JPS63299986A - Optical recording medium and recording method using the same - Google Patents

Optical recording medium and recording method using the same

Info

Publication number
JPS63299986A
JPS63299986A JP62135557A JP13555787A JPS63299986A JP S63299986 A JPS63299986 A JP S63299986A JP 62135557 A JP62135557 A JP 62135557A JP 13555787 A JP13555787 A JP 13555787A JP S63299986 A JPS63299986 A JP S63299986A
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
thin film
medium according
transparent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135557A
Other languages
Japanese (ja)
Inventor
Minoru Ikeda
稔 池田
Hideki Kobayashi
秀樹 小林
Koichi Saito
晃一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARAY PURAZUMON DATA SYST KK
Kuraray Co Ltd
Original Assignee
KURARAY PURAZUMON DATA SYST KK
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARAY PURAZUMON DATA SYST KK, Kuraray Co Ltd filed Critical KURARAY PURAZUMON DATA SYST KK
Priority to JP62135557A priority Critical patent/JPS63299986A/en
Publication of JPS63299986A publication Critical patent/JPS63299986A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2535Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To contrive a higher sensitivity and a simpler construction, by causing a metallic thin film provided on a transparent resin substrate having a minutely rugged surface to comprise a platinum group element and other metallic or semimetallic element and to have a specified crystallinity. CONSTITUTION:A minutely rugged structure at the surface of a transparent resin substrate can be easily obtained by using a metallic mold having a minutely rugged structure at the time of molding the substrate by a molding method, e.g., calendering, injection molding, injection compression molding, compression molding or a photopolymer process (2P-process). A metallic thin film consists of a composition which comprises a platinum group element as an essential constituent and other metallic or semimetallic element as an auxiliary constituent, and has a crystallinity of not more than 60% of the crystallinity of the platinum group element alone. The metallic thin film is preferably a thin film of an amorphous alloy. By lowering the crystallinity of the material constituting the metallic thin film, it is possible to achieve favorable conditions for use as a recording medium, provided with properties such as a higher sensitivity and a higher CNR. The metallic or semimetallic element is preferably, for example, a IVa group element.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はレーザ光によって情報の記録及び再生を行なう
光記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical recording medium on which information is recorded and reproduced using laser light.

〈従来の技術〉 レーザ光によって情報の記録、可成を行なう光記録媒体
は、半導体レーザ、記録材料、成膜技術などの基本技術
の向上と、大容量記録が可能であるという特徴により、
最近急速に実用化の道が開かれてきた。レーザ光によっ
て記録を行うためには、レーザ光を照射した部分に何ら
かの状態変化が必要であり、これによって光学的変化を
もたらすことが必要である。すでにバブル(空隙)形成
方式、ビット形成(穴あけ)方式、非結晶−結晶質転移
方式等が提案されている。
<Prior art> Optical recording media, which record and create information using laser light, have improved due to improvements in basic technologies such as semiconductor lasers, recording materials, and film-forming technology, as well as the ability to record large amounts of information.
Recently, the path to practical application has been rapidly opened. In order to perform recording with laser light, it is necessary to cause some kind of state change in the area irradiated with the laser light, and it is necessary to bring about an optical change as a result of this. A bubble (void) formation method, a bit formation (hole drilling) method, an amorphous-crystalline transition method, etc. have already been proposed.

例えば、空隙形成方式の記録媒体は、特開昭56−65
340、特開昭56−127937においてその技術が
公開されている。
For example, recording media using the void formation method are
340 and Japanese Patent Application Laid-Open No. 56-127937.

一方、穴あけ方式の記録媒体の場合、生成する孔部周辺
に記録膜の一部が飛散したり、肉盛りとなることが避け
られないため、再生信号のCNRを向上させることが困
難であるという欠点を有していた。また相転移方式の記
録媒体の場合、相転移に有する時間が長いため、記録速
度が遅(、更に記録に高パワーを要するという欠点を有
していた。
On the other hand, in the case of drilling-type recording media, it is difficult to improve the CNR of the reproduced signal because it is inevitable that some of the recording film will scatter or build up around the holes that are created. It had drawbacks. In addition, in the case of a phase transition type recording medium, since the time required for phase transition is long, the recording speed is slow (and also has the disadvantage that high power is required for recording).

また、特開昭56−127937で提案されている空隙
形成型の記録媒体は、これらの欠点の内、多くは除去さ
れているが、依然、記録感度が低いという欠点を有して
いた。
Furthermore, although most of these drawbacks have been eliminated in the void-forming recording medium proposed in Japanese Patent Laid-Open No. 56-127937, it still has the drawback of low recording sensitivity.

