JPS6329930B2 - - Google Patents
Info
- Publication number
- JPS6329930B2 JPS6329930B2 JP129582A JP129582A JPS6329930B2 JP S6329930 B2 JPS6329930 B2 JP S6329930B2 JP 129582 A JP129582 A JP 129582A JP 129582 A JP129582 A JP 129582A JP S6329930 B2 JPS6329930 B2 JP S6329930B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- pressure
- lamp
- rare gas
- discharge lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052743 krypton Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052754 neon Inorganic materials 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical class [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/16—Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
Landscapes
- Discharge Lamp (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
【発明の詳細な説明】
この発明は例えば光学的文字読取装置や赤外カ
メラあるいは農作物の光選別などに使用する700
〜900nmの近赤外部に発光する放電灯に関する
ものである。[Detailed Description of the Invention] The present invention provides a
This relates to a discharge lamp that emits light in the near-infrared region of ~900 nm.
従来700〜900nmの近赤外部に発光する光源と
して白熱電球を用いフイルターで使用領域を選択
して使用していた。しかし白熱電球の効率の悪さ
とフイルターの吸収効果により近赤外領域の発光
効率は非常に悪くエネルギーの効率的使用上問題
となつている。このため白熱電球より効率のよい
螢光ランプで近赤外発光を得ようとする試みがな
されている。例えば鉄付加リチウム・アルミネー
ト螢光体を使用することにより740nm附近にピ
ークを持ち650〜900nmに発光領域を持つ近赤外
発光螢光ランプが得られる。このランプは発光波
長域としては十分であり、効率も白熱電球より高
いが点灯とともに光出力が急激に低下する欠点が
ある。螢光ランプは一般に螢光体が紫外線を受け
て劣化するが、鉄付加リチウム・アルミネート螢
光体はこの劣化率が大きく、同種のランプを使用
した場合、一般のアンチモン付加ハロリン酸カル
シウム螢光体が1000時間で91%なのに対して72%
と大きく、実用上問題となつている。 Conventionally, an incandescent light bulb was used as a light source that emits light in the near-infrared region of 700 to 900 nm, and a filter was used to select the area of use. However, due to the inefficiency of incandescent light bulbs and the absorption effect of filters, the luminous efficiency in the near-infrared region is extremely poor, which poses a problem in terms of efficient energy use. For this reason, attempts have been made to obtain near-infrared light emission using fluorescent lamps, which are more efficient than incandescent lamps. For example, by using an iron-added lithium aluminate phosphor, a near-infrared emitting fluorescent lamp having a peak around 740 nm and an emission range from 650 to 900 nm can be obtained. Although this lamp has a sufficient emission wavelength range and is higher in efficiency than an incandescent lamp, it has the disadvantage that its light output drops rapidly as it is turned on. In fluorescent lamps, the phosphor generally deteriorates when exposed to ultraviolet light, but iron-added lithium aluminate phosphors have a high rate of deterioration, and when the same type of lamp is used, general antimony-added calcium halophosphate phosphors is 72% compared to 91% at 1000 hours.
This is a major problem in practical use.
この原因は定かでないが、母体結晶が水分を受
けると変質しやすいこと、ガラス管表面上のナト
リウムイオンと結晶中のリチウムイオンが置換し
てランプ製造中および点灯中螢光体が変化を受け
ることなどが原因と推定される。 The cause of this is not clear, but the host crystal tends to change in quality when exposed to moisture, and the phosphor undergoes changes during lamp manufacturing and lighting due to substitution of lithium ions in the crystal with sodium ions on the surface of the glass tube. It is presumed that the cause is as follows.
この発明は上記の点に鑑みてなされたもので、
螢光体を使用せず、希ガスのみをある特定の低圧
力で封入し、この希ガス低圧放電の近赤外発光を
利用する低圧ガス放電灯を得て、効率の悪さと、
光束劣化の悪さを改良したものである。 This invention was made in view of the above points,
By creating a low-pressure gas discharge lamp that does not use a phosphor, only a rare gas is sealed at a certain low pressure, and uses near-infrared light emission from this rare gas low-pressure discharge, we can overcome the problems of poor efficiency and
This is an improvement over the poor luminous flux deterioration.
