JPS63300559A - Array type infrared-ray detector - Google Patents

Array type infrared-ray detector

Info

Publication number
JPS63300559A
JPS63300559A JP62137282A JP13728287A JPS63300559A JP S63300559 A JPS63300559 A JP S63300559A JP 62137282 A JP62137282 A JP 62137282A JP 13728287 A JP13728287 A JP 13728287A JP S63300559 A JPS63300559 A JP S63300559A
Authority
JP
Japan
Prior art keywords
resistance
layer
photodiode
type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62137282A
Other languages
Japanese (ja)
Inventor
Yukihiko Maejima
前島 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62137282A priority Critical patent/JPS63300559A/en
Publication of JPS63300559A publication Critical patent/JPS63300559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the uniformity of a dark resistance by reducing the resistance from each of arrayed photodiodes to its common electrode. CONSTITUTION:In order to improve the characteristics, such as sensitivity and the like of an obtained sole photodiode, the acceptor concentration of a P-type Hg0.8Cd0.2Te layer 2 is set to approx. 10<16>cm<-3>. When the acceptor concentration of a P<+> type layer 3 is set to 10<17>cm<-3> or above, the resistivity of the layer 3 can be set to 1/10 or below of the layer 2. Accordingly, if the P-type side electrode of each photodiode is commonly provided through the layer 3, the resistance from the P-type side electrode 7 to each photodiode can be extremely reduced. Consequently, since the dark resistance of each single detector in the array approaches the resistance of a net n<+>-P junction, its dark resistance becomes uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は配列型赤外線検知器の構造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to the structure of an array type infrared detector.

(従来の技術) 一般に、赤外線検知器においては狭禁制帯幅の半導体を
用いたものが高感度である事が知られている。特に、単
体の検知素子を一次元、あるいは二次元に配列した構成
をとった検知器は赤外線撮像装置に用いる場合、非常に
有効である。
(Prior Art) Generally, it is known that infrared detectors using semiconductors with a narrow bandgap have high sensitivity. In particular, a detector having a configuration in which single detection elements are arranged one-dimensionally or two-dimensionally is very effective when used in an infrared imaging device.

従来の配列型赤外線検知器の構成としては、例えば雑誌
「ニス・ピー・アイ・イー(S、P、1.E)J(第2
67巻1901年18頁)に示されている様に、CdT
e上にエピタキシャル成長したHg1−XCdxTe上
に配列して形成されたn+p接合を検知素子として用い
るものがある。
The configuration of a conventional array type infrared detector is, for example, as described in the magazine "NISPI (S, P, 1.E) J (Second Edition).
67, 1901, p. 18), CdT
There is one that uses an n+p junction formed in an array on Hg1-XCdxTe epitaxially grown on e as a sensing element.

第2図はこの検知器の構造を示す断面図である0図にお
いて、1は半絶縁性CdTe基板、2はその上にエピタ
キシャル成長したp型Hg1)、 BCdO,2Te層
、4は前記p型I11..8c(10,2Te上にイオ
ン注入等の方法によって形成した04層、5は5i02
等の表面保護絶縁膜、6は14層側の電極、7はp層側
の電極、8はシリコンのCCD等の信号処理部、10は
検知器に入射する赤外光である。図に示した検知器にお
いては、波長が10μm程度の赤外光を検知する事が可
能である。検知素子単体としては、n+層層下下n+p
+合を利用したホトダイオードとなっており、これが配
列された形となっている。この時、n“側電極6は各素
子からとるが、p!電極7はp型Hgo、 gcdg、
 2Te 2中の一ケ所からとっている。また、これら
の電極はシリコンCCDチップ8に接続され、各検知素
子からの出力がCCD等の信号処理部によって読み出し
易い形になってから読み出される事になる。
FIG. 2 is a cross-sectional view showing the structure of this detector. In FIG. 0, 1 is a semi-insulating CdTe substrate, 2 is a p-type Hg1), BCdO, 2Te layer epitaxially grown thereon, and 4 is the p-type I11 layer epitaxially grown thereon. .. .. 8c (04 layer formed on 10,2Te by a method such as ion implantation, 5 is 5i02
6 is an electrode on the 14th layer side, 7 is an electrode on the p layer side, 8 is a signal processing unit such as a silicon CCD, and 10 is an infrared light incident on the detector. The detector shown in the figure is capable of detecting infrared light with a wavelength of about 10 μm. As a single sensing element, the lower n+p layer is
It is a photodiode that utilizes a + combination, and is arranged in an array. At this time, the n" side electrode 6 is taken from each element, but the p! electrode 7 is taken from p-type Hgo, gcdg,
2Te It is taken from one place in 2. Further, these electrodes are connected to a silicon CCD chip 8, and the output from each detection element is read out after being converted into a form that is easy to read by a signal processing section such as a CCD.

