JPS6330052B2 - - Google Patents
Info
- Publication number
- JPS6330052B2 JPS6330052B2 JP55014425A JP1442580A JPS6330052B2 JP S6330052 B2 JPS6330052 B2 JP S6330052B2 JP 55014425 A JP55014425 A JP 55014425A JP 1442580 A JP1442580 A JP 1442580A JP S6330052 B2 JPS6330052 B2 JP S6330052B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- backwashing
- cleaning
- liquid
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 81
- 238000011001 backwashing Methods 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 48
- 239000007788 liquid Substances 0.000 claims description 36
- 238000004140 cleaning Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 24
- 239000008187 granular material Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 19
- 230000002265 prevention Effects 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 6
- 238000004062 sedimentation Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 32
- 230000000694 effects Effects 0.000 description 18
- 239000002245 particle Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 238000005243 fluidization Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Filtration Of Liquid (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、粒状材が充填され、材流出防止
機構を有する液体過機の逆洗方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for backwashing a liquid filter filled with granular material and having a material outflow prevention mechanism.
粒状材を用いる液体過機を逆洗するに際し
て、水と空気を同時に供給することにより水単独
供給の場合に比べて格段に高い洗浄効果が得られ
ることは、よく知られた事実である。
It is a well-known fact that when backwashing a liquid filter using granular material, by simultaneously supplying water and air, a much higher cleaning effect can be obtained than when water is supplied alone.
しかしながら、この場合の好適条件については
従来あまり研究されていない。その理由は通常の
構造の過機では、水と空気を同時に用いると粒
状材の流出損失を生じる欠点があり、これを避
けるための配慮が第1に必要となり、水又は空気
の供給線速度や洗浄時間の設定が自由に行えなか
つたからである。 However, the suitable conditions in this case have not been studied much in the past. The reason for this is that in the conventional structure of the overflow machine, when water and air are used at the same time, granular material flows out and is lost, and consideration must first be given to avoid this. This is because the cleaning time could not be set freely.
従来の粒状材を充填した液体過機の構造
は、例えば第1図に示すとおりである。すなわ
ち、竪型円筒形の過機12では、その過機本
体12a内部上側に洗浄排水樋10、下側に流体
流出入機構13がそれぞれ配備され、充填物とし
て上側に粒状材からなる材層7と、下側に
材支持層8が充填されている。一方、その外部上
側には洗浄排水樋10が連なる原水弁1を備えた
原水供給管14と、洗浄排水弁6を備えた洗浄水
排出管15が配備されている。また、流体流出入
機構13には流体流出入管16が接続され、過
水弁2、捨水弁3、水逆洗弁4及び空気逆洗弁5
は流体流出入機構13に分岐配備されている。 The structure of a conventional liquid filter filled with granular material is as shown in FIG. 1, for example. That is, in the vertical cylindrical filter machine 12, a cleaning drainage gutter 10 is provided on the upper side inside the filter main body 12a, a fluid inflow/outflow mechanism 13 is provided on the lower side, and a material layer 7 made of granular material is provided on the upper side as a filling material. The lower side is filled with a material support layer 8. On the other hand, on the outside upper side thereof, a raw water supply pipe 14 equipped with a raw water valve 1 connected to a cleaning drainage gutter 10 and a cleaning water discharge pipe 15 equipped with a cleaning drainage valve 6 are arranged. Further, a fluid inflow/outflow pipe 16 is connected to the fluid inflow/outflow mechanism 13, which includes an overwater valve 2, a water waste valve 3, a water backwash valve 4, and an air backwash valve 5.
are branched into the fluid inflow and outflow mechanism 13.
このような過機12の逆洗方法について説明
すると、水と空気を同時に用いて同時逆洗を行う
際の粒状材の流出を防ぐため、予め捨水弁3を
開け水抜きを行つて、過機12内の水位を材
層7の上端近くまで低下させ、しかる後同時逆洗
を行い、水面が洗浄排水樋10の上端に達する以
前に空気の供給を停止し、以後水単独供給による
逆洗を行うものである。 To explain the method for backwashing the filter machine 12, in order to prevent granular material from flowing out when backwashing is performed using water and air at the same time, the drain valve 3 is opened in advance to drain water. The water level in the machine 12 is lowered to near the top of the material layer 7, and then backwashing is performed at the same time. Air supply is stopped before the water level reaches the top of the washing and draining gutter 10, and thereafter backwashing is performed by supplying water alone. This is what we do.