一方、特開昭56−65340で提案されている記録媒
体は、基板と有機中間層との間に光反射層を設けている
ため、レーザ光の利用効率は向上しているが、実際上、
エネルギー(光)吸収層及び中間有機層の厚さを使用レ
ーザ光の波長に従って所定のものに厳密に設定する必要
がある。このため、製造工程が複雑になり、歩留りも悪
くなるという欠点があった。
On the other hand, the recording medium proposed in JP-A-56-65340 has a light reflecting layer between the substrate and the organic intermediate layer, which improves the efficiency of laser light utilization;
The thicknesses of the energy (light) absorption layer and the intermediate organic layer must be precisely set to predetermined values according to the wavelength of the laser light used. This has the disadvantage that the manufacturing process is complicated and the yield is poor.

ここで、表面に微細な凹凸構造を有するプラスチック基
板上に金属薄膜を設けた光記録媒体は、表面が平坦なプ
ラスチック基板上に金属薄膜を設けた記録媒体に比較し
て、記録用レーザを効率よく吸収するため低いパワーで
記録することが可能であり、構造を単純化できる特徴を
有し、例えば特開昭59−135643号にその技術が
開示されているしかし、レーザ光への負担転減、あるい
は多機能ドライブ、レーザカード等の開発に伴って、よ
り高感度な光記録媒体への要求が強まってきた。
Here, an optical recording medium in which a metal thin film is provided on a plastic substrate with a fine uneven structure on the surface has a higher efficiency when compared to a recording medium in which a metal thin film is provided on a plastic substrate with a flat surface. Since it absorbs well, it is possible to record with low power, and it has the feature of simplifying the structure. For example, the technology is disclosed in Japanese Patent Application Laid-open No. 135643/1983. However, it is difficult to reduce the burden on laser light. With the development of multifunctional drives, laser cards, etc., the demand for more sensitive optical recording media has increased.

〈発明が解決しようとする問題点〉 本発明の目的は、上述した問題点を解決することを技術
的課題として、微細な凹凸構造を有する空隙形成型記録
媒体において、光吸収層として二成分以上の金属あるい
は半金属から成る組成物薄膜を用いることによって、従
来の技術と比較して充分高い記録感度を持ち、かつ単純
な構成から成る光記録媒体を提供せんとするものである
<Problems to be Solved by the Invention> The purpose of the present invention is to solve the above-mentioned problems as a technical problem, and to provide a void-forming recording medium having a fine uneven structure, using two or more components as a light absorption layer. The present invention aims to provide an optical recording medium which has a sufficiently high recording sensitivity compared to conventional techniques and has a simple structure by using a composition thin film made of a metal or metalloid.

く問題点を解決するための手段〉 本発明は表面に微細な凹凸構造を有する透明樹脂基板の
上に金属薄膜を積層してなり、所定の波長領域のレーザ
光を強く吸収して該レーザ光により空隙を形成すること
によってデータが書き込まれることのできる光記録媒体
において、上記金属薄膜が白金族元素及び他の金属また
は半金属元素を含み、結晶化度が、必須成分たる白金族
元素単金属の結晶化度の60%以下であることを特徴と
する光記録媒体である。
Means for Solving the Problems> The present invention is made by laminating a metal thin film on a transparent resin substrate having a fine uneven structure on its surface, which strongly absorbs laser light in a predetermined wavelength range and absorbs the laser light. In an optical recording medium on which data can be written by forming voids, the metal thin film contains a platinum group element and another metal or metalloid element, and the crystallinity is a platinum group element monometal as an essential component. The optical recording medium is characterized in that the crystallinity is 60% or less of the crystallinity of the optical recording medium.

本発明の記録媒体の基本構造は、表面に微細な凹凸構造
を有する透明樹脂基板上に、金属薄膜を設けた構造であ
る。該基本構造は、例えば米国特許第4.616,23
7号明細書又は特開昭59−135643号明細書に開
示される方法により得られる。
The basic structure of the recording medium of the present invention is a structure in which a metal thin film is provided on a transparent resin substrate having a fine uneven structure on its surface. The basic structure is described, for example, in U.S. Pat. No. 4,616,23.
It is obtained by the method disclosed in the specification of No. 7 or the specification of JP-A-59-135643.

用いられる透明樹脂としては、記録用レーザ光によって
照射された金属薄膜層の基板部分が熱分解や熱変形を生
起する性質を有する透明なものであれば、何でも使用で
きる。それらは、例えばポリエステル樹脂、ポリオレフ
ィン樹脂、ポリアミド樹脂、ポリカーボネート樹脂又は
ポリメタクリル樹脂等の透明性に優れた透明樹脂材料を
例示することができる。用いるレーザは特に限定するも
のではないが、ドライブ装置をコンパクトにするために
は半導体レーザが好ましく、波長が750〜850nI
11領域のものが使われる。この場合記録用パワーとし
ては一般に1〜lOmW程度の範囲で用いられる。
Any transparent resin can be used as long as it has the property of causing thermal decomposition or thermal deformation in the substrate portion of the metal thin film layer irradiated with the recording laser beam. Examples of these materials include transparent resin materials with excellent transparency such as polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, and polymethacrylic resin. The laser to be used is not particularly limited, but in order to make the drive device compact, a semiconductor laser is preferable, and a laser with a wavelength of 750 to 850 nI is preferable.
11 areas are used. In this case, the recording power is generally in the range of about 1 to 10 mW.