以下この発明について説明する。 This invention will be explained below.
発明者らは効率の高いランプ、ならびに点灯し
やすさと言う観点から低圧ガス放電灯を対象に
し、さらに螢光体の劣化を考え螢光体を全く使用
せず、低圧希ガス放電による発光を利用すること
を前提にして種々検討をした。その結果、始動を
容易にし、かつ効率を維持するためには管内径お
よび希ガスの種類により封入圧力に関連あること
が判明した。 The inventors focused on low-pressure gas discharge lamps from the viewpoint of high efficiency lamps and ease of lighting, and also considered the deterioration of the phosphor and did not use any phosphor at all, instead using light emission from low-pressure rare gas discharge. Various studies were conducted on the assumption that this would be the case. As a result, it was found that in order to facilitate startup and maintain efficiency, the sealing pressure is related to the tube inner diameter and the type of rare gas.
この発明は上記検討の結果透明管を使用し、そ
の管内径を16〜38mmとし、この透明管の両端に電
極を設けて放電灯用バルブを形成し、この放電灯
用バルブ内に下記に示す希ガスの何れか一種のみ
を下記範囲の圧力で封入するか、または下記希ガ
スを混合して使用する場合は電離電圧の低い希ガ
スの分圧を下記範囲の圧力で封入したものであ
る。 As a result of the above studies, this invention uses a transparent tube with an inner diameter of 16 to 38 mm, and electrodes are provided at both ends of the transparent tube to form a discharge lamp bulb. Either one of the rare gases is sealed at a pressure within the following range, or when a mixture of the following rare gases is used, a partial pressure of a rare gas with a low ionization voltage is sealed at a pressure within the following range.
4.2torr>Xe>0.3torr 5.0〃 >Kr>0.3〃 5.5〃 >Ar>0.3〃 以下実施例により詳細に説明する。 4.2torr>Xe>0.3torr 5.0〃 >Kr>0.3〃 5.5〃 >Ar>0.3〃 This will be explained in detail below using examples.
実施例 1
螢光体を被着しない管内径26mmのガラス製バル
ブの両端に電極を封着し、Xe、Kr、Arの希ガス
を0.1〜10.1torrの範囲で種々封入した管長436mm
の低圧放電ランプを製作し、ガスの種類とその圧
力によつて700〜900nmの近赤外部の出力がどの
ように変化するかを測定し、第1図、第2図、第
3図および第4図の関係を得た。第1図、第2図
および第3図は各々Ar、Kr、Xeを1.0torr封入し
たランプの300〜850nm領域における発光の分光
放射エネルギー分布を示し、第4図はランプ電力
20W時の各希ガス毎の封入圧力と700〜900nmの
近赤外部の放射出力の関係を示す。なおこの第4
図において矢印は封入圧力の実用上の最適範囲を
示す。Example 1 Electrodes were sealed at both ends of a glass bulb with an inner diameter of 26 mm that was not coated with a phosphor, and a tube length of 436 mm was filled with various rare gases such as Xe, Kr, and Ar in the range of 0.1 to 10.1 torr.
We fabricated a low-pressure discharge lamp and measured how the near-infrared output in the 700 to 900 nm range changes depending on the type of gas and its pressure. The relationship shown in Figure 4 was obtained. Figures 1, 2, and 3 each show the spectral radiant energy distribution of light emission in the 300-850 nm region of a lamp filled with 1.0 torr of Ar, Kr, and Xe, and Figure 4 shows the lamp power
The relationship between the sealing pressure of each rare gas and the near-infrared radiation output of 700 to 900 nm at 20 W is shown. Note that this fourth
In the figure, the arrow indicates the practical optimum range of sealing pressure.