このような過機12の逆洗においては、同時
逆洗の際に粒状材の流出を防止しなければなら
ないので、水の供給速度が制限され充分な逆洗効
果が得られない欠点がある。この欠点を補うため
に水供給の時間を長くとり、且つ同一の工程を2
度行つているのが現状である。このように従来の
逆洗方法では、操作が繁雑で長時間を必要とし、
また充分な逆洗効果を得ることが困難であつた。 In such backwashing of the filter machine 12, it is necessary to prevent the granular material from flowing out during simultaneous backwashing, so there is a drawback that the water supply rate is limited and a sufficient backwashing effect cannot be obtained. To compensate for this drawback, the water supply time is increased and the same process is repeated twice.
The current situation is that this is happening frequently. In this way, conventional backwashing methods are complicated and require a long time to operate.
Furthermore, it was difficult to obtain a sufficient backwashing effect.
本発明は、上記従来の問題点を解決する有効な
液体過機の逆洗方法を提供することを目的とす
るものである。すなわち、本発明は、粒状材を
使用し材流出防止機構を有する液体過機の逆
洗を行う際の、逆洗流体の供給条件を開示するこ
とを目的とするものである。
An object of the present invention is to provide an effective method for backwashing a liquid filtration machine that solves the above-mentioned conventional problems. That is, an object of the present invention is to disclose conditions for supplying backwash fluid when backwashing a liquid filter using granular material and having a material outflow prevention mechanism.
本発明は、過機本体内部に粒状材の充填層
が形成され、過機本体に内装される洗浄排水樋
の周辺と過機本体の内壁に間隙を保つて気液分
離板を設け、且つ気液分離板はその上端開口部が
この洗浄排水樋上端より低く位置して上方に自由
水面が形成され且つ気液分離板の内外側に気液混
相流路と分離した材の沈降流路を形成すると共
に、この気液分離板で形成される下部開口部に間
隙を保つて逆流阻止板を傾斜して設け前記分離
材の沈降流路の下方に臨ましめてなる液体過機
の洗浄方法であつて、液体過機を水・空気同時
逆洗工程により逆洗を行つたのち、空気の供給を
停止し水のみを供給して水単独逆洗工程により逆
洗を行うに際し、該同時逆洗を、前記過機内の
液面を前記充填層表面と同一高さ、又は該表面よ
り高く維持しつつ、水の線速度を前記粒状材の
重力の場における水中の終端速度の1/15〜1/10の
範囲に、且つ空気の線速度を20〜40m/hの範囲
にそれぞれ設定して行うことを特徴とする液体
過機の洗浄方法である。
The present invention is characterized in that a packed layer of granular material is formed inside the filter body, a gas-liquid separation plate is provided with a gap between the periphery of the cleaning drainage gutter installed in the filter body and the inner wall of the filter body, and The upper end opening of the liquid separation plate is located lower than the upper end of the cleaning drainage gutter, forming a free water surface above, and forming a gas-liquid multiphase flow path and a sedimentation flow path for the separated material on the inside and outside of the gas-liquid separation plate. At the same time, a method for cleaning a liquid filtration machine is provided in which a backflow prevention plate is provided at an angle with a gap in the lower opening formed by the gas-liquid separation plate so as to face below the sedimentation channel of the separation material. , after backwashing the liquid filtration machine through a simultaneous water and air backwashing step, when backwashing is performed through a water-only backwashing step by stopping the supply of air and supplying only water, the simultaneous backwashing is While maintaining the liquid level in the filter at the same height as or higher than the surface of the packed bed, the linear velocity of the water is set to 1/15 to 1/10 of the terminal velocity of the granular material in water in the field of gravity. This is a method for cleaning a liquid permeator, characterized in that the cleaning method is carried out by setting the linear velocity of the air within the range of 20 to 40 m/h.
一般に、水単独逆洗における好適な水供給線速
度は単一材粒子の重力の場における水中の終端
速度の1/10程度とされている。この逆洗速度では
材粒子相互の衝突回数が理論的に最も多くな
り、また実験によれば材粒子の良好な流動状態
が観察される。 Generally, the suitable linear velocity of water supply in water-only backwashing is about 1/10 of the terminal velocity of a single material particle in water under the force of gravity. At this backwashing speed, the number of collisions between the material particles is theoretically the highest, and according to experiments, a good fluidity state of the material particles is observed.
