左回りの順番に頂点番号を並べたものである。こ
のように定義することで、後に面の法線ベクI・ルを計
算する際に任意の連続する二辺の外積をとることで算出
することができる。
Table 1 Table 2 For example, the first surface of the workpiece approximation rectangular parallelepiped is represented by a column of vertex numbers 5152535451 as in the first row of Table 1. This order of vertex numbers is obtained by arranging the vertex numbers in counterclockwise order when looking at the surface of the approximate rectangular parallelepiped from the outside. By defining it in this way, when calculating the normal vector I of the surface later, it can be calculated by taking the cross product of two arbitrary consecutive sides.

本発明の干渉チェック方式では、ワーク面とセンサ面の
面対面の干渉チェックを行う。この際、ワーク面、セン
サ面からそれぞれ一面ずつ取出し、ワーク側の基準座標
系0−xyzに基づいて、各面を第1図に示すようにx
−z面(c)、x−y面(a)、y−z面(b)に投影
する。この三つの面への投影のうち一つでも投影図形が
重なっていなければ、面同士の干渉が無いと判定できる
In the interference check method of the present invention, a face-to-face interference check is performed between the work surface and the sensor surface. At this time, take out one surface from the work surface and one from the sensor surface, and based on the reference coordinate system 0-xyz on the work side, each surface is
Project onto the −z plane (c), the xy plane (a), and the yz plane (b). If even one of the projected figures does not overlap among the projections onto these three surfaces, it can be determined that there is no interference between the surfaces.

この方法では、ワークの六面をセンサの六面に対して、
それぞれ三回ずつ投影して図形の重なりを調べるので、
最大右面×六面×三投影の計108回の投影面でのチェ
ックの必要があった。しかし、直方体同士が干渉してい
るかどうかを判別するためのには、必ずしも面対面のす
べての組合せに対してチェックする必要はない。面対面
の干渉チェックで、−組でも干渉する組合せを見つけた
場合には、後の残りの組合せは省略できる。そこで、よ
り干渉の可能性の高い面から干渉チェックを始める手段
を用いる。
In this method, the six sides of the workpiece are compared to the six sides of the sensor.
We project each object three times and examine the overlap of the shapes, so
It was necessary to check a total of 108 projection planes: maximum right plane x six planes x three projections. However, in order to determine whether rectangular parallelepipeds interfere with each other, it is not necessary to check all combinations of surfaces. If a combination is found in the face-to-face interference check that also interferes with the negative pair, the remaining combinations can be omitted. Therefore, a method is used that starts the interference check from the surface with a higher possibility of interference.

二つの直方体が接近して、接触し、干渉が生じる場合、
始めに接する面同士は、互いに向い合った面である。そ
こで、面対面の干渉チェックの対象面を互いに向い合っ
た面同士に限定する。この限定をする場合、以下の三つ
を条件とする。
When two rectangular parallelepipeds approach and touch, causing interference,
The surfaces that initially touch each other are those that face each other. Therefore, the surfaces to be checked for surface-to-surface interference are limited to surfaces that face each other. This limitation is subject to the following three conditions.

■二つの直方体は初期位置では干渉していないとする。■Assume that the two rectangular parallelepipeds do not interfere in their initial positions.

■初期位置から順次ある距離間隔ごとに移動径路上を移
動した点で干渉チェックをする。■前項で記したある距
離間隔は、二つの直方体を構成する六種の長方形の対角
線のうち最も短い対角線の長さの半分以下の長さとする
■Check for interference at points that are moved along the movement path at certain distance intervals from the initial position. ■The certain distance interval described in the previous section shall be less than half the length of the shortest diagonal of the six rectangular diagonals that make up the two rectangular parallelepipeds.