第4図より各封入希ガス種に応じて各々Arの
場合5.5torr以下、Krの場合5.0torr以下、そして
Xeの場合4.2torr以下封入したランプが高効率の
近赤外発光を得ることが確認された。しかし封入
封力0.3torr以下の場合はどの希ガスランプも製
造後の短時間のエージング点灯期間内に電極が消
耗し、実用上問題があることが確認された。 From Figure 4, depending on the type of noble gas enclosed, the values are 5.5 torr or less for Ar, 5.0 torr or less for Kr, and
In the case of Xe, it was confirmed that a lamp sealed with less than 4.2 torr can emit highly efficient near-infrared light. However, it has been confirmed that when the sealing force is less than 0.3 torr, the electrodes of any rare gas lamp will wear out during the short aging lighting period after manufacture, which poses a practical problem.
実施例 2
ガラス製バルブの管内径を10〜45mmの範囲に変
化させ、実施例1と同様に管長436mmのバルブに
種々の希ガスとその圧力を変化させたランプを作
り、近赤外発光出力を測定したが、各管内径にお
けるランプが高効率を得る各希ガスの封入圧力は
実施例1の範囲と変らなかつた。しかし管内径に
対しては、管内径が16mm未満では極度に始動電圧
が上り、また38mmを越えると同一入力に対して効
率が大幅に低下するため実用上問題があることが
確認された。さらに封入圧力が0.3torr以下の場
合は実施例1と同様寿命に問題があることが確認
された。Example 2 The inner diameter of the glass bulb was varied in the range of 10 to 45 mm, and lamps with a tube length of 436 mm and various rare gases and their pressures were made in the same manner as in Example 1, and the near-infrared emission output was increased. were measured, but the sealing pressure of each rare gas at which the lamp at each tube inner diameter achieved high efficiency remained the same as the range of Example 1. However, with regard to the inner diameter of the tube, it has been confirmed that if the inner diameter is less than 16 mm, the starting voltage will be extremely high, and if it exceeds 38 mm, the efficiency will drop significantly for the same input, which poses a practical problem. Furthermore, it was confirmed that when the sealing pressure was 0.3 torr or less, there was a problem with the life as in Example 1.
実施例 3
管内径32mm、管長580mmのガラス製バルブ内面
に近赤外光を良反射する酸化チタンまたは酸化ア
ルミナよりなる反射膜を各々開口度90゜を有する
ように被着させ、実施例1と同様に希ガス一種の
みを封入したランプを製作し、開口部前面での近
赤外発光強度を測定したところ酸化チタンまたは
酸化アルミナを有した各々のランプはともに反射
膜のない同種のランプに比べ1.8倍の近赤外光を
得ることができた。Example 3 A reflective film made of titanium oxide or alumina oxide, which reflects near-infrared light well, was coated on the inner surface of a glass bulb with a tube inner diameter of 32 mm and a tube length of 580 mm, each having an aperture of 90°. Similarly, we manufactured lamps filled with only one type of rare gas and measured the near-infrared emission intensity in front of the aperture. Both lamps with titanium oxide or alumina oxide showed a difference compared to the same type of lamp without a reflective film. We were able to obtain 1.8 times more near-infrared light.
この結果からガラス等透明管の内面に所定の開
口度を有する近赤外反射被膜を設けると開口部前
面における近赤外光束が大幅に増加し、より効果
が得られることが判明した。 These results revealed that when a near-infrared reflective coating with a predetermined aperture is provided on the inner surface of a transparent tube such as glass, the near-infrared light flux at the front surface of the aperture increases significantly, resulting in more effective results.
実施例 4
封入希ガスにArにArより電離電圧の高いNeを
0.5〜99%混入した混合ガスを用い、封入圧を0.5
〜15torrの範囲で種々変化させて実施例1と同様
にランプを製作し、近赤外部の出力変化を測定し
た。第5図はランプ電流0.6Aで点灯したときの
全封入圧と光出力の関係を示す一実施例である。
Neを混入することにより同一電流で点灯する場
合、純Arで点灯する場合よりランプに消費され
る電力が大きいため光出力が大きくなるが、この
値は混合ガスのAr分圧値での純Arの光出力とほ
ぼ等しいことが確認された。従つて、混合ガスに
することにより、Arの発光特性を持たせつつ、
ランプを高負荷点灯することができ、高出力形設
計が可能となる。また封入全圧を上げることがで
きるので寿命特性の改善にも役立つことが確認さ
れた。Example 4 Adding Ne, which has a higher ionization voltage than Ar, to the enclosed rare gas.