一方、水と空気による同時逆洗においては、水
の供給速度は空気併用の効果により低下し得るも
のと一般に考えられていたが、本発明者らの実験
によれば、材粒子の流動化は殆ど水の供給速度
のみによつて支配され、空気供給の有無あるいは
供給速度の高低は影響が少なく、水供給速度を低
下させると逆洗効果は著しく減殺されることが確
認された。これは、水と空気の密度差を考慮すれ
ば容易に理解できる現象である。 On the other hand, in simultaneous backwashing with water and air, it was generally thought that the water supply rate could be reduced due to the effect of the combined use of air, but according to experiments conducted by the present inventors, fluidization of material particles was It was confirmed that the backwashing effect was almost entirely controlled by the water supply rate, and that the presence or absence of air supply or the level of the supply rate had little effect, and that the backwashing effect was significantly reduced when the water supply rate was lowered. This is a phenomenon that can be easily understood if we consider the density difference between water and air.
空気逆洗の効果は、通水により流動化しつつあ
る材層中で気泡の破裂や合体が非定常的に行わ
れるため、あたかも沸騰現象の様に激しい撹拌作
用が生じることである。この現象は、水逆洗によ
り材層が流動化している時にのみ認められるも
のであり、水供給速度が低く材層の流動化が微
弱であるか、あるいは停止している時には空気は
材層中の一定通路を通過するだけで、材を揺
動するような効果は全く認められない。以上のよ
うに水、空気による同時逆流を行う場合、水の供
給速度を低下できるとする通説は誤りである。 The effect of air backwashing is that bubbles burst and coalesce unsteadily in the material layer that is being fluidized by water flow, resulting in a violent stirring action similar to a boiling phenomenon. This phenomenon is observed only when the material layer is fluidized by water backwashing, and when the water supply rate is low and the fluidization of the material layer is weak or stopped, air may flow into the material layer. The material simply passes through a certain path, and no effect of shaking the material is observed. The commonly held belief that the water supply rate can be reduced when simultaneous backflow of water and air is performed as described above is incorrect.
本発明においては、同時逆流時の供給空気の線
速度は20〜40m/hに設定するが、これは本発明
者らの実験結果によるものである。即ち、線速度
20m/h未満では空気の材層に対する通気分布
が不均一となるため逆洗効果が不充分であり、線
速度増大と共に逆洗効果は向上するものの、
40m/hを超える範囲ではほぼ横這いとなり、逆
洗効果と逆洗の経済性を総合判断すると上記範囲
が好ましいと結論されるからである。 In the present invention, the linear velocity of the supplied air during simultaneous backflow is set to 20 to 40 m/h, but this is based on the experimental results of the present inventors. That is, the linear velocity
If it is less than 20m/h, the backwashing effect is insufficient because the airflow distribution to the material layer becomes uneven, and although the backwashing effect improves as the linear velocity increases,
This is because in the range exceeding 40 m/h, the speed remains almost the same, and when the backwashing effect and the economical efficiency of backwashing are comprehensively judged, it is concluded that the above range is preferable.
なお、前記の如く材層の流動化は水の供給線
速度のみによつて支配されるから、空気供給線速
度は材粒子の密度、粒径に無関係に上記一定の
範囲に定め得るものである。 As mentioned above, since the fluidization of the material layer is controlled only by the linear velocity of water supply, the linear velocity of air supply can be set within the above certain range regardless of the density and particle size of the material particles. .
一方、同時逆洗時間即ち洗浄流体の供給時間に
ついては、逆洗水の全供給量が材層の充填空間
(材層の上面から底面までの過機内空間)の
容積の2〜3倍になるように設定される。これを
方程式で表わすと、同時逆洗時間T1(min)は
T1=60k1Z/LVl (1)
となる。但し、k1は係数(2〜3)、Zは材層
の層厚(m)、LVlは洗浄水の線速度(m/h)
である(線速度LVlは、洗浄水の流量を過機の
横断面積で除したものであり、これは洗浄空気に
ついても同様である)。 On the other hand, regarding the simultaneous backwashing time, that is, the supply time of cleaning fluid, the total amount of backwash water supplied is 2 to 3 times the volume of the filling space of the material bed (the space inside the filter machine from the top surface to the bottom surface of the material bed). It is set as follows. Expressing this in an equation, the simultaneous backwashing time T 1 (min) is T 1 =60k 1 Z/LVl (1). However, k1 is the coefficient (2 to 3), Z is the layer thickness of the material layer (m), and LVl is the linear velocity of the cleaning water (m/h).
(The linear velocity LVl is the flow rate of the wash water divided by the cross-sectional area of the filter, and the same is true for the wash air).