で向い合っている面を以下で定義する。まず、セ→ ンサ面の面法線ベクトルをN5(xs、 ys、 zs
)、→ ワーク面の面法線ベクトルをN w (xw、 yw、
  zw)とした時、この二つのベクトルの内積Aは、
== I Nsl  l Nwl  c o s 0−
(2)で表わされる。この内積Aが以下の関係を満す時
、二つの面は向い合っているとする。
The facing faces are defined below. First, the surface normal vector of the sensor surface is N5(xs, ys, zs
), → the surface normal vector of the work surface is N w (xw, yw,
zw), the inner product A of these two vectors is
== I Nsl l Nwl cos 0-
It is expressed as (2). When this inner product A satisfies the following relationship, the two surfaces are said to face each other.

As2               ・・・(3)つ
まり、式(2)において、 90″≦θ≦270@        ・・・(4)の
関係にある場合に二つの面は向い合っているとし、 −90” <0<90’        ・(5)の場
合に、二つの面は背中合せであるとする。
As2...(3) In other words, in equation (2), if the relationship is 90''≦θ≦270@...(4), the two surfaces face each other, and -90''<0<90' - In the case of (5), assume that the two surfaces are back to back.

−例として、第1図(d)に示すような位置にセンサ近
似直方体とワーク直方体が位置し、各直方体の面番号を
第1表、第2表に示すように定義している場合に、チェ
ック対象となる面の組合せを第3表にまとめる。
- For example, if the sensor approximation rectangular parallelepiped and the workpiece rectangular parallelepiped are located at the positions shown in FIG. 1(d), and the surface numbers of each rectangular parallelepiped are defined as shown in Tables 1 and 2, Table 3 summarizes the combinations of surfaces to be checked.

第   3   表 第3表で、O印のある面の組合せが向い合っている場合
であり、チェックを必要とする。−印のある面の組合せ
は1面が背中合せになっている面の組合せであり、この
チェックは省略できる。
Table 3 In Table 3, this is a case where the faces marked with an O face each other and need to be checked. The combinations of faces marked - are those in which one face is back-to-back, and this check can be omitted.

このようにして、向い合っている面同士だけをチェック
することで直方体同士の干渉の有無が判定できるため、
この方法だと、直方体同士が干渉していない場合に、面
対面の干渉チェックの回数を36回から18回の半分に
することができ、計算時間を短縮することができる効果
がある。
In this way, by checking only the faces that face each other, it is possible to determine whether there is interference between the rectangular parallelepipeds,
With this method, when the rectangular parallelepipeds do not interfere with each other, the number of face-to-face interference checks can be halved from 36 times to 18 times, and the calculation time can be reduced.

次に1面対面の干渉チェックが必要な面の組合せが分っ
た後の、干渉チェック手法について、以下、例をあげて
説明する。
Next, an example will be given to explain the interference checking method after the combination of surfaces that requires a one-surface, two-face interference check is known.

第1図(d)で、センサ面の四番面(42464743
42)とワーク面の五番面(5357585453)は
、干渉チェック対象面となっている。
In Figure 1(d), the fourth side of the sensor surface (42464743
42) and the fifth surface (5357585453) of the work surface are surfaces to be checked for interference.

センサ面のx−y面投影図形は第1図(a)の口424
64743、ワーク面の投影図形は口53575854
であり、この投影面で二つの図形は重なっているが、次
の投影面x−z面上で口42464743と−5453
は重なっていないため、−投影面上ででも重なりが無い
時は面同士は非干渉であるという判定により、次の面対
面の組合せのチェックに進む。
The x-y plane projected figure of the sensor surface is the mouth 424 in FIG. 1(a).
64743, the projected figure on the work surface is mouth 53575854
The two shapes overlap on this projection plane, but on the next projection plane xz plane, the mouths 42464743 and -5453
Since they do not overlap, if there is no overlap even on the -projection plane, it is determined that the surfaces do not interfere with each other, and the process proceeds to check the next combination of surfaces.

直方体同士に干渉がある場合、面対面の干渉のある面を
一つ見つけることで判定するため5面対面の干渉チェッ
クの順番により判定時間が左右されるが、一般的に、向
い合った面同士が干渉している場合が多いため、向い合
った面だけで干渉チェックをした場合の方が速く干渉チ
ェックができる効果がシミュレーションで確認された。
If there is interference between rectangular parallelepipeds, the judgment is made by finding one face that has interference between faces, so the judgment time will be affected by the order of interference checks for the five faces, but in general, the Since there are many cases where two faces interfere with each other, simulations have confirmed that checking for interference is faster when checking only the faces that face each other.

