JPS6329909A - Fe group amorphous magnetic core for saturable reactor and manufacture thereof - Google Patents

Fe group amorphous magnetic core for saturable reactor and manufacture thereof

Info

Publication number
JPS6329909A
JPS6329909A JP61172986A JP17298686A JPS6329909A JP S6329909 A JPS6329909 A JP S6329909A JP 61172986 A JP61172986 A JP 61172986A JP 17298686 A JP17298686 A JP 17298686A JP S6329909 A JPS6329909 A JP S6329909A
Authority
JP
Japan
Prior art keywords
magnetic core
less
saturable reactor
temperature
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61172986A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Susumu Nakajima
晋 中島
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61172986A priority Critical patent/JPS6329909A/en
Publication of JPS6329909A publication Critical patent/JPS6329909A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the dispersion of control magnetizing characteristics by constituting the title amorphous magnetic core of a specific amorphous alloy thin-band and bringing overall control magnetizing force at 50KHz and uncontrollable magnetic flux density to specific values. CONSTITUTION:The title amorphous magnetic core is shown in formula I, M represents at least one kind of an element selected from Mo, Nb, Ta, W in the formula, and the magnetic core is composed of an amorphous alloy thin-band having the relationship of 0.005<=a+b<=0.05, 2<=x<=6, y<=19, 7<=z<=25 and 20<=x+y+z<=30. Overall control magnetizing force Hr at 50 KHz extends over 20A/m or less and uncontrollable magnetic flux density DELTABd over 0. 2T or less. Ni or Ci is an essential element and reduces uncontrollable magnetic flux density DELTABd, and has an effect that a control range is extended and an effect that dispersion is minimized. Accordingly, the dispersion of the control magnetizing characteristics or the Fe group amorphous magnetic core which has been insufficient can be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスイッチング電源などにおいて用いられる可飽
和リアクトルに使用されるFe基アモルファス磁心に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Fe-based amorphous magnetic core used in a saturable reactor used in a switching power supply or the like.

〔従来の技術〕[Conventional technology]

従来、スイッチング電源などにおいて用いられる可飽和
リアクトルにば、50%Niパーマロイ磁心、80%N
iパーマロイ磁心、Co基アモルファス磁心等に用いら
れており、近年は特にスイッチング電源が高い周波数で
駆動されるようになり、高周波における損失や制御磁化
力が小さいCo基アモルファス磁心が使用されるように
なってきている。
Conventionally, saturable reactors used in switching power supplies, etc. have a 50% Ni permalloy core and an 80% N core.
It is used for i-permalloy magnetic cores, Co-based amorphous magnetic cores, etc. In recent years, especially switching power supplies have been driven at high frequencies, and Co-based amorphous magnetic cores with low loss and control magnetization force at high frequencies have been used. It has become to.

しかしながら、Co基アモルファス磁心はCOのような
高価な原料を使用しており価格が高くなる問題や飽和磁
束密度が低く、制御磁束密度量の最大値が小さい問題が
ある。
However, the Co-based amorphous magnetic core uses an expensive raw material such as CO, resulting in a high price, and has a low saturation magnetic flux density, resulting in a small maximum value of the controlled magnetic flux density.

一方、Fe基アモルファス磁心は飽和磁束密度がGo基
アモルファス磁心より高く、特公昭58−1183号公
報に記載されているように非酸化性雲囲気で熱処理する
ことにより高角形比の直流磁気特性が得られることが知
られている。
On the other hand, Fe-based amorphous magnetic cores have a higher saturation magnetic flux density than Go-based amorphous magnetic cores, and as described in Japanese Patent Publication No. 1183/1983, heat treatment in a non-oxidizing cloud atmosphere improves DC magnetic properties with a high squareness ratio. known to be obtained.

〔発明が解決しようとする問題点] しかし、上記の高角形比のFe基アモルファス磁心は高
周波においてCogアモルファス磁心に比べ、可飽和リ
アクトル用磁心として重要である特性、全制御磁化力が
大きく特に20kHz以上の周波数で駆動するスイッチ
ング電源の磁気増幅器に使用される可飽和リアクトルに
用いた場合、出力電圧を制御するだめの制御電流が大き
くなる問題点があり、制御回路の負担が増し効率が低下
する問題がある。本発明者らは先に、制御磁化特性に優
れた特性がFe基アモルファスで得られることを明らか
にしている(特願昭61−21309号)。
[Problems to be Solved by the Invention] However, the above Fe-based amorphous magnetic core with a high squareness ratio has a characteristic that is important as a magnetic core for a saturable reactor at high frequencies, especially at 20 kHz, which is an important characteristic as a magnetic core for a saturable reactor. When used in a saturable reactor used in the magnetic amplifier of a switching power supply that is driven at a frequency higher than that, there is a problem in that the control current required to control the output voltage becomes large, which increases the burden on the control circuit and reduces efficiency. There's a problem. The present inventors have previously revealed that excellent controlled magnetization characteristics can be obtained with Fe-based amorphous material (Japanese Patent Application No. 21309/1982).