一方、水単独逆洗の条件については、洗浄水の
線速度を前記と同じく粒状材の重力の場におけ
る水中の終端速度の1/15〜1/10とし、その供給時
間は、洗浄水の全供給量が前記材層の充填空間
及び材層より上部水層の容積を合計した容積の
2〜3倍になるように設定される。これを方程式
で表わすと、水単独逆洗時間T2(min)は
T2=60k2・(Z+H)/LVl (2)
となる。但し、k2は係数(2〜3),Hは粒状
材層上端面と洗浄水排出面(通常は洗浄排水樋の
上端)の高さの差(m),Z及びLVlは前記(1)式
における意味と同一である。 On the other hand, regarding the conditions for water-only backwashing, the linear velocity of the washing water is set to 1/15 to 1/10 of the terminal velocity of the granular material in water in the field of gravity, as described above, and the supply time is set to The supply amount is set to be 2 to 3 times the total volume of the filling space of the material layer and the volume of the water layer above the material layer. Expressing this in an equation, the water-only backwashing time T 2 (min) is T 2 =60k 2 ·(Z+H)/LVl (2). However, k 2 is a coefficient (2 to 3), H is the difference in height (m) between the upper end surface of the granular material layer and the washing water discharge surface (usually the upper end of the washing drainage gutter), and Z and LVl are the above (1). The meaning is the same as in the expression.
以上方程式(1)及び(2)により説明した本発明条件
はいずれも本発明者らによる種々の実験結果を総
括して得られた結論である。 The conditions of the present invention explained using equations (1) and (2) above are all conclusions obtained by summarizing various experimental results by the present inventors.
水と空気により同時逆洗を行う場合、材層の
攬拌が極めて激しいので、多層型の材層を用い
た場合材層の混合が生じる。これを成層化する
ためには、同時逆洗に引き続き水単独逆洗を材
層を充分に流動化する条件で2分間以上実施すれ
ばよい。通常、前記逆洗時間T2は2分以上とな
るので、水逆洗と成層化を同時に行うことができ
る。 When backwashing is performed simultaneously with water and air, the agitation of the material layers is extremely intense, so when multi-layered material layers are used, mixing of the material layers occurs. In order to stratify the material, simultaneous backwashing may be followed by water-only backwashing for 2 minutes or more under conditions that sufficiently fluidize the material layer. Usually, the backwashing time T 2 is 2 minutes or more, so water backwashing and stratification can be performed simultaneously.
次に、従来法による一例と本発明の実施例を図
面を参照しつつ比較,説明する。
Next, an example of a conventional method and an embodiment of the present invention will be compared and explained with reference to the drawings.
(従来例)
従来の液体過機は第1図に示した如くであつ
て、その構造の概要は前記したとおりである。第
1図においてZは1.7m、Hは0.7mであり、材
層は単一層で粒状材として有効径1.2mmの砂が
充填されている。(Conventional Example) A conventional liquid filter is shown in FIG. 1, and the outline of its structure is as described above. In Figure 1, Z is 1.7m and H is 0.7m, and the material layer is a single layer filled with sand with an effective diameter of 1.2mm as granular material.
このような過機における逆洗は、例えば下水
道協会誌vo1.13,No.140,P.37〜50から引用し、
簡略化して得た第2図に示す如く、水抜き、
空気(単独)逆洗、水・空気同時逆洗、水
(単独)逆洗の4工程からなる逆洗操作が2回実
施され、最後に捨水が行われた後、正規の過工
程が再開される。この場合の各工程における各弁
の開閉状況は第2図に併記したとおりであり、同
図中の横線は「開放」を、横線が記入されていな
い部分は「閉」をそれぞれ示している。 For example, backwashing in such a filter is quoted from the Japan Sewage Works Association Magazine vo1.13, No.140, P.37-50,
As shown in the simplified figure 2, draining water,
The backwashing operation, which consists of the four steps of air (single) backwashing, water/air simultaneous backwashing, and water (single) backwashing, was performed twice, and after finally discarding the water, the regular overflow process resumed. be done. The opening/closing status of each valve in each step in this case is as shown in Figure 2, where horizontal lines indicate "open" and areas without horizontal lines indicate "closed".
この場合、粒状材たる砂の重力の場における
水中の終端速度から決定される水供給速度の最適
値は約72m/hであるが、水・空気同時逆洗にお
いて上記線速度はわずかに10m/hであり、この
条件下では材粒子が流動化しないため、その効
果が不十分となることは明白である。また引き続
いて行う水(単独)逆洗においても、同時逆洗後
であるため水供給速度は40m/hで充分であると
されてはいるが、完全な流動化は達成できず水逆
洗の効果もまた不満足なものとなる。 In this case, the optimal value of the water supply speed determined from the terminal velocity of the granular material sand in water under the force of gravity is approximately 72 m/h, but in simultaneous water and air backwashing, the above linear velocity is only 10 m/h. h, and it is clear that under these conditions, the material particles do not fluidize, so the effect is insufficient. Furthermore, in the subsequent water (single) backwashing, it is said that a water supply speed of 40 m/h is sufficient since it is a simultaneous backwash, but complete fluidization cannot be achieved and water backwashing is The effect will also be unsatisfactory.