次に他の実施例として、第2図(d)に示すような位置
にセンサ近似直方体とワーク近似直方体が位置している
場合(二つの直方体の位置関係が平行移動成分のみしか
持たない場合)における、干渉チェック面削減方法につ
いて説明する。第2図(d)に示す位置関係における干
渉チェック対象面の組合せ表を第4表に示す。
Next, as another example, when the sensor approximation rectangular parallelepiped and the workpiece approximation rectangular parallelepiped are located at the positions shown in FIG. 2(d) (when the positional relationship between the two rectangular parallelepipeds has only a translation component) The interference check surface reduction method will be explained. Table 4 shows a table of combinations of surfaces to be checked for interference in the positional relationship shown in FIG. 2(d).

第  4  表 内積がOとなるΔ印の面の組合せを含め、向い合った面
の組合せの数は、06ケ、Δ24ケの計30ケとなる。
Table 4 Including the combination of surfaces marked with Δ for which the inner product is O, the number of combinations of facing surfaces is 06 and Δ24, totaling 30.

実際に干渉している面はX印で示してあり、この面はチ
ェック対象面なので直方体の干渉判別は正確にできるが
、干渉していない場合に三十回のチェックが必要で時間
がかかる。そこで、第3図(d)に示すように、片側(
この場合はセンサ側)の直方体を、直方体の中心を原点
とした座標系のx、y、z軸まわりにそれぞれ微少角Δ
θ、Δψ、Δφだけ回転させる。そのうえで、センサ面
の面法線ベクトルとワーク面の面法線ベクトルとの内積
を計算して干渉チェック対象面を選定すると第5表に示
すような組合せとなり、第4表であった30組の対象面
を18組に減少できる。
The surface that is actually interfering is indicated by an X mark, and since this surface is the surface to be checked, it is possible to accurately determine the interference of the rectangular parallelepiped, but if there is no interference, it is necessary to check 30 times, which takes time. Therefore, as shown in Figure 3(d), one side (
In this case, the rectangular parallelepiped (sensor side) is set at a small angle Δ around the x, y, and z axes of the coordinate system with the center of the rectangular parallelepiped as the origin.
Rotate by θ, Δψ, and Δφ. Then, by calculating the inner product of the surface normal vector of the sensor surface and the surface normal vector of the workpiece surface and selecting the surface to be checked for interference, the combinations shown in Table 5 are obtained, and the 30 pairs in Table 4 are The number of target surfaces can be reduced to 18 pairs.

第   5   表 そこで、この18組に対して、元の第2図(d)に示す
頂点座標で各面を投影して重なりを調べることで直方体
同士の干渉チェックを行う。
Table 5 Therefore, for these 18 pairs, interference between rectangular parallelepipeds is checked by projecting each surface using the original vertex coordinates shown in FIG. 2(d) and checking for overlap.

このように、互いに平行な位置にある直方体同士の干渉
チェックの場合には、片側の直方体を微少角回転させた
時に向い合う面同士を元の平行な位置で投影して面間の
干渉チェックをすることで干渉なしの場合には18/3
0に計算時間を短縮でき、かつ干渉がある場合にも、高
速に干渉有の判定をすることができる効果がある。
In this way, when checking for interference between rectangular parallelepipeds that are parallel to each other, one side of the rectangular parallelepiped is rotated by a small angle, and the opposing surfaces are projected at their original parallel positions to check for interference between the surfaces. If there is no interference, then 18/3
The calculation time can be reduced to 0, and even if there is interference, the presence of interference can be determined quickly.

