JPS63298501A - Controller - Google Patents
ControllerInfo
- Publication number
- JPS63298501A JPS63298501A JP13157687A JP13157687A JPS63298501A JP S63298501 A JPS63298501 A JP S63298501A JP 13157687 A JP13157687 A JP 13157687A JP 13157687 A JP13157687 A JP 13157687A JP S63298501 A JPS63298501 A JP S63298501A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- control device
- compensation
- amount
- repetition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006870 function Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
- Control Of Velocity Or Acceleration (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、繰り返し動作に対して大きな誤差を生じるこ
となく、徐々に誤差を減少させる制御装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device that gradually reduces errors during repeated operations without causing large errors.
第4図は従来の学習制御器を具備する制?TI装置の構
成図で、図において、lは指令値発生器、2はPD制御
器、3は制御対象、4は学習制御器。Figure 4 shows a system equipped with a conventional learning controller. This is a configuration diagram of the TI device. In the figure, l is a command value generator, 2 is a PD controller, 3 is a controlled object, and 4 is a learning controller.
5は演算器、6はメモリ、7は指令値、r(t)。5 is an arithmetic unit, 6 is a memory, and 7 is a command value, r(t).
8は出力、y、(t)、9は誤差、e((t)。8 is the output, y, (t), 9 is the error, e((t).
10は補償t ui (t)、11は操作1.iは
繰り返し回数である。10 is compensation t ui (t), 11 is operation 1. i is the number of repetitions.
次に動作について説明する。Next, the operation will be explained.
第5図は第4図で示される系の応答の一例を示す線図で
ある。指令値7.r (L)に対して、i−i回目の繰
り返しにおける出力8.3’ t−+(t)が図に示す
ようであり、この時の補償量IOがul−1(t)であ
ったとする。i回目の繰り返しでは、i−i回目に生じ
た誤差を減少させるために、補償量ui(t)は、ut
−+(t)に(1)式第2項で示される値を加算する。FIG. 5 is a diagram showing an example of the response of the system shown in FIG. 4. Command value 7. For r (L), the output 8.3' t-+(t) at the i-ith repetition is as shown in the figure, and the compensation amount IO at this time is ul-1(t). do. In the i-th repetition, the compensation amount ui(t) is changed to ut
The value shown by the second term of equation (1) is added to -+(t).
u H(t) −u H−、(t) + −r e
1−+(t)−(1)t
et (t)−r (t、) −y4−+(t)
H・・(2)適当なrの値を選ぶことにより、i
回目の操り返しの出力8.7i (t)がi−i回目
の繰り返しより指令値7.r (t)に近づき、この結
果i−関とすることによりa! (t)が0に収束する
。u H(t) −u H−, (t) + −r e
1−+(t)−(1)t et (t)−r (t,) −y4−+(t)
H...(2) By choosing an appropriate value of r, i
The output 8.7i (t) of the ith repetition becomes the command value 7. r (t), and as a result, by making it an i-function, a! (t) converges to 0.
i−i回目の繰り返しにおいて、演算器11は、誤差9
ei−1(t)を入力し、(1)式第2項の演算を行
なう、この出力は、補償量ut−+(t)に加算されて
メモリ6に格納される。この値は、次のi回目の繰り返
しにおいて読み出され、補償量10゜ut(t) と
して出力される。同様の操作を順次繰り返す事により、
次第に誤差9が減少する。In the ii-th repetition, the arithmetic unit 11 calculates the error 9
ei-1(t) is input, and the second term of equation (1) is calculated.The output is added to the compensation amount ut-+(t) and stored in the memory 6. This value is read out in the next i-th repetition and output as a compensation amount of 10° ut(t). By repeating the same operations one after another,
The error 9 gradually decreases.