しかし、Fe基アモルファス磁心の場合にはアモルファ
ス薄帯長手方向のばらつきが大きい問題があり、多量に
アモルファス薄帯を製造した後磁心を製造する場合制御
磁化特性のばらつきが小さいことが重要となってくる。
However, in the case of Fe-based amorphous magnetic cores, there is a problem of large variations in the longitudinal direction of the amorphous ribbon, and when producing a magnetic core after producing a large amount of amorphous ribbons, it is important that the variation in the control magnetization characteristics is small. come.

本発明の目的は制御磁化特性に優れ、かつ制御磁化特性
のばらつきの小さい可飽和リアクトル用Fe基アモルフ
ァス磁心を提供することである。
An object of the present invention is to provide an Fe-based amorphous magnetic core for a saturable reactor that has excellent control magnetization characteristics and small variations in control magnetization characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は組成式 %式%() ここでMはMo 、 Nb 、 Ta 、 Wから選ば
れる少なくとも1種の元素であり、 0.005≦a+b≦0.05. 2≦X≦6.  y
≦19゜7≦2≦25.20≦x+y+z≦30の関係
を有するアモルファス合金薄帯からなり、50kllz
における全制御磁化力Hrが20A/m以下、制御不能
磁束密度ΔBdが0.2T以下であることを特徴とする
制御磁化特性に優れた可飽和リアクトル用Feiアモル
ファス磁心である。
The present invention has the following compositional formula: % () where M is at least one element selected from Mo, Nb, Ta, and W, and 0.005≦a+b≦0.05. 2≦X≦6. y
Consisting of an amorphous alloy ribbon having the relationship of ≦19°7≦2≦25.20≦x+y+z≦30, 50kllz
This is an Fei amorphous magnetic core for a saturable reactor with excellent control magnetization characteristics, characterized in that the total control magnetization force Hr is 20 A/m or less and the uncontrollable magnetic flux density ΔBd is 0.2 T or less.

本発明において、Si、  Bはアモルファス形成に必
要な元素であり、S量yはy≦19.B量Zは5≦2≦
25.20≦x+y+z≦30の関係がある場合アモル
ファス形成が容易であり、この範囲をはずれると製造が
困難となり好ましくない。
In the present invention, Si and B are elements necessary for amorphous formation, and the S amount y is y≦19. B amount Z is 5≦2≦
When the relationship 25.20≦x+y+z≦30 exists, it is easy to form an amorphous state, and when the relationship is outside this range, manufacturing becomes difficult, which is not preferable.

NiまたはCoは必須の元素であり制御不能磁束音度Δ
Bdを小さくし、制御範囲を大きくする効果およびばら
つきを小さくする効果を有する。NiとC。
Ni or Co is an essential element and the uncontrollable magnetic flux soundness Δ
This has the effect of reducing Bd, increasing the control range, and reducing variation. Ni and C.

の組成比a、bの総和a+bが0.05を越えると全制
御磁化力が増加し好ましくなく 、0.005未満では
制御不能磁束密度ΔBdのばらつきが大きくなり好まし
くない。
If the sum a+b of the composition ratios a and b exceeds 0.05, the total control magnetizing force will increase, which is undesirable, and if it is less than 0.005, the variation in the uncontrollable magnetic flux density ΔBd will increase, which is undesirable.

Mは全制御磁化力Hrを小さくする効果があり、M量x
が2未満ではHrJ少に効果がなく、6を越えるとΔB
dのばらつきが大きくなるためである。
M has the effect of reducing the total control magnetizing force Hr, and the M amount x
If it is less than 2, there is no effect on HrJ, and if it exceeds 6, ΔB
This is because the variation in d increases.

特に8≦y≦16.8≦2≦10.20≦X+y+z≦
30の関係を有する場合は制?In 65’f化特性の
経時変化が小さく、好ましい結果を得ることができる。
Especially 8≦y≦16.8≦2≦10.20≦X+y+z≦
Is it illegal to have a relationship of 30? Changes over time in the In 65'f properties are small, and favorable results can be obtained.

通常本発明に係るアモルファス合金薄帯は双口−ル法、
単ロール法等の方法により作製される。
Usually, the amorphous alloy ribbon according to the present invention is produced by the double-hole method.
It is produced by a method such as a single roll method.

本発明の場合板厚は25μm以下が好ましい。また場合
によってはアルミナやSiO□等の粉末や酸化膜を形成
させ層間絶縁を行なう。
In the case of the present invention, the plate thickness is preferably 25 μm or less. In some cases, a powder such as alumina or SiO□ or an oxide film may be formed to provide interlayer insulation.