(発明が解決しようとする問題点) 上述した従来の配列型赤外線検知器の欠点としては、各
検知素子間の暗抵抗が均一でないという事がある。この
様な構成においては、各素子の暗抵抗はp側電極7と各
n+側電極6間の抵抗である。これは電極の抵抗を無視
すれば本来の検知素子単体の抵抗、すなわちn +p接
合の抵抗とp側電極7からn + p接合までの間のp
型HCo、 acdo、 2Te層2による抵抗の和と
なる事は明らかである。前者は理想的な場合には各素子
間で均一であるが、後者は各素子とp(!l電極7の距
離に比例して大きくなる。n+p+合の抵抗が充分に大
きければ後者は無視できるが例えばセミコンダクターズ
 アンドセミメタルズ第18巻(5ernicondu
ctors and Semi−metals vol
、10(1981)Academic Press)で
述べられている様に、狭禁制帯幅である11gg、 g
cdg、 2Teの様な材料ではn+p+合の抵抗を大
きくする事は不可能であり、例えば直径100μm程度
のn+p+合の場合、その抵抗は数にΩ程度となる場合
もある。
(Problems to be Solved by the Invention) A drawback of the conventional array-type infrared detector described above is that the dark resistance between each detection element is not uniform. In such a configuration, the dark resistance of each element is the resistance between the p-side electrode 7 and each n+ side electrode 6. If the resistance of the electrode is ignored, this is the original resistance of the sensing element itself, that is, the resistance of the n + p junction and the p resistance between the p-side electrode 7 and the n + p junction.
It is clear that the resistance is the sum of the resistances of the HCo, acdo, and 2Te layers 2. The former is uniform between each element in an ideal case, but the latter increases in proportion to the distance between each element and the p(!l electrode 7. If the resistance of the n+p+ combination is sufficiently large, the latter can be ignored. For example, Semiconductors and Semi-Metals Volume 18 (5ernicondu
ctors and semi-metals vol.
, 10 (1981) Academic Press), the narrow forbidden band width 11gg, g
With materials such as cdg and 2Te, it is impossible to increase the resistance of an n+p+ combination. For example, in the case of an n+p+ combination with a diameter of about 100 μm, the resistance may be on the order of several Ω.

一方、p型Hgo、 gcdg、 2Te層2による抵
抗はp側電極7の形状にもよるが、p@電極7とnが接
合の距離が2C11程度になるとやはり数にΩとなる。
On the other hand, although the resistance due to the p-type Hgo, GCDG, and 2Te layers 2 depends on the shape of the p-side electrode 7, it also becomes Ω when the distance between the junction of the p@electrode 7 and n becomes about 2C11.

従って、全体の大きさが2C11程度の配列型赤外線検
知器ではこれによる各素子の暗抵抗の不均一性は無視で
きない、これにより、各検知素子からの出力信号処理は
複雑なものとなる。
Therefore, in an array type infrared detector having a total size of about 2C11, the non-uniformity of the dark resistance of each element due to this cannot be ignored, and as a result, output signal processing from each detection element becomes complicated.

上記の欠点を解消する為にはp側電極7を配列内のでき
るだけ多くの部分からとる必要がある。
In order to eliminate the above drawbacks, it is necessary to remove the p-side electrodes 7 from as many parts of the array as possible.

しかし、例えば二次元の配列型赤外線検知器を考えた場
合、配列の間からp側電極7をとると構造はかなり複雑
化するのでp側電極7は二次元配列の端からとる事が好
ましい、従って、二次元の配列型検知器の場合は特にこ
の欠点は問題になる。
However, when considering a two-dimensional array type infrared detector, for example, if the p-side electrode 7 is taken from between the arrays, the structure becomes quite complicated, so it is preferable to take the p-side electrodes 7 from the ends of the two-dimensional array. Therefore, this drawback is particularly problematic in the case of a two-dimensional array type detector.