なお、洗浄空気の供給線速度は空気(単独)逆
洗及び前記同時逆洗時のいずれにおいても60m/
hであり、また第2図において水逆洗弁の開放を
示す横線が上下二段になつているが、上段側は線
速度10m/h、下段側は線速度40m/hをそれぞ
れ示している。 The linear velocity of cleaning air is 60 m/min for both air (single) backwashing and simultaneous backwashing.
h, and in Fig. 2, the horizontal lines indicating the opening of the water backwash valve are in two levels, upper and lower. The upper line indicates a linear velocity of 10 m/h, and the lower line indicates a linear velocity of 40 m/h. .
上記問題点を補うため第2図からも明らかな如
く、各逆洗時間を長く設定し、かつ2回の洗浄を
行つている。しかしながら、材粒子の流動化を
伴わない限り逆洗時間を延長しても材粒子間に
捕促された懸濁物は離脱しないので、やはり逆洗
は不完全とならざるを得ない。 In order to compensate for the above problems, as is clear from FIG. 2, each backwashing time is set longer and washing is performed twice. However, as long as the material particles are not fluidized, even if the backwashing time is extended, the suspended matter trapped between the material particles will not be released, so the backwashing will inevitably be incomplete.
(本発明の実施例)
これに対し本発明が適用される、第3図に示す
過機は、材流出防止機構としての気液分離板
9を有するので、洗浄流体の供給線速度が自由に
設定できるものである。(Embodiment of the present invention) On the other hand, the filter machine shown in FIG. 3 to which the present invention is applied has a gas-liquid separation plate 9 as a material outflow prevention mechanism, so that the linear velocity of the cleaning fluid can be freely supplied. It is configurable.
すなわち、この過機12は、粒状材からな
る材層7を持ち空気と水を併用して逆洗を行う
液体過機において、過機本体12aに内装さ
れる洗浄排水樋10の周辺と過機本体12aの
内壁に間隙を保つて気液分離板9を設け、且つ気
液分離板9はその上端開口部がこの洗浄排水樋1
0上端より位置して上方に自由水画が形成され且
つ気液分離板9の内外側に気液混相流路と分離し
た材の沈降流路を形成すると共に、この気液分
離板9で形成される下部開口部に間隙を保つて逆
流阻止板11を傾斜して設け前記分離材の沈降
流路を下方に臨ましめてなる液体過機である。 That is, this filter 12 is a liquid filter that has a material layer 7 made of granular material and performs backwashing using a combination of air and water. A gas-liquid separation plate 9 is provided on the inner wall of the main body 12a with a gap maintained, and the upper end opening of the gas-liquid separation plate 9 is connected to the cleaning drainage gutter 1.
A free water area is formed above the upper end of the gas-liquid separation plate 9, and a gas-liquid multiphase flow path and a sedimentation flow path for the separated material are formed on the inside and outside of the gas-liquid separation plate 9. This is a liquid filtration machine in which a backflow prevention plate 11 is provided in an inclined manner with a gap maintained in the lower opening of the separation material so that the sedimentation channel for the separation material faces downward.
しかして、上図においてHは1.0mであり、
材層7は二層型で上層に有効径1.2mmの砂が層厚
0.3mに、下層に有効径2.4mmのアンスラサイトが
層厚0.7mに充填されており、材層7の全層厚
Zは1.0mである。 Therefore, in the above figure, H is 1.0m,
Material layer 7 is a two-layer type, with the upper layer having a layer of sand with an effective diameter of 1.2 mm.
0.3 m, the lower layer is filled with anthracite with an effective diameter of 2.4 mm to a layer thickness of 0.7 m, and the total thickness Z of the material layer 7 is 1.0 m.
上記第3図例の過機と第1図例の過機との
装置構造上の相違点は、前者には気液分離板9,
逆流阻止板11が配置され、捨水弁3が省略され
ていることであり、その他については同様であ
る。 The difference in device structure between the above-mentioned permeator shown in FIG. 3 and the example shown in FIG. 1 is that the former has a gas-liquid separation plate 9,
The only difference is that the backflow prevention plate 11 is disposed and the drain valve 3 is omitted, but the rest is the same.