透明樹脂基板表面の微細な凹凸は、例えばカレンダリン
グ法、射出成形法、射出圧縮成形法、圧縮成形法、ホト
ポリマー法(2P法)等の成形方法により基板が成形さ
れるときに微細な凹凸構造を有する成形金型を用いるこ
とにより容易に得られるこの微細な凹凸構造は、所定の
波長領域のレーザ光を強く吸収して、該レーザ光による
書き込みを容易にする性質を有する。該構造は一般に平
均表面レベルに対して横方向に測定した規則的な周期が
記録用レーザ光の波長以下であり、その深さが0,01
〜1μmであり、0.05〜1μmであることが好まし
い。横方向の周期がレーザ光の波長を超えたり、その深
さが0.01μmより小さいときは、表面が平坦な透明
樹脂基板と同程度の記録用パワーを要し、表面を凹凸構
造にする効果が発現しにくい。一方、深さが1μmより
大きくなると、記録用レーザ光を効率よく吸収する点で
は好ましいが、上述した成形方法により再現性よく、し
かも短時間で成形することが困難となる。
The fine irregularities on the surface of the transparent resin substrate are formed when the substrate is molded by a molding method such as calendaring, injection molding, injection compression molding, compression molding, or photopolymer method (2P method). This fine concave-convex structure, which can be easily obtained by using a molding die, has the property of strongly absorbing laser light in a predetermined wavelength range and facilitating writing with the laser light. The structure generally has a regular period measured transversely to the average surface level that is less than the wavelength of the recording laser beam and a depth of 0.01.
~1 μm, preferably 0.05 to 1 μm. When the lateral period exceeds the wavelength of the laser beam or the depth is less than 0.01 μm, the same level of recording power as a transparent resin substrate with a flat surface is required, and the effect of creating an uneven surface structure is required. is difficult to express. On the other hand, if the depth is greater than 1 μm, it is preferable in terms of efficiently absorbing recording laser light, but it becomes difficult to mold with good reproducibility and in a short time using the above-mentioned molding method.

本発明において用いられる金属薄膜としては、白金族元
素を必須成分とし、他の金属又は半金属元素を副成分と
する組成物(合金を含む)であり、結晶化度が必須成分
たる白金族元素単金属の結晶化度より低いものが採用さ
れる。
The metal thin film used in the present invention is a composition (including alloys) containing a platinum group element as an essential component and other metals or metalloid elements as subcomponents, and the crystallinity is a platinum group element as an essential component. A material with a crystallinity lower than that of a single metal is used.

白金族元素としては、白金、ルテニウム、ロジウム、パ
ラジウム、オスミウムまたはイリジウムが例示されるが
、その中でも特に好ましいのは白金である。白金を必須
成分とする金属薄膜は展延性に富むため、本発明の記録
方式(空隙形成)に適しているという点と化学的安定性
が高く記録媒体の初期性能を長期に渡って保持すること
ができるという特長を有する。
Examples of platinum group elements include platinum, ruthenium, rhodium, palladium, osmium, and iridium, among which platinum is particularly preferred. A metal thin film containing platinum as an essential component is highly malleable, so it is suitable for the recording method (void formation) of the present invention, and it is highly chemically stable and maintains the initial performance of the recording medium over a long period of time. It has the feature of being able to

さらに、本発明で用いられる金属薄膜層(光吸収層)は
必須成分たる白金族元素に適当な他の金属あるいは半金
属を1種類以上添加し、その結果、必須成分たる白金族
元素単金属の結晶化度より低い結晶化度を持つ組成物、
好ましくはアモルファス合金の薄膜である。即ち、金属
薄膜を構成する材料の低結晶化により、本発明の目的で
ある高感度化及び高CN R化などの記録媒体としての
好適な条件を達成し得る。これらの効果の発現機構は必
ずしも明らかではないが、アモルファス金属特有の温度
効果、即ち、ガラス転移温度付近で著しく軟化するとい
う現象や、高延性、高靭性、あるいは弾性率の減少など
によるものであると推測される。さらに結晶化度を低下
させることは、結晶粒子に起因するノイズを低減させる
効果も有しており、このことは高CNRを得る上で有利
である。
Furthermore, the metal thin film layer (light absorption layer) used in the present invention is made by adding one or more suitable other metals or semimetals to the platinum group element, which is an essential component, and as a result, the platinum group element monometal, which is an essential component, is a composition with a degree of crystallinity lower than the degree of crystallinity;
Preferably, it is a thin film of an amorphous alloy. That is, by reducing the crystallinity of the material constituting the metal thin film, it is possible to achieve the desirable conditions for a recording medium, such as high sensitivity and high CNR, which are the objectives of the present invention. Although the mechanisms by which these effects occur are not necessarily clear, they are due to temperature effects specific to amorphous metals, such as the phenomenon of significant softening near the glass transition temperature, high ductility, high toughness, or a decrease in elastic modulus. It is assumed that. Furthermore, lowering the crystallinity also has the effect of reducing noise caused by crystal particles, which is advantageous in obtaining a high CNR.