本発明の目的は、配線の複雑化を招く事無しに暗抵抗の
均一な配列型赤外線検知器を提供する事にある。
An object of the present invention is to provide an array type infrared detector with uniform dark resistance without complicating the wiring.

(問題点を解決するための手段) その問題点を解決する為に、本発明の配列型赤外線検知
器においては、基板上に狭禁制帯幅であり、高いキャリ
ア濃度を持つ第一の半導体層、これと同じ物質であり、
同じ導電型を持ち、前記第一の半導体層よりキャリア濃
度の低い第二の半導体層が順次形成され、前記第二の半
導体層には赤外線検知部となるホトダイオードが配列し
て形成され、各ホトダイオードにおいて、これを動作さ
せる為の二個の電極のうち一方が前記各ホトダイオード
から個々にとり出され、他方が配列内の全ホトダイオー
ドについて共通に前記第一の半導体層よりとり出されて
いるという特徴を有する。
(Means for Solving the Problem) In order to solve the problem, in the array type infrared detector of the present invention, a first semiconductor layer having a narrow forbidden band width and high carrier concentration is formed on the substrate. , is the same substance as this,
A second semiconductor layer having the same conductivity type and lower carrier concentration than the first semiconductor layer is sequentially formed, photodiodes serving as an infrared detection section are arranged in the second semiconductor layer, and each photodiode The feature is that one of the two electrodes for operating this is taken out individually from each of the photodiodes, and the other is taken out from the first semiconductor layer in common for all the photodiodes in the array. have

(作用) 本発明の構成は、基板と赤外線検知部を製造すべき狭禁
制帯幅の半導体層との間に高濃度にドープされた同一の
半導体層を介し、検知部となるホトダイオードの共通電
極をこの高濃度にドープされた半導体層よりとり出すも
のである。この層の電気抵抗は検知部を製造した半導体
層と比べて非常に小さい為に大面積の配列型検知器にお
いても共通電極から各検知素子までの抵抗を減少させ、
結局各検知素子の暗抵抗は均一なものとなる。
(Function) The structure of the present invention is such that the same highly doped semiconductor layer is interposed between the substrate and the semiconductor layer with a narrow bandgap in which the infrared detection section is to be manufactured, and the common electrode of the photodiode serving as the detection section is connected to the substrate. is extracted from this highly doped semiconductor layer. The electrical resistance of this layer is much smaller than that of the semiconductor layer used to manufacture the sensing part, so even in large-area array type detectors, the resistance from the common electrode to each sensing element can be reduced.
Eventually, the dark resistance of each sensing element becomes uniform.

(実施例) 次に、本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す断面図である。同図に
おいて、lはCdTe基板、2はその上にエピタキシャ
ル成長したp+型、すなわちアクセプタ濃度の高いp型
11Ko、 、ca、、 zTe層、3は更にその上に
成長したp型111co、 BCd6. zTe層、4
は前記p型11go0gCdg、 zTeTe上にイオ
ン注入等の方法によって形成したn+層、5は5i02
等の表面保護絶縁膜、6はn++側の電極、7は2層側
の電極、8はシリコンのCOD等の信号処理部、10は
検知器に入射する赤外光である。検知素子単体としては
第2図と全く同様に、n+層4下の 4層接合を利用し
たホトダイオードとなっており、これが配列された形と
なっている。この時、n+側電極6は各素子からとって
いるが、P側電極7はp型l1io、 8cd、、 z
Te層2を一部除去してその下の24層3からとってい
る。
FIG. 1 is a sectional view showing one embodiment of the present invention. In the figure, 1 is a CdTe substrate, 2 is a p+ type layer epitaxially grown on it, that is, a p-type 11Ko, ca, zTe layer with a high acceptor concentration, and 3 is a p-type 111co, BCd6. zTe layer, 4
is the p-type 11go0gCdg, an n+ layer formed on zTeTe by a method such as ion implantation, and 5 is 5i02
6 is an electrode on the n++ side, 7 is an electrode on the second layer side, 8 is a signal processing unit such as a silicon COD, and 10 is an infrared light incident on the detector. The sensing element itself is a photodiode that utilizes a four-layer junction under the n+ layer 4, and is arranged in the same way as shown in FIG. At this time, the n+ side electrode 6 is taken from each element, but the P side electrode 7 is p-type l1io, 8cd,,z
A portion of the Te layer 2 is removed and the 24 layers 3 below it are taken.