次に、第3図の過機の逆洗操作について説明
すると、まず水の線速度を前記二種類の粒状材
の、重力の場における水中の終端速度から求めた
最適値72m/hとし、空気の線速度は40m/hに
設定した。一方逆洗時間については、以上の諸条
件を、前記(1)式及び(2)式に代入して求めた。即
ち、T1は1.7〜2.5分となるが安全をみて2.5分と
し、T2は3.3〜5.0分を得るが3.5分に設定し合計
6.0分とした。 Next, to explain the backwashing operation of the filter shown in Figure 3, first, the linear velocity of water is set to the optimum value of 72 m/h obtained from the terminal velocity of the two types of granular materials in water in the field of gravity, and the The linear velocity of was set at 40 m/h. On the other hand, the backwash time was determined by substituting the above conditions into equations (1) and (2) above. That is, T 1 will be 1.7 to 2.5 minutes, but to be safe, it will be set to 2.5 minutes, and T 2 will be 3.3 to 5.0 minutes, but it will be set to 3.5 minutes, and the total will be 2.5 minutes.
It was set as 6.0 minutes.
かくて第4図に示す如く、過工程終了後の
過機について水抜き、空気逆洗を省略して過機
内の水面を材層表面より高くした状態で水・空
気同時逆洗を2.5分間を行い、次いで水逆洗を3.5
分間実施したところ逆洗の効果は完全であつた。 Thus, as shown in Figure 4, water and air backwashing was carried out simultaneously for 2.5 minutes with the water level inside the filter machine raised higher than the surface of the material layer by omitting water removal and air backwashing for the filter machine after the completion of the overprocessing process. and then water backwash 3.5
When the backwashing was carried out for several minutes, the effect of backwashing was complete.
一方、上記従来例と本発明の実施例を単位過
面積当たりの洗浄水消費量について比較すると、
線速度、逆洗時間及び操作回数から算出すること
によりそれぞれ8.3m3/m2,7.2m3/m2となり、本
発明の実施例の方が少量であると言える。これは
洗浄空気消費量についても同様である。 On the other hand, when comparing the above conventional example and the embodiment of the present invention in terms of washing water consumption per unit area,
Calculating from the linear velocity, backwashing time, and number of operations, the amount was 8.3 m 3 /m 2 and 7.2 m 3 /m 2 , respectively, and it can be said that the amount in the example of the present invention is smaller. The same applies to cleaning air consumption.
更に両者の洗浄スケジユールを第2図,第4図
によつて比較すれば明白であるように、従来例で
は極めて複雑な弁の開閉操作を必要とし、逆洗に
要する時間が38分であるのに比べ、本発明の実施
例では極めて簡単な弁探作と、わずかに6分の逆
洗時間を要するのみである。この事実は過機の
逆洗操作設備が簡略化されるのは勿論であるが、
逆洗操作に伴つて必要とされる過機前後の貯槽
類の容量が相当に低減されることを意味してお
り、これら間接的効果をも勘案すれば本発明によ
る直接,間接の経済的効果は極めて大きい。 Furthermore, as is clear from comparing the cleaning schedules of the two in Figures 2 and 4, the conventional method requires extremely complicated valve opening and closing operations, and the time required for backwashing is 38 minutes. In comparison, the embodiment of the present invention requires extremely simple valve searching and only 6 minutes of backwash time. This fact not only simplifies the equipment for backwashing the filter, but also
This means that the capacity of storage tanks before and after the filtration machine required for backwashing operations is considerably reduced, and if these indirect effects are also taken into account, there are direct and indirect economic effects of the present invention. is extremely large.
以上述べたように、本発明は、第3図に示す液
体過機を典型例とする、材流出防止機構を備
えた液体過機における逆洗の最適操作条件を提
供するものであり、本発明によれば簡単な操作に
より完全な洗浄効果が短時間で容易に得られると
共に、逆洗用設備も簡略化され、洗浄水,洗浄空
気の消費量も節減できるなど従来法に比べ多大の
利点を有するものである。
As described above, the present invention provides optimal operating conditions for backwashing in a liquid filter machine equipped with a material outflow prevention mechanism, of which the liquid filter machine shown in FIG. 3 is a typical example. According to the company, this method has many advantages over conventional methods, such as simple operations that allow complete cleaning to be achieved in a short time, simplified backwashing equipment, and reduced consumption of cleaning water and cleaning air. It is something that you have.