上記の効果は結晶化度が低ければ低い程顕著となること
も認められた。本発明における金属薄膜のより好ましい
結晶化度は白金族元素単金属の結晶化度の30%以下で
あり、特には実質的にアモルファスである。
It was also observed that the above effect becomes more pronounced as the degree of crystallinity decreases. A more preferable crystallinity of the metal thin film in the present invention is 30% or less of the crystallinity of the platinum group element single metal, and particularly, it is substantially amorphous.

」二足副成分として添加される金属又は半金属元素とし
ては、配合することにより白金族元素の結晶化度を著し
く低下させる能力を有するものなら何でも使用可能であ
るが、例えば周期律表のIVa族の元素が好適なものと
して例示される。それらは炭素(C)、ケイ素(S i
)、ゲルマニウム(Ge)、錫(Sn)または鉛(P 
b)である。ここで副成分たる元素の配合割合は適宜決
定されるが、結晶化度を低下させるにはそれぞれの状態
図において共晶点付近の組成を選択することが好ましい
As the metal or metalloid element added as a bipedal subcomponent, any element can be used as long as it has the ability to significantly reduce the crystallinity of platinum group elements when mixed. For example, IVa in the periodic table can be used. Preferred examples include elements of the group A. They are carbon (C), silicon (S i
), germanium (Ge), tin (Sn) or lead (P
b). Although the mixing ratio of the elements as subcomponents is determined as appropriate, in order to reduce the degree of crystallinity, it is preferable to select a composition near the eutectic point in each phase diagram.

金属として白金を選択した場合の好ましい副成分の組成
を一示すると、Si、 Ge及びSnの原子数%は15
〜35%、特には20〜30%である。この範囲の組成
において、これらの副成分は白金とアモルファス構造を
取り易すくなる。
A preferred composition of subcomponents when platinum is selected as the metal is as follows: Si, Ge, and Sn have an atomic percentage of 15
~35%, especially 20-30%. In a composition within this range, these subcomponents tend to form an amorphous structure with platinum.

金属薄膜の膜厚は、特には限定されないが、基板側から
レーザ光を入射した時の記録前の反射率が5〜60%の
範囲である様設定されるのがよい。
The thickness of the metal thin film is not particularly limited, but it is preferably set so that the reflectance before recording when laser light is incident from the substrate side is in the range of 5 to 60%.

この範囲を超え、低すぎると記録、再生時にトラッキン
グが十分行えず、安定した記録、可成が困難となる。又
、高すぎると記録用レーザ光を十分に吸収することがで
きず、全く記録できないか、記録に高パワーを要するの
で好ましくない。該金属薄膜層が、この様な反射率を有
するためには、配合元素によって差はあるが一般には5
〜20Or+mの膜厚で′ある。
If it exceeds this range or is too low, tracking will not be sufficient during recording or reproduction, making stable recording difficult. On the other hand, if it is too high, the recording laser beam cannot be absorbed sufficiently, and either no recording is possible or high power is required for recording, which is not preferable. In order for the metal thin film layer to have such a reflectance, there are differences depending on the blended elements, but generally 5.
The film thickness is ~20 Or+m.

この様な薄膜において結晶化度を測定することは非常に
困難である。しかしながら近年、X線回折測定技術の発
達によって、数十nmの薄膜試料からも非常に明確な回
折ピークを得ることができ、本発明では白金薄膜の回折
ピークの高さの比をしって結晶化度とした。なお結晶化
度は薄膜においては膜の厚みに依有する。従って、本発
明で定義される金属薄膜及び白金族単金属の結晶化度は
それぞれ同じ膜厚にて測定された値を基準にする。
It is very difficult to measure the degree of crystallinity in such thin films. However, in recent years, with the development of X-ray diffraction measurement technology, it has become possible to obtain very clear diffraction peaks even from thin film samples of several tens of nanometers. The degree of Note that the degree of crystallinity in a thin film depends on the thickness of the film. Therefore, the crystallinity of the metal thin film and platinum group single metal defined in the present invention is based on values measured at the same film thickness.