本発明の磁心は、アモルファス合金薄帯からなる磁心を
不活性ガス雰囲気中あるいは真空中でキュリー温度以上
にほぼ完全に応力緩和されるまで一定時間保持し直流あ
るいは交流の磁場を磁路方向に印加しながら1℃/mi
n以上、20℃/min以下の平均冷却速度で冷却し、
200℃以上キュリー温度以下の温度に0.5h以上5
h未満保持後室温まで冷却して作製される。
In the magnetic core of the present invention, a magnetic core made of an amorphous alloy ribbon is held in an inert gas atmosphere or vacuum for a certain period of time until the stress is almost completely relaxed above the Curie temperature, and a DC or AC magnetic field is applied in the direction of the magnetic path. 1℃/mi
Cooling at an average cooling rate of not less than n and not more than 20°C/min,
At a temperature of 200℃ or higher and lower than the Curie temperature for 0.5 hours or more5
It is produced by keeping it for less than h and then cooling it to room temperature.

熱処理は不活性ガス雰囲気中あるいは真空中で行なわれ
るのが望ましく極端な酸化性雰囲気で、熱処理を行なう
と制御不能磁束密度ΔBdが大きくなり好ましくない。
It is preferable that the heat treatment be carried out in an inert gas atmosphere or vacuum, and if the heat treatment is carried out in an extremely oxidizing atmosphere, the uncontrollable magnetic flux density ΔBd will increase, which is undesirable.

キュリー温度以上にほぼ完全に応力緩和されるまで一定
時間保持するのは次の磁場中熱処理の工程で制御不能磁
束密度ΔBdを小さくするためと制御磁化特性のばらつ
きを小さくし全制御磁化力Hrを小さくするためである
The reason why the stress is maintained for a certain period of time until the stress is almost completely relaxed above the Curie temperature is to reduce the uncontrollable magnetic flux density ΔBd in the next heat treatment process in a magnetic field, and to reduce the variation in the control magnetization characteristics and increase the total control magnetization force Hr. This is to make it smaller.

200℃以上キュリー温度以下の温度に0.5h以上5
h未満保持後室温まで冷却するのは先に述べたように制
御不能磁束密度ΔBdを小さくするためと、全制御磁化
力Hrを小さくするためである。
At a temperature of 200℃ or higher and lower than the Curie temperature for 0.5 hours or more5
The reason why the temperature is kept below h and then cooled to room temperature is to reduce the uncontrollable magnetic flux density ΔBd and to reduce the total control magnetizing force Hr, as described above.

保持時間が0.5h未満ではΔBdが大きく、5hを超
えるとHrが大きくなるため保持時間は0.5h以上5
h未満が望ましい。
If the retention time is less than 0.5h, ΔBd will be large, and if it exceeds 5h, Hr will be large, so the retention time should be 0.5h or more.
Less than h is desirable.

上記熱処理方法は本発明外の組成の磁心に対しては効果
が小さく、たとえばFe−Cr−5i −B系、アモル
ファスではΔBdが大きくなりやす(、可飽和リアクト
ルに用いた場合制御範囲が小さくなってしまうだけでな
くばらつきも大きくなる問題が生ずる。Fe−Ni−5
i −B系アモルファスの場合は上記熱処理をしても高
周波における全制御磁化力Hrが大きくなる問題がある
。したがって本発明の組成のアモルファス合金薄帯に本
製造方法を適用した場合においてばらつきが小さく可飽
和リアクトル用磁心として優れた特性が得られる。
The heat treatment method described above has little effect on magnetic cores with compositions other than those of the present invention; for example, in the case of Fe-Cr-5i-B system or amorphous, ΔBd tends to become large (and when used in a saturable reactor, the control range becomes small). A problem arises in that not only is the temperature of
In the case of i-B type amorphous, there is a problem that the total control magnetization force Hr at high frequencies becomes large even if the above heat treatment is performed. Therefore, when this manufacturing method is applied to an amorphous alloy ribbon having the composition of the present invention, it is possible to obtain excellent characteristics as a magnetic core for a saturable reactor with small variations.

また、不活性ガス雰囲気中あるいは真空中でキュリー温
度以上にほぼ完全に応力緩和されるまで一定時間保持後
室温まで急冷し、直流あるいは交流の磁場を磁路方向に
印加しながら200℃以上、キュリー温度以下の温度に
昇温後0.5h以上5h未満保持後室温まで冷却する熱
処理も同様な特性を得ることができる。
In addition, it is held in an inert gas atmosphere or vacuum for a certain period of time until the stress is almost completely relaxed above the Curie temperature, then rapidly cooled to room temperature, and then heated to a temperature above 200°C while applying a direct current or alternating current magnetic field in the direction of the magnetic path. Similar characteristics can be obtained by heat treatment in which the temperature is raised to a temperature lower than that temperature, maintained for 0.5 hours or more and less than 5 hours, and then cooled to room temperature.