また、他の実施例として第4図には、円柱を直方体で近
似した場合のxy面投影図とy−z面投影図を示してい
る。第4図(b)の場合、円柱を近似した直方体の各辺
は、ワーク近似直方体の各辺と平行又は直角の位置にあ
り、二つの直方体は、平行移動の成分のみを持つ位置関
係にある。こ゛の場合チェック対象面は、第4表に示す
場合と同様に30ケとなってしまい、xyz軸まわりの
微少回転変換をしてチェック対象面を減少させる必要が
ある。
Further, as another example, FIG. 4 shows an xy plane projection view and a yz plane projection view when a cylinder is approximated by a rectangular parallelepiped. In the case of Fig. 4(b), each side of the rectangular parallelepiped that approximates a cylinder is parallel or perpendicular to each side of the rectangular parallelepiped that approximates the workpiece, and the two rectangular parallelepipeds are in a positional relationship that has only a translational component. . In this case, the number of surfaces to be checked is 30, as in the case shown in Table 4, and it is necessary to reduce the number of surfaces to be checked by performing slight rotational transformation around the x, y, and z axes.

しかし、あらかじめワーク近似直方体の座標系の軸と平
行でない辺を持つ直方体で近似すれば(例えば第5図の
様に)チェックの対象面は24ケに減少させることがで
きる。
However, if the workpiece is approximated in advance using a rectangular parallelepiped whose sides are not parallel to the axis of the coordinate system (as shown in FIG. 5, for example), the number of surfaces to be checked can be reduced to 24.

このように、円柱等の物体を直方体で近似する場合には
、もう一方の干渉チェック対象の直方体の各辺とは非平
行な辺を持つ直方体であらかじめ近似しておくことで、
干渉チェック対象面の数を減少させ、座標変換の計算時
間や干渉チェックの計算時間を短縮できる効果がある。
In this way, when approximating an object such as a cylinder with a rectangular parallelepiped, by approximating it in advance with a rectangular parallelepiped whose sides are not parallel to the sides of the other rectangular parallelepiped to be checked for interference,
This has the effect of reducing the number of surfaces to be checked for interference and shortening the calculation time for coordinate transformation and the calculation time for interference check.

第   6   表 〔発明の効果〕 本発明によれば、直方体同士の干渉を判別するのに必要
な面同士の干渉判別の回数を、干渉が無い場合には、最
大1/2に減少させるとともに、干渉がある場合にも、
干渉の可能性の高い面から干渉判別することができ、干
渉がある場合にも、無い場合にも、高速に正確に判定結
果を導出できる。
Table 6 [Effects of the Invention] According to the present invention, the number of times of interference determination between surfaces required to determine interference between rectangular parallelepipeds is reduced to a maximum of 1/2 when there is no interference, and Even if there is interference,
Interference can be determined based on aspects with a high possibility of interference, and determination results can be derived quickly and accurately regardless of whether there is interference or not.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における近似直方体の位置
を示す斜視図、第2図は、他の実施例における近似直方
体の位置を示す斜視図、第3図は、微少回転後の近似直
方体の位置を示す斜視図、第4図、第5図は、他の実施
例における近似直方体の位置を示す投影図、第6図はシ
ステム構成図である。 4o・・・センサ近似直方体、50・・・ワーク近似直
方体、41〜48・・・センサ頂点番号、51〜58・
・・ワーク頂点番号。
FIG. 1 is a perspective view showing the position of an approximate rectangular parallelepiped in one embodiment of the present invention, FIG. 2 is a perspective view showing the position of an approximate rectangular parallelepiped in another embodiment, and FIG. 3 is an approximate view after slight rotation. FIGS. 4 and 5 are perspective views showing the positions of the rectangular parallelepipeds, projection views showing the positions of approximate rectangular parallelepipeds in other embodiments, and FIG. 6 is a system configuration diagram. 4o... Sensor approximation rectangular parallelepiped, 50... Work approximation rectangular parallelepiped, 41-48... sensor vertex number, 51-58.
...Work vertex number.