さらに、空隙形成型記録媒体の場合、高感度化を促進す
るためには極力膜厚を薄くすればよいということが従来
から知られていた。ところが、ある範囲を越えて薄すぎ
ると、レーザ照射時に不規則な穴があいたり、生成した
空隙が経時的につぶれるという現象が見られ、CNHに
悪影響を及ぼしていた。しかるに、本発明の様に低結晶
化度金属膜、より好ましくはアモルファス薄膜を用いた
場合、膜硬度は著しく大きくなり、空隙強度を保持した
ままで、膜厚をより薄くすることが可能である。
Furthermore, in the case of a void-forming recording medium, it has been known for a long time that the film thickness should be made as thin as possible in order to promote high sensitivity. However, if it is too thin beyond a certain range, phenomena such as irregular holes being formed during laser irradiation and voids formed collapsing over time are observed, which has an adverse effect on CNH. However, when a low-crystallinity metal film, more preferably an amorphous thin film, is used as in the present invention, the film hardness increases significantly, and the film thickness can be made thinner while maintaining void strength. .

以上示した様な金属薄膜層は、スパッタリング法、真空
蒸着法、イオンブレーティング法部常法により形成する
ことが可能であり、成膜方法は特に限定するものではな
い。
The metal thin film layer as shown above can be formed by a sputtering method, a vacuum evaporation method, or an ion blasting method, and the film forming method is not particularly limited.

以上により製造された光記録媒体は、レーザ光を照射す
ることにより、表面の微細な凹凸構造によりレーザ光を
強く吸収し、透明樹脂基板の局部分解によるガス発生を
生起し、金属薄膜の永久変形として認められる空隙を形
成することにより、永久的記録を行うことができる。
When the optical recording medium manufactured as described above is irradiated with laser light, the fine uneven structure on the surface strongly absorbs the laser light, causing gas generation due to local decomposition of the transparent resin substrate, and permanent deformation of the metal thin film. A permanent record can be made by creating a void that is recognized as a

本発明の記録媒体は、任意の保護層により保護すること
らできる。また記録媒体の形状は円形、方形等であって
も良く、ディスク状、カード状等であってもよい。
The recording medium of the present invention can be protected by any protective layer. Further, the shape of the recording medium may be circular, rectangular, etc., or may be disk-shaped, card-shaped, etc.

〈実施例〉 以下に実施例をもって本発明をより詳しく説明する。<Example> The present invention will be explained in more detail with reference to Examples below.

[実施例1、比較例A] 平均表示レベルに対して、横方向に測定した規則的な周
期が0.3μm1その深さがQ、1μmの凹凸を有する
厚さ1.2n+n+1内径15mn+、外径130mm
のポリカーボネート製透明樹脂円板を射出成形により成
形した。次いでこの円板上に、Ptターゲット支びSi
ターゲットを用い、スパッタ率を考慮して原子比7:3
になるように電圧を印加し、スパッタリング法による厚
さ12nmの薄膜を形成し、光記録媒体を得た。ここで
、X線回折法によって、この膜の結晶化度を測定したと
ころ回折ピークは全く認められず金属薄膜はアモルファ
スであることが確認された。尚、この光記録媒体におい
て、基板側からレーザ光を入射した場合の反射率は7%
、吸収率は56%であり、波長830nmにおいて、記
録可成のためのフォーカシング及びトラッキングは充分
行うことができたため、記録パワーを1〜lomWまで
遂次変えながら記録を行いCNRを測定した。結果を第
1図に示した。
[Example 1, Comparative Example A] Regular period measured in the lateral direction with respect to the average display level is 0.3 μm1 Its depth is Q, thickness 1.2n+n+1 with unevenness of 1 μm, inner diameter 15mn+, outer diameter 130mm
A transparent resin disc made of polycarbonate was molded by injection molding. Next, on this disk, a Pt target support Si
Using a target, the atomic ratio is 7:3 considering the sputtering rate.
A voltage was applied so as to give a thin film with a thickness of 12 nm by sputtering, and an optical recording medium was obtained. When the crystallinity of this film was measured by X-ray diffraction, no diffraction peak was observed, confirming that the metal thin film was amorphous. Furthermore, in this optical recording medium, the reflectance when laser light is incident from the substrate side is 7%.
Since the absorption rate was 56% and sufficient focusing and tracking were performed to enable recording at a wavelength of 830 nm, recording was performed while successively changing the recording power from 1 to lomW and the CNR was measured. The results are shown in Figure 1.