Using a mixed gas containing 0.5 to 99%, the sealing pressure is 0.5.
Lamps were manufactured in the same manner as in Example 1 with various changes in the range of ~15 torr, and changes in near-infrared output were measured. FIG. 5 is an example showing the relationship between the total sealing pressure and the light output when the lamp is lit with a lamp current of 0.6A.
When lighting with the same current by mixing Ne, the light output increases because the power consumed by the lamp is larger than when lighting with pure Ar, but this value is the same as the pure Ar at the Ar partial pressure value of the mixed gas. It was confirmed that the light output was almost equal to that of Therefore, by creating a mixed gas, it has the luminescent properties of Ar, while
The lamp can be lit under high load, making it possible to design a high output type. It was also confirmed that since the total sealing pressure can be increased, it is also useful for improving life characteristics.
実施例 5
実施例4と同様にArに対してHeを、Krに対し
てAr、Ne、Heを単独あるいは混合したものを、
またXeに対してはKr、Ar、Ne、Heを単独ある
いは混合したものを封入組成として用い、ランプ
特性を測定したところ実施例4と同様の傾向を示
すことを確認した。発光希ガス原子より電離電圧
の高い非発光希ガス原子を混入して全圧を上げて
使用する場合でも、発光希ガス原子の分圧をこの
発明の封入圧範囲に入れてあれば高効率の近赤外
発光ランプが得られる。Example 5 As in Example 4, He was used for Ar, and Ar, Ne, and He were used alone or in combination for Kr,
For Xe, Kr, Ar, Ne, and He were used alone or as a mixture as the filling composition, and the lamp characteristics were measured, and it was confirmed that the same tendency as in Example 4 was exhibited. Even when non-luminescent rare gas atoms, which have a higher ionization voltage than luminescent rare gas atoms, are mixed in to increase the total pressure, high efficiency can be achieved as long as the partial pressure of the luminescent rare gas atoms is within the sealing pressure range of this invention. A near-infrared emitting lamp is obtained.
以上述べたようにこの発明は螢光体を被着しな
い透明管に希ガスを一種のみ、あるいは混合して
所定圧力で封入した低圧ガス放電灯により、近赤
外発光を得るものであるから、構造が簡単である
上、高効率であり、しかも螢光体を使用していな
いため、点灯時間とともに進む発光の低下もなく
寿命中光出力が急激に低下することもないという
効果を有するものである。 As mentioned above, this invention is for obtaining near-infrared light emission using a low-pressure gas discharge lamp in which a transparent tube without a phosphor is filled with one kind of rare gas or a mixture thereof at a predetermined pressure. It has a simple structure, high efficiency, and because it does not use a phosphor, it has the advantage that the light emission does not decrease as the lighting time increases, and the light output does not suddenly decrease during its life. be.
第1図、第2図および第3図は各々Ar、Kr、
Xeを1.0torr封入したこの発明の一実施例による
発光エネルギー分布図、第4図は各希ガス毎に封
入圧力と近赤外部の放射出力の関係を示した図、
第5図はArとNe混合希ガスを使用した場合の封
入圧力と近赤外部の放射出力との関係を示した図
である。なお第4図に示す矢印は各希ガスにおけ
る封入圧力の実用最適範囲を示す。
Figures 1, 2 and 3 are Ar, Kr,
An emission energy distribution diagram according to an embodiment of the present invention in which Xe is sealed at 1.0 torr; FIG. 4 is a diagram showing the relationship between the filling pressure and near-infrared radiation output for each rare gas;
FIG. 5 is a diagram showing the relationship between the sealing pressure and near-infrared radiation output when a rare gas mixture of Ar and Ne is used. Note that the arrows shown in FIG. 4 indicate the practical optimum range of the sealing pressure for each rare gas.