Claims (1)

【特許請求の範囲】 1、空間内に存在する二つの直方体同士の干渉の有無を
、互いの前記直方体を構成する面同士の干渉の有無によ
り判別する干渉チェック方式において、 面対面の組合せのうち、二つの面の面法線ベクトルの内
積の値により前記面対面の干渉チェックの組合せを減少
させることを特徴とする干渉判別における高速化の方式
。 2、特許請求の範囲第1項において、 面対面の組合せのうち、二つの面の外向き面法線ベクト
ルの内積の値が0以下となる面同士のみの組合せに対し
て面対面の干渉チェックを行い、その結果から、直方体
同士の干渉の有無を判別することを特徴とする干渉判別
における高速化の方式。 3、特許請求の範囲第1項または第2項において、面同
士の干渉チェックを実行中、最初に干渉ありと判別され
た面のチェックをもつて直方体同士の干渉ありと判別す
ることを特徴とする干渉判別における高速化の方式。 4、特許請求の範囲第1項または第2項において、減少
された面対面の干渉チェックの組合せすべてに干渉なし
と判別されたことをもつて、直方体同士の干渉なしと判
別することを特徴とする干渉判別における高速化の方式
。 5、特許請求の範囲第3項または第4項における高速化
方式を両方用いることを特徴とする干渉判別における高
速化の方式。 6、特許請求の範囲第1項において、 二つの直方体を構成する辺同士が平行又は直角な位置に
ある場合に、どちらか片方の直方体を、その平行又は直
角の関係にある辺を非直角、非平行な関係になるように
微少回転した後に、2つの面の面法線ベクトルの内積に
より、その面対面の干渉チェックの組合せの数を減少さ
せることを特徴とする干渉判別における高速化の方式。 7、特許請求の範囲第6項において、 二つの面の外向き法線ベクトルの内積が0以下となる面
同士のみの組合せに対して面対面の干渉チェックを行い
、その結果から直方体同士の干渉の有無を判別すること
を特徴とする干渉判別における高速化の方式。 8、特許請求の範囲第6項または第7項において、微少
回転した直方体の面法線により干渉判別すべき面対面を
限定した後、元の微少回転前の直方体の対応する面と、
もう一方の直方体の対応する面との間で面対面の干渉チ
ェックをすることを特徴とする干渉判別における高速化
の方式。 9、空間内に存在する二つの物体の干渉の有無を、二つ
の物体をそれぞれ直方体で近似したのち互いの直方体を
構成する面同士の干渉の有無により判別する干渉チェッ
ク方式において、 二つの近似直方体同士の辺が直角又は平行になることを
少なくするように近似直方体を構成して、後の面対面の
干渉判別対象面を減少させることを特徴とする干渉判別
における高速化の方式。
[Claims] 1. In an interference check method in which the presence or absence of interference between two rectangular parallelepipeds existing in a space is determined based on the presence or absence of interference between the surfaces constituting the respective rectangular parallelepipeds, among the combinations of surfaces: , a method for speeding up interference determination, characterized in that the number of combinations of surface-to-surface interference checks is reduced by the value of the inner product of the surface normal vectors of the two surfaces. 2. In claim 1, among surface-to-surface combinations, surface-to-surface interference check is performed for only combinations of surfaces in which the value of the inner product of the outward surface normal vectors of two surfaces is 0 or less. A method for increasing the speed of interference determination, characterized in that the presence or absence of interference between rectangular parallelepipeds is determined based on the results. 3. Claims 1 or 2 are characterized in that, while checking for interference between surfaces, it is determined that there is interference between rectangular parallelepipeds by checking the surface that is first determined to have interference. A method for speeding up interference detection. 4. Claim 1 or 2 is characterized in that it is determined that there is no interference between rectangular parallelepipeds when it is determined that there is no interference in all of the reduced combinations of face-to-face interference checks. A method for speeding up interference detection. 5. A method for speeding up interference determination, characterized in that both of the speeding methods set forth in claim 3 or 4 are used. 6. In claim 1, when the sides constituting two rectangular parallelepipeds are parallel or at right angles, one of the rectangular parallelepipeds is defined as having the sides that are parallel or at right angles, A method for speeding up interference detection characterized by reducing the number of combinations of surface-to-surface interference checks by performing a slight rotation so that the two surfaces have a non-parallel relationship, and then using an inner product of the surface normal vectors of the two surfaces. . 7. In claim 6, a surface-to-surface interference check is performed for only combinations of surfaces in which the inner product of the outward normal vectors of the two surfaces is 0 or less, and based on the results, interference between rectangular parallelepipeds is determined. A method for speeding up interference determination, characterized by determining the presence or absence of. 8. In claim 6 or 7, after limiting the surfaces to be subjected to interference determination by the surface normals of the slightly rotated rectangular parallelepiped, the corresponding surfaces of the original rectangular parallelepiped before being slightly rotated;
A method for increasing the speed of interference determination, which is characterized by performing a surface-to-surface interference check with a corresponding surface of another rectangular parallelepiped. 9. In an interference check method in which the presence or absence of interference between two objects existing in space is determined by approximating the two objects with rectangular parallelepipeds and then determining the presence or absence of interference between the surfaces that make up each rectangular parallelepiped, the two approximate rectangular parallelepipeds A method for speeding up interference determination, characterized by configuring an approximate rectangular parallelepiped such that its sides are less likely to be perpendicular or parallel to each other, thereby reducing the number of surfaces to be subjected to subsequent surface-to-surface interference determination.
JP13486587A 1987-06-01 1987-06-01 System for speeding up interference decision making Pending JPS63300903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13486587A JPS63300903A (en) 1987-06-01 1987-06-01 System for speeding up interference decision making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13486587A JPS63300903A (en) 1987-06-01 1987-06-01 System for speeding up interference decision making