〔実施例〕〔Example〕

以下本発明を実施例に従って説明する。 The present invention will be explained below according to examples.

実施例1 第1図は制御磁化特性測定回路であり、制御用磁心を評
価するのに適した測定回路である。第2図は任意の直流
の制御電流工。が制御回路に流れている場合の磁心の動
作模式図である。
Embodiment 1 FIG. 1 shows a control magnetization characteristic measuring circuit, which is suitable for evaluating a control magnetic core. Figure 2 shows an arbitrary DC control current engineer. FIG. 2 is a schematic diagram of the operation of the magnetic core when the flow is flowing through the control circuit.

第1図中、試料SにはNL + NG 、Nvの3種類
の巻線を設ける。
In FIG. 1, sample S is provided with three types of windings: NL + NG and Nv.

NLは磁気増幅器の出力巻線に相当し、抵抗RL及び整
流器りを介し、周波数f (周期Tp)の交流型aE9
に接続されている。E9の値はゲート半周期Tgにおい
て、印加電圧の正弦波電圧の90°以内の位相角で磁心
が飽和に達するように大きな値に設定する。
NL corresponds to the output winding of the magnetic amplifier, and the AC type aE9 with frequency f (period Tp) is connected via resistor RL and rectifier.
It is connected to the. The value of E9 is set to a large value so that the magnetic core reaches saturation at a phase angle within 90° of the sine wave voltage of the applied voltage in the gate half period Tg.

Ncは制御巻線で、制御回路よりみた磁心インダクタン
スに比較し、充分大きな値のインダクタンスLcを通し
て直流電源Ecに接続し、拘束磁化条件の直流起磁力を
与えている。Nvは制御人力に対応するリセット磁束量
Δφ印測定用巻線で、平均値整流方式の交流電圧計■に
接続されている。
Nc is a control winding, which is connected to a DC power source Ec through an inductance Lc that is sufficiently large compared to the core inductance seen from the control circuit, and provides a DC magnetomotive force under the constrained magnetization condition. Nv is a winding for measuring the reset magnetic flux amount Δφ corresponding to the human control power, and is connected to an AC voltmeter (■) of the average value rectification method.

第3図に本測定回路により測定して得られる制御磁化曲
線の模式図を示す。
FIG. 3 shows a schematic diagram of a controlled magnetization curve obtained by measurement using this measurement circuit.

Hrの逆数をβ0とおくと βo=1/Hr 制御用磁心としてはβ0が大(Hrが小)であるほど制
御電流は小となり特性が良いことになる。
Letting the reciprocal of Hr be β0, then βo=1/Hr As for the control magnetic core, the larger β0 (the smaller Hr), the smaller the control current and the better the characteristics.

一方、磁心の磁化特性の角形の程度を示すパラメータを
α0とおくと αo=1−ΔBb/ΔBm 制御用磁心としては、α0が大(ΔBb/ΔBmが小)
であるほど制御不能磁束密度が小さく特性が良いことに
なる。
On the other hand, if α0 is the parameter indicating the degree of rectangularity of the magnetic core's magnetization characteristics, then αo = 1 - ΔBb/ΔBm For a control core, α0 is large (ΔBb/ΔBm is small)
The smaller the uncontrollable magnetic flux density, the better the characteristics.

Q’Qとβ0の積をGoで表わし、SpecificC
ore gainと呼ぶが、この Go =α0 欅β0 が大きいほど総合的にみて制御用磁心として優れている
と判断できる。
The product of Q'Q and β0 is expressed as Go, and SpecificC
It is called "ore gain", and it can be judged that the larger Go = α0 Keyaki β0, the better it is as a control magnetic core.

ゲート磁界の最大値 Hm −(NL−i L (max) l / /!e
   ・・・・・・(1)I!e  :試料の平均磁路
長 に対応する磁束密度の最大値Bmと制御磁界Hr = 
(Nc  ・I c ) / l e      −(
21によって決まる磁束密度Bcとの差の磁束密度量を
68cmとし、周期をTpとすれば、Nv回路の磁束電
圧計■の読みは Ev’cf−Nv−A・ΔB cm      −−(
3)A:磁心の有効断面積 実際の制御用磁心においては磁界Hが正の領域の特性H
m−ΔBm特性と、磁界Hが負の領域の特性Hr−ΔB
特性を把握することが必要である。
Maximum value of gate magnetic field Hm −(NL−i L (max) l / /!e
・・・・・・(1) I! e: Maximum value Bm of magnetic flux density corresponding to the average magnetic path length of the sample and control magnetic field Hr =
(Nc ・Ic) / le −(
If the magnetic flux density difference between the magnetic flux density Bc determined by
3) A: Effective cross-sectional area of the magnetic core In an actual control magnetic core, the characteristic H in the region where the magnetic field H is positive
m-ΔBm characteristics and characteristics Hr-ΔB in the region where the magnetic field H is negative
It is necessary to understand the characteristics.