Claims (1)
極を設けて放電灯用バルブを形成し、この放電灯
用バルブに下記希ガスの少なくとも何れか一種を
下記範囲の圧力で封入したことを特徴とする近赤
外発光低圧ガス放電灯。 4.2torr>Xe>0.3torr 5.0torr>Kr>0.3torr 5.5torr>Ar>0.3torr 2 上記透明管をその内面に所定の開口度を有す
る近赤外反射被膜を設けて構成したことを特徴と
する特許請求の範囲第1項記載の近赤外発光低圧
ガス放電灯。[Claims] 1. A discharge lamp bulb is formed by providing a pair of electrodes on a transparent tube with an inner diameter of 16 mm to 38 mm, and at least one of the following rare gases is applied to the discharge lamp bulb at a pressure within the following range. A near-infrared-emitting low-pressure gas discharge lamp characterized by being sealed with. 4.2torr>Xe>0.3torr 5.0torr>Kr>0.3torr 5.5torr>Ar>0.3torr 2 The transparent tube is characterized by being constructed by providing a near-infrared reflective coating having a predetermined aperture on its inner surface. A near-infrared-emitting low-pressure gas discharge lamp according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP129582A JPS58119150A (en) | 1982-01-07 | 1982-01-07 | Low pressure gas discharge lamp emitting light approximate to infrared rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP129582A JPS58119150A (en) | 1982-01-07 | 1982-01-07 | Low pressure gas discharge lamp emitting light approximate to infrared rays |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58119150A JPS58119150A (en) | 1983-07-15 |
JPS6329930B2 true JPS6329930B2 (en) | 1988-06-15 |
Family
ID=11497468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP129582A Granted JPS58119150A (en) | 1982-01-07 | 1982-01-07 | Low pressure gas discharge lamp emitting light approximate to infrared rays |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58119150A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60236448A (en) * | 1984-05-09 | 1985-11-25 | Mitsubishi Electric Corp | Near infrared luminescent low pressure rare gas discharge lamp and near infrared image pickup device |
JPS60236402A (en) * | 1984-05-09 | 1985-11-25 | 三菱電機株式会社 | Near infrared illuminator and near infrared camera |
EP2717293A1 (en) * | 2012-10-05 | 2014-04-09 | Quercus Light GmbH | Infrared radiation source and method for producing an infrared radiation source |
-
1982
- 1982-01-07 JP JP129582A patent/JPS58119150A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58119150A (en) | 1983-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4065688A (en) | High-pressure mercury-vapor discharge lamp having a light output with incandescent characteristics | |
US4079287A (en) | Fluorescent lamp construction utilizing a mixture of two phosphor materials | |
JP4375775B2 (en) | Low wattage fluorescent lamp | |
US4095135A (en) | Spherical-bulb fluorescent lamp | |
HU194442B (en) | High-pressure mercury-vapour discharge lamp | |
NO144553B (en) | LOW PRESSURE Mercury Vapor Discharge Lamp. | |
US6583566B1 (en) | Low wattage fluorescent lamp having improved phosphor layer | |
US5041758A (en) | Low-pressure mercury vapor discharge lamp | |
KR20010051972A (en) | Low pressure mercury vapor discharge lamp with doped phosphor coating | |
JPH01115047A (en) | Hot cathode type low pressure rare gas discharge fluorescent lamp | |
US3707641A (en) | Discharge device which utilizes a mixture of two fluorescent materials | |
US4047069A (en) | High-pressure mercury-vapor lamp having a plural phosphor coating | |
US4751426A (en) | Fluorescent lamp using multi-layer phosphor coating | |
JPS5842590B2 (en) | fluorescent lamp | |
US7550910B2 (en) | Fluorescent lamp with barrier layer containing pigment particles | |
KR860000818B1 (en) | A fluorescent lamp | |
US6683407B2 (en) | Long life fluorescent lamp | |
JPS6329930B2 (en) | ||
US3832591A (en) | High luminous efficacy white appearing lamp | |
US4717857A (en) | Fluorescent lamp producing white color illumination with multiple phosphor combination | |
US4099089A (en) | Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material | |
Ter Vrugt et al. | High pressure mercury vapour lamps | |
JP2002298787A (en) | Fluorescent lamp | |
JP2003297291A (en) | Fluorescent lamp | |
CA1065949A (en) | Fluorescent lamp construction utilizing a mixture of two phospor materials |