−mに、得られるホトダイオードの単体の感度等の特性
を良好にする為に、p型11g□、 gCdo、 2T
e層2のアクセプタ濃度は1016C1l−’程度とさ
れる。これに対して24層3のアクセプタ濃度を10”
C11−’以上にした場合、24層3の抵抗率は9層2
の1710以下にする事が可能であった。従って、24
層3を通して各ホトダイオードのp側電極を共通にとれ
ば、p1m電極7と各ホトダイオードまでの抵抗は第2
図の場合と比べて極めて小さくする事ができた。従って
、配列内の各検知素子単体の暗抵抗は正味のn+p接合
の抵抗に近づく為、暗抵抗は均一なものとなった。
-m, in order to improve the characteristics such as the sensitivity of the single photodiode obtained, p-type 11g□, gCdo, 2T
The acceptor concentration of the e-layer 2 is approximately 1016C1l-'. In contrast, the acceptor concentration in layer 3 of 24 is 10”
When C11-' or more, the resistivity of 24 layers 3 is 9 layers 2
It was possible to reduce the value to 1710 or less. Therefore, 24
If the p-side electrode of each photodiode is shared through the layer 3, the resistance from the p1m electrode 7 to each photodiode is the second
We were able to make it extremely small compared to the case shown in the figure. Therefore, the dark resistance of each sensing element in the array approaches the resistance of the net n+p junction, so the dark resistance becomes uniform.

更に、本発明の他の効果として、各検知素子の暗抵抗の
増大がある。この構成では各検知素子は単純なn+p接
合のホトダイオードではなく、n”pp+接合となって
いる。この場合には例えばセミコンダクターズ アンド
 セミメタルズ第18巻(Semiconductor
s and 5ernirnetals vol、1B
 (1981)Academic Press)で述べ
られている様に、暗電流の一成分となっている拡散電流
が減少する。従って、暗電流の大部分が拡散電流による
ものである時には各ホトダイオードの暗電流は減少し、
暗抵抗は増大する。この様に検知素子単体の暗抵抗が増
大するので、p側電極7から各検知素子までの抵抗の寄
与は更に小さくなり、暗抵抗の均一性は更に向上する。
Furthermore, another effect of the present invention is an increase in the dark resistance of each sensing element. In this configuration, each sensing element is not a simple n+p junction photodiode, but an n''pp+ junction.
s and 5ernirnetals vol, 1B
(1981) Academic Press), the diffusion current, which is a component of the dark current, decreases. Therefore, when most of the dark current is due to diffusion current, the dark current of each photodiode decreases,
Dark resistance increases. Since the dark resistance of a single sensing element increases in this way, the contribution of the resistance from the p-side electrode 7 to each sensing element becomes even smaller, and the uniformity of the dark resistance is further improved.

(発明の効果) 以上説明した様に本発明は、配列型赤外線検知器におい
て、配列された各ホトダイオードからその共通電極まで
の抵抗を減少させる事により、その暗抵抗の均一性を向
上する事を可能にするものである。従って、出力信号処
理の容易な配列型赤外線検知器を得る事ができる。
(Effects of the Invention) As explained above, the present invention improves the uniformity of dark resistance in an array type infrared detector by reducing the resistance from each arrayed photodiode to its common electrode. It is what makes it possible. Therefore, it is possible to obtain an array type infrared detector whose output signal processing is easy.

【図面の簡単な説明】 第1図は本発明の一実施例である配列型赤外線検知器の
断面図であり、第2図は従来の構造の配列型赤外線検知
器の一例の断面図である。 図において、1はCdTe基板、2はp型I1g□、 
gcdg、 2Te層、3はp+型Hgo、 BCd6
.2Te層、4は 4層、5は絶縁膜、6はn+側電極
、7はp側電極、8はシリコンCCDチッマ     
 リ 工
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a sectional view of an array-type infrared detector according to an embodiment of the present invention, and Fig. 2 is a sectional view of an example of an array-type infrared detector having a conventional structure. . In the figure, 1 is a CdTe substrate, 2 is a p-type I1g□,
gcdg, 2Te layer, 3 is p+ type Hgo, BCd6
.. 2Te layer, 4 is 4 layers, 5 is insulating film, 6 is n+ side electrode, 7 is p side electrode, 8 is silicon CCD chip
rework