ΔBd = Bm −Br          ・・・
−(4)であり EvdoCC−NV −A・ΔB d      −・
・−+51である。
ΔBd = Bm −Br...
-(4) and EvdoCC-NV -A・ΔB d −・
・-+51.

一方、 ΔB千ΔBcm−ΔBd         ・・・・・
・(6)である。
On the other hand, ΔB1000ΔBcm−ΔBd...
- (6).

制御用磁心としては、第3図に示す第1象限の曲線が下
側にあり、第2象限の曲線が右側に寄っておりかつ傾斜
が急なものほど良いことになる。
The control magnetic core is better if the curve in the first quadrant shown in FIG. 3 is on the lower side, the curve in the second quadrant is closer to the right, and the slope is steeper.

実施例2 単ロール法により(Feo、47Nio、 02COO
,o+LzMo3SilJqアモルファス合金薄帯(厚
さ18μm、幅51重、長さ10100Oを作製した。
Example 2 By single roll method (Feo, 47Nio, 02COO
, o+LzMo3SilJq amorphous alloy ribbon (thickness: 18 μm, width: 51 mm, length: 10100 mm) was prepared.

得られた合金薄帯を外径19tm内径15龍に巻き回し
巻磁心とし、N2ガス雰囲気中で熱処理した。熱処理は
まず500℃で1h間保持し磁路方向に100eの磁場
を印加しながら250℃まで冷却し250℃に2h保持
し冷却し本発明の磁心を得た。
The obtained alloy ribbon was wound into a wound core having an outer diameter of 19 tm and an inner diameter of 15 tm, and was heat-treated in an N2 gas atmosphere. The heat treatment was first held at 500°C for 1 hour, cooled to 250°C while applying a magnetic field of 100e in the direction of the magnetic path, and then held at 250°C for 2 hours to obtain a magnetic core of the present invention.

得られた190個の巻磁心の50kHzの制御磁化特性
を測定し全制御磁化力Hrと、制御不能磁束密度ΔBd
を求めた。
The 50kHz control magnetization characteristics of the obtained 190 wound magnetic cores were measured, and the total control magnetization force Hr and uncontrollable magnetic flux density ΔBd were measured.
I asked for

得られたHr、  ΔBdの特性範囲を第1表に示す。The obtained characteristic ranges of Hr and ΔBd are shown in Table 1.

また比較のため同一の製造方法で作製されたFetJo
3Sx I 4Bsアモルファス巻磁心のHr、  Δ
Bdの特性範囲も第1表に示す。
In addition, for comparison, FetJo was produced using the same manufacturing method.
3Sx I 4Bs Hr of amorphous wound core, Δ
The characteristic range of Bd is also shown in Table 1.

第  1  表 実施例3 単ロール法により幅5N厚さ約15μm長さ500mの
下表に示すアモルファス合金薄帯を作製し、外径19m
−1内径151mに巻き回し、キュリー温度以上結晶化
温度以下の温度にほぼ100%応ツノ緩和するまで保持
後文流100eの磁界を磁路方向に印加しながら5℃/
minの冷却速度で250 ’Cまで冷却し0.5 h
 250℃に保持後室風まで空冷し、本発明の巻磁心を
作製した。
Table 1 Example 3 An amorphous alloy ribbon shown in the table below with a width of 5N, a thickness of about 15 μm and a length of 500 m was produced by a single roll method, and an outer diameter of 19 m.
-1 is wound to an inner diameter of 151 m, held until the horns are almost 100% relaxed at temperatures above the Curie temperature and below the crystallization temperature, and then 5°C/5°C while applying a magnetic field of 100 e in the direction of the magnetic path.
Cool to 250'C at a cooling rate of min for 0.5 h.
After maintaining the temperature at 250° C., the core was air-cooled to room air to produce a wound magnetic core of the present invention.

作製した巻磁心をフェノール製のケースに入れ第1図に
示す測定回路で制御磁化特性を測定した。
The produced wound magnetic core was placed in a phenol case and its controlled magnetization characteristics were measured using the measurement circuit shown in FIG.

全制御磁化力Hr、制御不能密度密度ΔBdの薄帯長手
方向の特性ばらつき範囲を第2表に示す。
Table 2 shows the characteristic variation ranges of the total control magnetization force Hr and the uncontrollable density density ΔBd in the longitudinal direction of the ribbon.

比較のため、FetzNb*Si+。13+sアモルフ
ァス巻磁心Fe7Jn+Sj+Jqアモルファス巻磁心
のΔBd、 Hrの長手方向にばらつきも示す。
For comparison, FetzNb*Si+. Also shown are variations in the longitudinal direction of ΔBd and Hr of the 13+s amorphous-wound magnetic core Fe7Jn+Sj+Jq amorphous-wound magnetic core.