Publications (1)

Publication Number Publication Date
JPS63300903A true JPS63300903A (en) 1988-12-08

Family

ID=15138282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13486587A Pending JPS63300903A (en) 1987-06-01 1987-06-01 System for speeding up interference decision making

Country Status (1)

Country Link
JP (1) JPS63300903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500349A (en) * 2007-10-26 2011-01-06 本田技研工業株式会社 Real-time self-collision and obstacle avoidance
US8467904B2 (en) 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
JP2013184242A (en) * 2012-03-07 2013-09-19 Denso Wave Inc Device for determining interference of industrial machine, method for determining interference, computer program and recording medium
US8924021B2 (en) 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467904B2 (en) 2005-12-22 2013-06-18 Honda Motor Co., Ltd. Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
US8924021B2 (en) 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors
JP2011500349A (en) * 2007-10-26 2011-01-06 本田技研工業株式会社 Real-time self-collision and obstacle avoidance
JP2013184242A (en) * 2012-03-07 2013-09-19 Denso Wave Inc Device for determining interference of industrial machine, method for determining interference, computer program and recording medium

Similar Documents

Publication Publication Date Title
EP0307091A2 (en) An object collision detection apparatus
JPH0820894B2 (en) Industrial robot operation control method
Meyer Distances between boxes: Applications to collision detection and clipping
JP2537909B2 (en) Guide object movement control method and apparatus
JPS63300903A (en) System for speeding up interference decision making
Mandel et al. On-line compensation of mobile robot docking errors
JP2019197333A (en) Path correction method and control device of multiple spindle processing machine
Wallack et al. Robust algorithms for object localization
JPS62272366A (en) Graphic information processor
CN110053045A (en) Workpiece surface contour line acquisition methods, interference detection method and relevant apparatus
JPS6243706A (en) Interference checking method in robot
JP2718678B2 (en) Coordinate system alignment method
Ataei et al. Kinetostatic performance and collision-free workspace analysis of a 3-dof delta parallel robot
Wang et al. Research on Collision Point Identification Based on Six‐Axis Force/Torque Sensor
JPS61127007A (en) Checking system for interference between robot and work
JPH01180602A (en) Deciding system for interference between polyhedrons in space
JPS59182076A (en) Measuring device for error on installation of robot
JPS6044815A (en) Three-dimensional coordinate value converting method
Nederbragt et al. Kinematic Fixturing with Respect to a Plane Using Contact Sensing
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
JPH06137854A (en) Three-dimensional form inspection method
Korayem et al. Determining Position and Orientation of 6R Robot using Image Processing
Habibnejad Korayem et al. Determining Position and Orientation of 6R Robot using Image Processing
JPH06143170A (en) Auto-nomic conveying device
JPH01280208A (en) Method and device for position detection of body