Claims (1)

【特許請求の範囲】[Claims] 配列型赤外線検知器において、基板上に狭禁制帯幅であ
り、高いキャリア濃度を持つ第一の半導体層、これと同
じ物質であり、同じ導電型を持ち、前記第一の半導体層
よりキャリア濃度の低い第二の半導体層が順次形成され
、前記第二の半導体層には赤外線検知部となるホトダイ
オードが配列して形成され、各ホトダイオードにおいて
、これを動作させる為の二個の電極のうち一方が前記各
ホトダイオードから個々にとり出され、他方が配列内の
全ホトダイオードについて共通に前記第一の半導体層よ
りとり出されている事を特徴とする配列型赤外線検知器
In an array type infrared detector, a first semiconductor layer having a narrow bandgap and a high carrier concentration is formed on the substrate, and the first semiconductor layer is made of the same material, has the same conductivity type, and has a higher carrier concentration than the first semiconductor layer. A second semiconductor layer with a low temperature is sequentially formed, and photodiodes serving as an infrared detection section are arranged and formed in the second semiconductor layer, and in each photodiode, one of the two electrodes for operating the photodiode is formed. is taken out from each of the photodiodes individually, and the other is taken out from the first semiconductor layer in common for all the photodiodes in the array.
JP62137282A 1987-05-29 1987-05-29 Array type infrared-ray detector Pending JPS63300559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137282A JPS63300559A (en) 1987-05-29 1987-05-29 Array type infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137282A JPS63300559A (en) 1987-05-29 1987-05-29 Array type infrared-ray detector

Publications (1)

Publication Number Publication Date
JPS63300559A true JPS63300559A (en) 1988-12-07

Family

ID=15195038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137282A Pending JPS63300559A (en) 1987-05-29 1987-05-29 Array type infrared-ray detector

Country Status (1)

Country Link
JP (1) JPS63300559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590554A (en) * 1991-09-30 1993-04-09 Mitsubishi Electric Corp Solid-state image pick-up element
JP2000236482A (en) * 1998-12-14 2000-08-29 Sharp Corp Two dimensional image detector and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151090A (en) * 1974-05-23 1975-12-04
JPS5498586A (en) * 1978-01-20 1979-08-03 Matsushita Electric Ind Co Ltd Photo conductive element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151090A (en) * 1974-05-23 1975-12-04
JPS5498586A (en) * 1978-01-20 1979-08-03 Matsushita Electric Ind Co Ltd Photo conductive element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590554A (en) * 1991-09-30 1993-04-09 Mitsubishi Electric Corp Solid-state image pick-up element
JP2000236482A (en) * 1998-12-14 2000-08-29 Sharp Corp Two dimensional image detector and its manufacture

Similar Documents

Publication Publication Date Title
US5113076A (en) Two terminal multi-band infrared radiation detector
EP0110977A1 (en) Backside illuminated blocked impurity band infrared detector.
US5510627A (en) Infrared-to-visible converter
US7148551B2 (en) Semiconductor energy detector
JPH0654957B2 (en) Photoelectric conversion device
JPS6057714B2 (en) Optical semiconductor device
JP2001291853A (en) Semiconductor energy detecting element
US4146904A (en) Radiation detector
JP4571267B2 (en) Radiation detector
Emmons et al. Infrared detectors: An overview
JPS63300559A (en) Array type infrared-ray detector
JPH05335618A (en) Optical position detecting semiconductor device
JP2931122B2 (en) One-dimensional light position detector
US20150115132A1 (en) Visible and near infra red optical sensor
US9728577B2 (en) Infrared image sensor
JP2773930B2 (en) Light detection device
EP1295345B1 (en) Position sensitive photo detector
Ahmed et al. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells
JP3691176B2 (en) Semiconductor energy detector
JP3588203B2 (en) Semiconductor energy detector
JP2676814B2 (en) Multi-type light receiving element
KR20230107537A (en) Dual photodiode electromagnetic radiation sensor device
JPH09232616A (en) Infrared detecting device
JPH0691279B2 (en) Semiconductor position detector
JPH0550747U (en) Solid-state imaging device