本発明によるFe基アモルファス巻磁心は制御電流に関
係する全制御磁化力Hrのばらつきが小さく、制御性に
関連する制御不能磁束密度ΔBdのばらつきも小さく好
ましいことがわかる。
It can be seen that the Fe-based amorphous wound magnetic core according to the present invention has small variations in the total control magnetizing force Hr related to the control current, and small variations in the uncontrollable magnetic flux density ΔBd related to controllability.

表かられかるように本発明によるFe基アモルファス巻
磁心は制御電流に関係する全制御磁化力Hrのばらつき
が小さく、制御性に関連する制?ff1l不能磁束密度
ΔBdのばらつきも小さく可飽和リアクトル用磁心に適
している。
As can be seen from the table, the Fe-based amorphous wound magnetic core according to the present invention has small variations in the total control magnetization force Hr related to the control current, and has a small variation in the total control magnetization force Hr related to the control current. The variation in the ff1l-impossible magnetic flux density ΔBd is also small, making it suitable for a magnetic core for a saturable reactor.

実施例4 単ロール法により幅5R厚さ15μmの(Feo、 q
qsNio、 005) 72.5M0ssi+ 3.
5BI+アモルファス合金薄帯を作製し外径19N、内
径151に巻き回し、500℃に1時間保持後磁路方向
に100eの磁場を印加しながら異なる冷却速度で28
0℃まで冷却し280℃に1時間保持後空冷し制御磁化
特性を測定した。制御磁化特性から求めた全制御磁化力
Hr、制御不能磁束密度ΔBdの20ケの試料の平均値
を第3表に示す。
Example 4 (Feo, q
qsNio, 005) 72.5M0ssi+ 3.
A 5BI+ amorphous alloy ribbon was prepared, wound to an outer diameter of 19N and an inner diameter of 151, held at 500°C for 1 hour, and then cooled for 28 hours at different cooling rates while applying a magnetic field of 100e in the direction of the magnetic path.
The sample was cooled to 0°C, held at 280°C for 1 hour, and then cooled in air and measured for controlled magnetization characteristics. Table 3 shows the average values of the total control magnetization force Hr and the uncontrollable magnetic flux density ΔBd obtained from the control magnetization characteristics for 20 samples.

第3表 表より冷却速度が1℃/min未満ではHrが大きくな
り好ましくなく、冷却速度が5℃/mjnを越えるとH
rが大きくなり好ましくないことがわかる。
Table 3 shows that if the cooling rate is less than 1°C/min, the Hr will increase, which is undesirable, and if the cooling rate exceeds 5°C/mjn, the Hr will increase.
It can be seen that r becomes large, which is not preferable.

実施例5 単ロール法により幅5ml厚さ14μmの(Fe+−a
−bNia Cob)t4.5Mo3st+x、sBq
アモルファス合金薄帯を作製し、外径19mm、内径1
5璽婁に巻き回し490℃に1時間保持後室温まで空冷
した。
Example 5 (Fe+-a
-bNia Cob)t4.5Mo3st+x,sBq
An amorphous alloy ribbon was made with an outer diameter of 19 mm and an inner diameter of 1.
It was wound around a 5-thick tube, kept at 490°C for 1 hour, and then air-cooled to room temperature.

次に磁路方向に5Oeの磁場を印加しながら温度を上げ
280℃に4時間保持後室温まで冷却した。
Next, while applying a magnetic field of 5 Oe in the direction of the magnetic path, the temperature was raised and maintained at 280° C. for 4 hours, and then cooled to room temperature.

得られた巻磁心をフェノール樹脂製のコアケースに入れ
巻線を行なった後制御磁化特性を測定した。
The obtained wound magnetic core was placed in a core case made of phenol resin, and after winding, the controlled magnetization characteristics were measured.

第4図に全制御磁化力Hrと制御不能磁束密度ΔBdの
NiとCoの総和a+b依存性を示す。
FIG. 4 shows the dependence of the total control magnetizing force Hr and the uncontrollable magnetic flux density ΔBd on the sum a+b of Ni and Co.

a+bが0.05未満ではΔBdがやや大きくなる傾向
がありかつばらつきが大きくなり好ましくない。a+b
が0.05を越えると全制御磁化力が増加し好ましくな
い。
If a+b is less than 0.05, ΔBd tends to become somewhat large and the variation becomes large, which is not preferable. a+b
If it exceeds 0.05, the total control magnetizing force increases, which is not preferable.