比較例Aとして、前述の微細な凹凸を有するポリカーボ
ネート製透明樹脂円板にスパッタリンク法によってpt
ツタ−ットのみを用い12nmに成膜して光記録媒体を
作製した。この白金薄膜はX線回折法により2θが39
.5度に明確な回折ピークか認められた。実施例1と同
様に記録パワーを逐次変えながら記録を行いCNRを測
定した。結果を実施例と併せて第1図に示した。
As Comparative Example A, PT was applied to the polycarbonate transparent resin disk having the above-mentioned fine irregularities by a sputter link method.
An optical recording medium was produced by forming a film to a thickness of 12 nm using only TUTAT. This platinum thin film has a 2θ of 39 by X-ray diffraction method.
.. A clear diffraction peak was observed at 5 degrees. As in Example 1, recording was performed while successively changing the recording power, and the CNR was measured. The results are shown in FIG. 1 together with Examples.

第1図から明らかな様に、本発明に基づ〈実施例1では
、比較例Aの白金のみよりなる金属薄膜層を有する記録
媒体に比較して低パワーでCNRが急激に立ち上がって
おり、なおかつ高感度記録が可能であった。
As is clear from FIG. 1, in Example 1 based on the present invention, the CNR rises rapidly at low power compared to Comparative Example A, which has a metal thin film layer made only of platinum. Furthermore, high-sensitivity recording was possible.

1例として、記録パワーを7mWにて書き込んだ場合の
バブルの形状を確認するために電子顕微鏡写真を第2図
(実施例1)及び第3図(比較例A)に示した。読図よ
り実施例の場合にはバブルの形状が明確であり、高CN
Hの原因がバブルの形状に帰因していることか推定され
る。
As an example, electron micrographs are shown in FIG. 2 (Example 1) and FIG. 3 (Comparative Example A) to confirm the shape of bubbles when writing was performed at a recording power of 7 mW. From the diagram reading, the shape of the bubble is clear in the case of the example, and the high CN
It is presumed that the cause of H is attributable to the shape of the bubble.

[実施例2〜4、比較例日] Siに換えてSn、 C,Ge及びPdをそれぞれのタ
ーゲットとして用いた以外は実施例1に準じて第1表に
示す組成及び膜厚で成膜し所定の金属薄膜層を有する光
記録媒体を得た。これらについて、実施例1と同様の測
定を行なったところ、本発明に基づ〈実施例では、第1
図における実施例と同様の効果が得られた。しかし、本
発明に基づかない比較例Bでは比較例Aと同程度の感度
しか得られなかった。
[Examples 2 to 4, Comparative Example Day] Films were formed with the composition and film thickness shown in Table 1 according to Example 1, except that Sn, C, Ge, and Pd were used as targets instead of Si. An optical recording medium having a predetermined metal thin film layer was obtained. When the same measurements as in Example 1 were carried out on these, it was found that based on the present invention
The same effect as the example shown in the figure was obtained. However, in Comparative Example B, which is not based on the present invention, only the same level of sensitivity as Comparative Example A was obtained.

第   1   表 [参考例A] 厚さ1 、2mm、内径15mm、外径130mmの表
面が平滑なポリカーボネート製透明樹脂円板を射出成形
により成形した。次いでこの円板上に、Ptターゲット
及びS1ターゲツトを用い、スパッタ率を考慮して原子
比7:3になるように電圧を印加し、スパッタリング法
による厚さ12nmの薄膜を形成し、光記録媒体を得た
。ここで、本文中にX線回折法によって、この膜の結晶
化度を測定したところ回折ピークは全く認められず金属
薄膜はアモルファスであることが確認された。尚、この
光記録媒体において、基板側からレーザ光を入射した場
合の反射率は12%、吸収率は64%であり、波長83
0nmにおいて、記録再収のためのフォーカシング及び
トラッキングは充分行うことができたため、記録パワー
を1〜10mWまで遂次変えながら記録を行いCNRを
測定した。結果を第1図に示した。 実施例1との比較
より表面に微細な凹凸構造を有した基板を用いることに
より、著しい高感度化が達成されていることが確認され
た。
Table 1 [Reference Example A] A polycarbonate transparent resin disc with a smooth surface and a thickness of 1 mm or 2 mm, an inner diameter of 15 mm, and an outer diameter of 130 mm was molded by injection molding. Next, using a Pt target and an S1 target, a voltage was applied on this disk so that the atomic ratio was 7:3 considering the sputtering rate, a thin film with a thickness of 12 nm was formed by sputtering, and an optical recording medium was formed. I got it. Here, when the crystallinity of this film was measured by the X-ray diffraction method described in the text, no diffraction peak was observed, confirming that the metal thin film was amorphous. In addition, in this optical recording medium, when the laser beam is incident from the substrate side, the reflectance is 12%, the absorption rate is 64%, and the wavelength is 83%.
At 0 nm, focusing and tracking for recording and reacquisition could be performed sufficiently, so recording was performed while successively changing the recording power from 1 to 10 mW, and the CNR was measured. The results are shown in Figure 1. A comparison with Example 1 confirmed that a significant increase in sensitivity was achieved by using a substrate having a fine uneven structure on its surface.