第1図及び第2図は従来例を示し、第1図は
過機の縦断面図、第2図はその逆洗工程説明図で
あり、第3図及び第4図は本発明の実施例を示
し、第3図は過機の縦断面図、第4図はその逆
洗工程説明図である。
1…原水弁、2…過水弁、3…捨水弁、4…
水逆洗弁、5…空気逆洗弁、6…洗浄排水弁、7
…材層、8…材支持層、9…気液分離板、1
0…洗浄排水樋、11…逆流阻止板、12…過
機、12a…過機本体、13…流体流出入機
構。
Figures 1 and 2 show a conventional example, Figure 1 is a longitudinal cross-sectional view of the filter, Figure 2 is an explanatory diagram of the backwashing process, and Figures 3 and 4 are examples of the present invention. FIG. 3 is a longitudinal sectional view of the filter, and FIG. 4 is an explanatory diagram of the backwashing process. 1... Raw water valve, 2... Overwater valve, 3... Discharge valve, 4...
Water backwash valve, 5...Air backwash valve, 6...Washing drain valve, 7
... material layer, 8 ... material support layer, 9 ... gas-liquid separation plate, 1
0... Washing drain gutter, 11... Backflow prevention plate, 12... Filter machine, 12a... Filter machine main body, 13... Fluid inflow/outflow mechanism.
Claims (1)
れ、過機本体に内装される洗浄排水樋の周辺と
過機本体の内壁に間隙を保つて気液分離板を設
け、且つ気液分離板はその上端開口部がこの洗浄
排水樋上端より低く位置して上方に自由水面が形
成され且つ気液分離板の内外側に気液混相流路と
分離した材の沈降流路を形成すると共に、この
気液分離板で形成される下部開口部に間隙を保つ
て逆流阻止板を傾斜して設け前記分離材の沈降
流路の下方に臨ましめてなる液体過機の洗浄方
法であつて、液体過機を水・空気同時逆洗工程
により逆洗を行つたのち、空気の供給を停止し水
のみを供給して水単独逆洗工程により逆洗を行う
に際し、該同時逆洗を、前記過機内の液面を前
記充填層表面と同一高さ、又は該表面より高く維
持しつつ、水の線速度を前記粒状材の重力の場
における水中の終端速度の1/15〜1/10の範囲に、
且つ空気の線速度を20〜40m/hの範囲にそれぞ
れ設定して行うことを特徴とする液体過機の洗
浄方法。 2 前記同時逆洗工程の逆洗時間T1(min)を、
次式 T1=60k1Z/LVl (但し、k1は係数(2〜3)、Zは粒状材層
の層厚(m)、LVlは洗浄水の線速度(m/h))
で計算して設定する特許請求の範囲第1項記載の
洗浄方法。 3 前記水単独逆洗工程の逆洗時間T2(min)を、
次式 T2=60k2・(Z+H)/LVl (但し、k2は係数(2〜3)、Zは粒状材層
の層厚(m)、Hは粒状材層上端面と洗浄水排
出面の高さの差(m)、LVlは洗浄水の線速度
(m/h)) で計算して設定する特許請求の範囲第2項記載の
洗浄方法。[Scope of Claims] 1. A packed layer of granular material is formed inside the filter body, and a gas-liquid separation plate is provided with a gap between the periphery of the cleaning drainage gutter built into the filter body and the inner wall of the filter body. , and the upper end opening of the gas-liquid separation plate is located lower than the upper end of the cleaning drainage gutter, so that a free water surface is formed above, and a gas-liquid multiphase flow path and a sedimentary flow of the separated material are formed on the inside and outside of the gas-liquid separation plate. A method for cleaning a liquid filtration machine in which a backflow prevention plate is provided at an angle with a gap formed in the lower opening formed by the gas-liquid separation plate facing downwardly from the sedimentation channel of the separation material. After backwashing a liquid filtration machine through a simultaneous water and air backwash process, when backwashing is performed through a water-only backwash process by stopping the air supply and supplying only water, the simultaneous backwash process While maintaining the liquid level in the filter at the same height as or higher than the surface of the packed bed, the linear velocity of the water is set to 1/15 to 1/15 of the terminal velocity of the granular material in water in the field of gravity. to a range of 1/10,
A method for cleaning a liquid filtration machine, characterized in that the cleaning method is carried out by setting the linear velocity of air in a range of 20 to 40 m/h. 2 The backwashing time T 1 (min) of the simultaneous backwashing step is
The following formula T 1 = 60k 1 Z/LVl (where, k 1 is the coefficient (2 to 3), Z is the layer thickness of the granular material layer (m), and LVl is the linear velocity of the cleaning water (m/h))
The cleaning method according to claim 1, wherein the cleaning method is set by calculating. 3 The backwash time T 2 (min) of the water-only backwash process is