実施例6 単ロール法により幅5 n+厚さ13μmの(Feo、
 qqNio、 o+)az、 s−zMOzTa1s
i13. sBzアモルファス合金薄帯を作製し、外径
19曹墓内径15關に巻き回し490 ’Cに1時間保
持後100eの磁場を磁路方向に印加しながら3℃/m
inの冷却速度で250℃まで冷却し250 ’Cに4
時間保持後室温まで冷却し本発明の磁心を作製し、全制
御磁化力Hrを測定した。次に120℃に500時間保
持後の全制御磁化力Hr5°0を測定した。
Example 6 (Feo,
qqNio, o+)az, s-zMOzTa1s
i13. A sBz amorphous alloy ribbon was prepared, wound around an outer diameter of 19 mm and an inner diameter of 15 mm, held at 490'C for 1 hour, and heated at 3°C/m while applying a magnetic field of 100 e in the direction of the magnetic path.
Cool to 250'C at a cooling rate of 4 in.
After holding for a time, the core was cooled to room temperature to produce a magnetic core of the present invention, and the total control magnetization force Hr was measured. Next, the total control magnetization force Hr5°0 after being held at 120°C for 500 hours was measured.

第5図に経時変化率Δ0r(=IIr500− Hr)
/)IrのB ii z依存性を示す。
Figure 5 shows the rate of change over time Δ0r (=IIr500-Hr)
/) Shows the B ii z dependence of Ir.

2が8以上10以下の範囲で全制御磁化力の経時変化が
小さく特に好ましい。
It is particularly preferable that 2 be in the range of 8 or more and 10 or less because the change over time in the total control magnetizing force is small.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来不充分であったFe基アモルファ
ス磁心の制御磁化特性のばらつきを小さくできるためそ
の効果は著しい。
According to the present invention, it is possible to reduce variations in the controlled magnetization characteristics of Fe-based amorphous magnetic cores, which have been insufficient in the past, and the effect is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は制御磁化特性測定回路、第2図は任意の直流の
制御電流1cが制御回路に流れている場合の磁心の動作
模式図、第3図は制御磁化曲線の模式図、第4図は全制
御磁化力Hrと制御不能磁束密度ΔBdのNi+Coの
総和a+b依存性を示した図、第5図は経時変化率ΔH
r/HrのB量2依存性を示した図である。 第1図 第2図 第3図 第4図 0 0.010.020.030.040.050.0
60.07a+b 第5図
Fig. 1 is a control magnetization characteristic measurement circuit, Fig. 2 is a schematic diagram of the operation of the magnetic core when an arbitrary DC control current 1c flows through the control circuit, Fig. 3 is a schematic diagram of the control magnetization curve, and Fig. 4 is a diagram showing the dependence of the total control magnetization force Hr and the uncontrollable magnetic flux density ΔBd on the sum a+b of Ni+Co, and FIG.
It is a figure showing the B amount 2 dependence of r/Hr. Figure 1 Figure 2 Figure 3 Figure 4 0 0.010.020.030.040.050.0
60.07a+b Figure 5

Claims (1)