〈発明の効果〉 本発明によれば、基板上に金属薄膜層を設けてなる光記
録媒体において、金属薄膜層に、白金族を必須成分とし
、1種類以上の金属または半金属元素を添加することに
よって成り、かつ結晶化度が白金族単金属の値より小さ
い組成物を用いることによって、化学的に安定で高感度
記録が可能な光学記録媒体を得ることができる。
<Effects of the Invention> According to the present invention, in an optical recording medium comprising a metal thin film layer provided on a substrate, the metal thin film layer contains platinum group as an essential component and one or more metals or metalloid elements are added. By using a composition which is formed by the following methods and whose crystallinity is smaller than that of a platinum group single metal, it is possible to obtain an optical recording medium that is chemically stable and capable of high-sensitivity recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1、比較例A及び参考例Aにおいて得ら
れた光記録媒体ついて測定した記録パワーとCNRとの
関係を示した図、第2図及び第3図は本発明の記録媒体
と比較例の記録媒体の記録状態を示す電子顕微鏡写真で
ある。 特許出願人 株式会社 り ラ レ クラレプラズモンデータシステムズKX会社代 理 人
 弁理士 本多 堅 CNR(dB) g2Dレーザパワー(IW) 第2図
FIG. 1 is a diagram showing the relationship between the recording power and CNR measured for the optical recording media obtained in Example 1, Comparative Example A, and Reference Example A, and FIG. 2 and 3 are the recording media of the present invention. 3 is an electron micrograph showing the recording state of a recording medium of a comparative example. Patent applicant: Rira Reclare Plasmon Data Systems KX Company Representative: Patent attorney Ken Honda CNR (dB) g2D laser power (IW) Figure 2

Claims (1)

【特許請求の範囲】 1)表面に微細な凹凸構造を有する透明樹脂基板の上に
金属薄膜を積層してなり、所定の波長領域のレーザ光を
吸収して該レーザ光により空隙を形成することによって
データが書き込まれることのできる光記録媒体において
、上記金属薄膜が白金族元素及び、他の金属または半金
属元素を含み、結晶化度が必須成分たる白金族元素単金
属の結晶化度の60%以下であるとを特徴とする光記録
媒体。 2)該透明樹脂基板が、平均表面レベルに対して横方法
に測定した規則的な周期が記録用レーザの波長以下であ
りその深さが0.01〜1μmであるような、規則的な
凹凸構造を有する特許請求の範囲第1項記載の光記録媒
体。 3)透明樹脂基板側からレーザ光を照射したときの記録
前の反射率が5〜60%の範囲にある特許請求の範囲第
1項記載の光記録媒体。 4)透明樹脂基板表面の微細な凹凸がカレンダリング法
、射出成形、射出圧縮成形、圧縮成形、ホトポリマー法
(2P法)などのプラスチック複製法による特許請求の
範囲第1項記載の光記録媒体。 5)白金族元素が白金、ルテニウム、ロジウム、パラジ
ウム、オスミウム、またはイリジウムである特許請求の
範囲第1項記載の光記録媒体。 6)白金族元素が白金である特許請求の範囲第5項記載
の光記録媒体。 7)他の金属または半金属元素が炭素、ケイ素、ゲルマ
ニウム、錫または鉛である特許請求の範囲第6項記載の
光記録媒体。 8)金属薄膜の結晶化率が30%以下である特許請求の
範囲第7項記載の光記録媒体。 9)金属薄膜がアモルファスである特許請求の範囲第7
項記載の光記録媒体。 10)金属薄膜の膜厚が5nm〜200nmの範囲にあ
る特許請求の範囲第1項〜第9項のいずれかに記載の光
記録媒体。 11)金属層が保護層により保護されている特許請求の
範囲第1項記載の光記録媒体。 12)透明樹脂材料が熱可塑性樹脂である特許請求の範
囲第1項記載の光記録媒体。 13)熱可塑性樹脂がポリエステル樹脂、ポリオレフィ
ン樹脂、ポリアミド樹脂、ポリカーボネート樹脂又はポ
リメタクリル樹脂である特許請求の範囲第11項記載の
光記録媒体。 14)上記光記録媒体を用い、レーザ光を照射すること
により透明樹脂基板の局部的分解によるガス発生を生起
し、空隙を形成することにより、永久的記録を行う記録
法。 15)上記光記録媒体を用い、空隙(バブル)を形成す
ることにより記録された記録媒体。
[Claims] 1) A metal thin film is laminated on a transparent resin substrate having a fine uneven structure on the surface, absorbs laser light in a predetermined wavelength range, and forms voids with the laser light. In an optical recording medium on which data can be written, the metal thin film contains a platinum group element and another metal or metalloid element, and the crystallinity is 60% higher than that of the platinum group element monometal as an essential component. % or less. 2) The transparent resin substrate has regular irregularities such that the regular period measured in a transverse direction with respect to the average surface level is less than the wavelength of the recording laser and the depth is 0.01 to 1 μm. The optical recording medium according to claim 1, having a structure. 3) The optical recording medium according to claim 1, wherein the reflectance before recording when irradiated with laser light from the transparent resin substrate side is in the range of 5 to 60%. 4) The optical recording medium according to claim 1, in which the fine irregularities on the surface of the transparent resin substrate are formed by a plastic duplication method such as a calendering method, injection molding, injection compression molding, compression molding, or a photopolymer method (2P method). 5) The optical recording medium according to claim 1, wherein the platinum group element is platinum, ruthenium, rhodium, palladium, osmium, or iridium. 6) The optical recording medium according to claim 5, wherein the platinum group element is platinum. 7) The optical recording medium according to claim 6, wherein the other metal or metalloid element is carbon, silicon, germanium, tin or lead. 8) The optical recording medium according to claim 7, wherein the metal thin film has a crystallization rate of 30% or less. 9) Claim 7 in which the metal thin film is amorphous
Optical recording medium described in Section 1. 10) The optical recording medium according to any one of claims 1 to 9, wherein the metal thin film has a thickness in the range of 5 nm to 200 nm. 11) The optical recording medium according to claim 1, wherein the metal layer is protected by a protective layer. 12) The optical recording medium according to claim 1, wherein the transparent resin material is a thermoplastic resin. 13) The optical recording medium according to claim 11, wherein the thermoplastic resin is a polyester resin, a polyolefin resin, a polyamide resin, a polycarbonate resin, or a polymethacrylic resin. 14) A recording method using the optical recording medium described above and performing permanent recording by irradiating the transparent resin substrate with a laser beam to generate gas due to local decomposition of the transparent resin substrate and forming voids. 15) A recording medium in which recording is performed by forming a void (bubble) using the above optical recording medium.
JP62135557A 1987-05-30 1987-05-30 Optical recording medium and recording method using the same Pending JPS63299986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135557A JPS63299986A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135557A JPS63299986A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Publications (1)