従来の制御装置は上記のように構成されているので、繰
り返し回数を重ねることにより、誤差9を零に近づける
補償!10が(1)式により得られるが、第1回目の繰
り返しでは、(1)式より演算される補償量10が零で
あるために、学習制御器の効果はなく、通常のPDIi
tll?il器のみによる制御と同様、高速動作をさせ
ると誤差9が大きくなってしまうという難点があった。Since the conventional control device is configured as described above, the error 9 can be compensated to approach zero by increasing the number of repetitions! 10 can be obtained from equation (1), but in the first iteration, the compensation amount 10 calculated from equation (1) is zero, so there is no effect of the learning controller, and normal PDIi
tll? Similar to the control using only the IL unit, there is a problem in that the error 9 increases when high-speed operation is performed.
また、第2回目以降の繰り返しにおいても、補償ft1
oが誤差9を充分零に近づけるように収束する迄は特に
高速動作においては誤差9が大きいという難点があった
。Also, in the second and subsequent iterations, the compensation ft1
There was a problem in that the error 9 was large, especially in high-speed operation, until o converged so that the error 9 was sufficiently close to zero.
本発明は従来装置の上記問題点を解消するためになされ
たもので、高速の動作指令が与えられた場合でも、すべ
ての繰返しに対して大きな誤差を生じないような制御装
置を提供しようとするものである。The present invention has been made to solve the above-mentioned problems of conventional devices, and aims to provide a control device that does not cause large errors in all repetitions even when high-speed operation commands are given. It is something.
上記目的を達成するため本発明に係る制御装置は、繰り
返し動作指令に対し、繰り返し回数の少ない間は、所望
の繰り返し速度よりも低い速度で動作させる可変速学習
制御器を具備した。In order to achieve the above object, a control device according to the present invention includes a variable speed learning controller that operates at a speed lower than a desired repetition speed while the number of repetitions is small in response to a repetitive operation command.
上記可変速学習制御器は、繰り返しを重ねて誤差が小さ
くなるまでの間、誤差を大きくしないような低い速度で
動作させる事により、すべての繰り返しに対して大きな
誤差は生じない。The variable speed learning controller is operated at a low speed that does not increase the error until the error becomes small through repeated repetitions, so that no large error occurs in all repetitions.
第1図は本発明の一実施例である制御装置の構成図で、
図中2〜11は従来装置と同−又は相当する部分又は機
能、20は可変速指令値発生器、21は可変速学習制御
器、22は速度設定器、23.24は速度設定値である
。FIG. 1 is a configuration diagram of a control device that is an embodiment of the present invention.
In the figure, 2 to 11 are the same or equivalent parts or functions as the conventional device, 20 is a variable speed command value generator, 21 is a variable speed learning controller, 22 is a speed setting device, and 23 and 24 are speed setting values. .
6自由度のロボットマニピエレータを制御対象とすると
、制御対象の運動方程式は(3)式で与えられる。When a robot manipulator with six degrees of freedom is to be controlled, the equation of motion of the controlled object is given by equation (3).
行列、’lanはアクチュエータの慣性、mj はリン
ク質量、gは重力加速度+Fjは質量中心の位Wベクト
ル、qおは一般化座標、F、lは制御対象の操作Ill
で、アクチュエータの一般化力、F。matrix, 'lan is the inertia of the actuator, mj is the link mass, g is the gravitational acceleration + Fj is the position of the center of mass W vector, q is the generalized coordinate, F, l are the operation Ill of the controlled object
and the generalization power of the actuator, F.
はまさつによる一般化力である。This is the generalization power of Hamasatsu.
(3)式の右辺第3項までは、速度の自乗、あるいは加
速度に比例する項であり、速度を下げて動作させる事に
より、その他の項に比べ充分に小さくする事ができる。The third term on the right side of equation (3) is a term proportional to the square of velocity or acceleration, and can be made sufficiently smaller than the other terms by operating at a lower speed.