【特許請求の範囲】 1、組成式 (Fe_1_−_a_−_bNi_aCo_b)_1_
0_0_−_x_−_y_−_zM_xSi_yB_z
(原子%)で表わされ、 ここでMはMo、Nb、Ta、Wから選ばれる少なくと
も1種の元素であり、 0.005≦a+b≦0.05、2≦x≦6、y≦19
、7≦z≦25、20≦x+y+z≦30 の関係を有するアモルファス合金薄帯からなり、50k
Hzにおける全制御磁化力Hrが20A/m以下、制御
不能磁束密度ΔBdが0.2T以下であることを特徴と
する制御磁化特性のばらつきが小さい可飽和リアクトル
用Fe基アモルファス磁心。 2、組成式 (Fe_1_−_z_−_bNi_aCo_b)_1_
0_0_−_x_−_y_−_zM_xSi_yB_z
(原子%)で表わされ、 ここでMはMo、Nb、Ta、Wから選ばれる少なくと
も1種の元素であり、 0.005≦a+b≦0.05、2≦x≦6、8≦y≦
16、8≦z≦10、20≦x+y+z≦30 の関係を有するアモルファス合金薄帯からなることを特
徴とする特許請求の範囲第(1)項記載の可飽和リアク
トル用Fe基アモルファス磁心。 3、不活性ガス雰囲気中あるいは真空中でキュリー温度
以上にほぼ完全に応力緩和されるまで一定時間保持し直
流あるいは交流の0.5Oe以上の磁場を磁路方向に印
加しながら1℃/min以上20℃/min以下の平均
冷却速度で冷却し、200℃以上キュリー温度以下の温
度に0.1h以上5h未満保持後室温まで冷却すること
を特徴とする上記可飽和リアクトル用Fe基アモルファ
ス磁心の製造方法。 4、不活性ガス雰囲気中あるいは真空中でキュリー温度
以上にほぼ完全に応力緩和されるまで一定時間保持後室
温まで急冷し、直流あるいは交流の磁場を磁路方向に印
加しながら200℃以上、キュリー温度以下の温度に昇
温後0.1h以上5h未満保持後室温まで冷却すること
を特徴とする上記可飽和リアクトル用Fe基アモルファ
ス磁心の製造方法。
[Claims] 1. Composition formula (Fe_1_-_a_-_bNi_aCo_b)_1_
0_0_-_x_-_y_-_zM_xSi_yB_z
(atomic %), where M is at least one element selected from Mo, Nb, Ta, and W, 0.005≦a+b≦0.05, 2≦x≦6, y≦19
, 7≦z≦25, 20≦x+y+z≦30.
An Fe-based amorphous magnetic core for a saturable reactor with small variations in control magnetization characteristics, characterized in that the total control magnetization force Hr at Hz is 20 A/m or less, and the uncontrollable magnetic flux density ΔBd is 0.2 T or less. 2. Composition formula (Fe_1_-_z_-_bNi_aCo_b)_1_
0_0_-_x_-_y_-_zM_xSi_yB_z
(atomic %), where M is at least one element selected from Mo, Nb, Ta, and W, 0.005≦a+b≦0.05, 2≦x≦6, 8≦y ≦
16, 8≦z≦10, 20≦x+y+z≦30 An Fe-based amorphous magnetic core for a saturable reactor according to claim 1, characterized in that it is made of an amorphous alloy ribbon having the following relationships. 3. Hold in an inert gas atmosphere or vacuum for a certain period of time until the stress is almost completely relaxed above the Curie temperature, and apply a direct current or alternating current magnetic field of 0.5 Oe or more in the magnetic path direction at 1°C/min or more. Production of the above-mentioned Fe-based amorphous magnetic core for a saturable reactor, characterized in that it is cooled at an average cooling rate of 20°C/min or less, maintained at a temperature of 200°C or higher and lower than the Curie temperature for 0.1 hours or more and less than 5 hours, and then cooled to room temperature. Method. 4. Hold in an inert gas atmosphere or vacuum for a certain period of time until the stress is almost completely relaxed above the Curie temperature, then rapidly cool to room temperature, and heat the Curie temperature at 200°C or above while applying a direct current or alternating current magnetic field in the direction of the magnetic path. The method for producing the Fe-based amorphous magnetic core for a saturable reactor as described above, characterized in that the Fe-based amorphous magnetic core for a saturable reactor is cooled to room temperature after being heated to a temperature equal to or lower than the above temperature and maintained for 0.1 h or more and less than 5 h.
JP61172986A 1986-07-23 1986-07-23 Fe group amorphous magnetic core for saturable reactor and manufacture thereof Pending JPS6329909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172986A JPS6329909A (en) 1986-07-23 1986-07-23 Fe group amorphous magnetic core for saturable reactor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172986A JPS6329909A (en) 1986-07-23 1986-07-23 Fe group amorphous magnetic core for saturable reactor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6329909A true JPS6329909A (en) 1988-02-08

Family

ID=15952055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172986A Pending JPS6329909A (en) 1986-07-23 1986-07-23 Fe group amorphous magnetic core for saturable reactor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6329909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby
JP2013223354A (en) * 2012-04-17 2013-10-28 Mayekawa Mfg Co Ltd Rectifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby
JP2013223354A (en) * 2012-04-17 2013-10-28 Mayekawa Mfg Co Ltd Rectifier

Similar Documents

Publication Publication Date Title
US4314594A (en) Reducing magnetic hysteresis losses in cores of thin tapes of soft magnetic amorphous metal alloys
KR910002375B1 (en) Magnetic core component and manufacture thereof
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
US5138393A (en) Magnetic core
WO2015046140A1 (en) METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE
JPS6133900B2 (en)
JPS6328483B2 (en)
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JPH07320920A (en) Nano-crystal alloy magnetic core and heat-treatment method thereof
US4769091A (en) Magnetic core
JPH0544165B2 (en)
JPS6332244B2 (en)
JPS6329909A (en) Fe group amorphous magnetic core for saturable reactor and manufacture thereof
JPS62179704A (en) Fe-based amorphous core excellent in controlling magnetization characteristics
JPS6070157A (en) Amorphous alloy and its manufacture
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH0549742B2 (en)
JPH0257683B2 (en)
JPH0811818B2 (en) Heat treatment method for toroidal amorphous magnetic core
JPH053126A (en) Manufacture of wound magnetic core of large squareness ratio in high frequency and wound magnetic core
JPH079862B2 (en) Amorphous magnetic core manufacturing method
JPS6164861A (en) Manufacture of amorphous alloy having small magnetic loss and high angular property
JPS6019125B2 (en) Wound core material
JPS6012423B2 (en) Manufacturing method of low coercive force and high angularity amorphous alloy