Publication Number Publication Date
JPS63299986A true JPS63299986A (en) 1988-12-07

Family

ID=15154591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135557A Pending JPS63299986A (en) 1987-05-30 1987-05-30 Optical recording medium and recording method using the same

Country Status (1)

Country Link
JP (1) JPS63299986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395053A2 (en) * 1989-04-28 1990-10-31 Daicel Chemical Industries, Ltd. Optical information recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395053A2 (en) * 1989-04-28 1990-10-31 Daicel Chemical Industries, Ltd. Optical information recording medium
US5413893A (en) * 1989-04-28 1995-05-09 Daicel Chemical Industries, Ltd. Optical information recording medium

Similar Documents

Publication Publication Date Title
JP3011200B2 (en) Optical recording medium
CN100373467C (en) Optical recording medium, optical recording/reproducing apparatus, optical recording apparatus and optical reproducing apparatus, data recording/reproducing method for optical recording medium, and da
JP3088168B2 (en) Optical recording medium and manufacturing method thereof
TWI276098B (en) Optical recording medium and manufacturing method thereof, and method for recording data on optical recording medium, and data reproduction method
KR100685061B1 (en) Optical recording medium and process for producing the same, method for recording data on optical recording medium and method for reproducing data from optical recording medium
JPS63153744A (en) Optical recording medium and recording method using the medium
US4983440A (en) Optical recording medium and recording process utilizing the same
KR20060033027A (en) Optical recording medium and process for producing the same, and data recording method and data reproducing method for optical recording medium
JPH0725200B2 (en) Information recording medium
EP1657719A1 (en) Optical recording medium and process for producing the same, data recording method and data reproducing method for optical recording medium
EP1657718A1 (en) Optical recording medium, method for producing the same, and data recording method and data reproducing method for optical recording medium
US7573803B2 (en) Optical recording disc
JPS63299986A (en) Optical recording medium and recording method using the same
JPS63299984A (en) Optical recording medium and production thereof
EP1643497A1 (en) Optical recording disc
CN1452771A (en) Reflecting layer, optical recording medium having same and sputtering target for forming reflecting layer
EP1646042A1 (en) Optical recording disc
JP2635328B2 (en) Optical recording medium
JP2830022B2 (en) Optical information recording medium
JP2573998B2 (en) Optical recording medium
JP2656296B2 (en) Information recording medium and method of manufacturing the same
JPS63299981A (en) Optical recording medium and recording method using the same
JPS63299982A (en) Optical recording medium and recording method using the same
JPS63299980A (en) Optical recording medium and recording method using the same
JPS6339387A (en) Optical recording medium