The following formula T 2 = 60k 2・(Z+H)/LVl (where, k 2 is the coefficient (2 to 3), Z is the layer thickness of the granular material layer (m), and H is the upper end surface of the granular material layer and the washing water discharge surface. 2. The cleaning method according to claim 2, wherein the cleaning method is calculated and set using the difference in height (m) of the cleaning water (LVl is the linear velocity of the cleaning water (m/h)).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1442580A JPS56113305A (en) | 1980-02-08 | 1980-02-08 | Cleaning method of filter for liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1442580A JPS56113305A (en) | 1980-02-08 | 1980-02-08 | Cleaning method of filter for liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56113305A JPS56113305A (en) | 1981-09-07 |
JPS6330052B2 true JPS6330052B2 (en) | 1988-06-16 |
Family
ID=11860658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1442580A Granted JPS56113305A (en) | 1980-02-08 | 1980-02-08 | Cleaning method of filter for liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56113305A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0728889Y2 (en) * | 1989-04-28 | 1995-07-05 | 株式会社ノーリツ | Hair collector |
CN102500150B (en) * | 2011-11-29 | 2014-04-23 | 温州菲德石化科技有限公司 | Automatic back-washing filter for paraffin |
JP6026842B2 (en) * | 2012-10-12 | 2016-11-16 | 水ing株式会社 | Cleaning method for water treatment equipment |
CN113432245A (en) * | 2021-06-10 | 2021-09-24 | Tcl空调器(中山)有限公司 | Filter screen filth blockage processing method and device, electronic equipment and readable storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5237234A (en) * | 1975-09-18 | 1977-03-23 | Matsushita Electric Ind Co Ltd | Gas burner |
JPS5316051U (en) * | 1976-07-21 | 1978-02-10 | ||
JPS5322064A (en) * | 1976-08-06 | 1978-03-01 | Nomura Sangyo Kk | Grain pearling machine |
JPS5330071A (en) * | 1976-09-01 | 1978-03-20 | Mitsubishi Kakoki Kk | Sand filtrating method and system |
-
1980
- 1980-02-08 JP JP1442580A patent/JPS56113305A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5237234A (en) * | 1975-09-18 | 1977-03-23 | Matsushita Electric Ind Co Ltd | Gas burner |
JPS5316051U (en) * | 1976-07-21 | 1978-02-10 | ||
JPS5322064A (en) * | 1976-08-06 | 1978-03-01 | Nomura Sangyo Kk | Grain pearling machine |
JPS5330071A (en) * | 1976-09-01 | 1978-03-20 | Mitsubishi Kakoki Kk | Sand filtrating method and system |
Also Published As
Publication number | Publication date |
---|---|
JPS56113305A (en) | 1981-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3717251A (en) | Method and apparatus for filtering solids | |
US3134735A (en) | Open gravity filters | |
US4608181A (en) | Water filtration apparatus having upflow buoyant media filter and downflow nonbuoyant media filter | |
US4322299A (en) | Method of simultaneous air-water wash of multiple-media filters | |
US3527718A (en) | Regenerating mixed bed anion and cation exchange resins | |
US4479880A (en) | Method and apparatus for deflecting granular material away from the outlet of a filtration bed | |
JPH0318483B2 (en) | ||
US2888140A (en) | Filter baffles | |
US4229292A (en) | Countercurrent liquid-solid contacting apparatus | |
US5759412A (en) | Control method and apparatus for backwash of filter media bed based water volume in filter basin | |
JPS6330052B2 (en) | ||
US3512641A (en) | Countercurrent solid-liquid contacting system | |
JPH0217908A (en) | Method for washing solid-liquid separation apparatus | |
US2785123A (en) | Method and apparatus for purifying water | |
JP2599538B2 (en) | Inclined plate type sedimentation tank and method for preventing clogging thereof | |
US2317782A (en) | System and method of treating sewage or other waste materials | |
US4340485A (en) | Countercurrent liquid-solid contacting apparatus | |
JPH06277407A (en) | Device filtering suspension liquid | |
JPH04227005A (en) | Water removal device for washing filter medium containing granular material whichis washed simultaneously with water and air | |
US2693946A (en) | Method of and apparatus for separating dust from water or other liquids | |
US5368730A (en) | Filtering apparatus | |
GB2118452A (en) | Filtration method and apparatus | |
JPS5946105A (en) | Method and device for removing solid from liquid containing suspended solid | |
US3080062A (en) | Filters | |
US4257896A (en) | Countercurrent liquid-solid contacting apparatus |