したがって、充分低い速度において学習制御を行なう事
により、速度に依存しない(3)式右変第4項、第5項
に相当する値が補(N量10として得られる。Therefore, by performing learning control at a sufficiently low speed, values corresponding to the fourth and fifth terms of the right-hand variation of equation (3), which do not depend on the speed, can be obtained as a complement (N amount 10).
次に、所望の速度で動作させる際に、あらかじめ低速度
で得られた補償量を時間軸を短縮して補!M R10と
する。この結果最初から所望の速度で動作させる従来の
学習制御器のような大きな誤差を生しる事がなくなる。Next, when operating at the desired speed, the amount of compensation obtained in advance at low speed is compensated for by shortening the time axis! MR10. As a result, large errors unlike conventional learning controllers that operate at a desired speed from the beginning will not occur.
第1回目の繰り返しにおいては、速度設定器22は、(
3)弐右辺第3項までの項が他の項に比べ充分小さくな
るような低速を設定する。変速指令値発生器20は、こ
の速度に対応する指令値7を発生し、またメモリ6はこ
の速度に比例したレートで書き込み、および読み出しを
行うものとする。In the first repetition, the speed setter 22 (
3) Set a low speed so that the terms up to the third term on the second right side are sufficiently smaller than the other terms. It is assumed that the shift command value generator 20 generates a command value 7 corresponding to this speed, and that the memory 6 performs writing and reading at a rate proportional to this speed.
第2回目、あるいはしばらく第1回目の速度を繰り返し
た後に、速度設定器22は、所望の速度に設定値を上昇
させる。制御対象3は所望の速度で動作するが、操作1
tllはあらかじめ低速で得られた補償量10を加算し
ているため、従来の学習制御器のような大きな誤差を生
しる事はなくなる。The second time, or after repeating the first speed for a while, the speed setter 22 increases the set value to the desired speed. Controlled object 3 operates at the desired speed, but operation 1
Since the compensation amount 10 obtained at low speed is added to tll in advance, large errors unlike conventional learning controllers will not occur.
なお、所望の速度での動作に移行する際に、制御対象の
モデルを用いて、(3)式右辺第3項までの項に相当す
る一般化力を演算して補償量10に加算する事により、
さらに従来より誤差を減少させて動作させる事ができる
。In addition, when shifting to operation at a desired speed, using the model of the controlled object, calculate the generalized force corresponding to the terms up to the third term on the right side of equation (3) and add it to the compensation amount 10. According to
Furthermore, it is possible to operate with fewer errors than in the past.
第2図は(3)弐右辺第3項までを演算するダイナミッ
クス演算器25を含む可変速学習器21を具備する制御
装置の実施例であり、所望の速度への移行が速度設定値
26により知らされ、メモリ6の出力に加算されて補償
量10として出力される。FIG. 2 is an embodiment of a control device equipped with a variable speed learning device 21 including a dynamics calculator 25 that calculates (3) up to the third term on the second right side, and the transition to a desired speed is achieved by the speed setting value 26. is added to the output of the memory 6 and output as the compensation amount 10.
また、上記実施例では(3)式右辺の速度に依存する項
が他の項に比べ充分に小さい低速において動作させた後
、直ちに所望の速度に上昇させて動作させたが、低速よ
り所望の速度まで、徐々に速度を上昇し動作させること
もできる。この際、(3)式右辺第3項までの項の値が
徐々に変化するが、速度の変化に対応する適当な係数を
、前回の補償量10と誤差9に掛け、速度変化後の補償
量10とすることにより、大きな誤差を生じることなく
、徐々に所望の速度まで上昇させることができる。In addition, in the above embodiment, after operating at a low speed where the speed-dependent term on the right side of equation (3) is sufficiently small compared to other terms, the speed is immediately increased to the desired speed and the operation is performed at a desired speed. It is also possible to gradually increase the speed up to the maximum speed. At this time, the values of the terms up to the third term on the right side of equation (3) gradually change, but the previous compensation amount 10 and error 9 are multiplied by an appropriate coefficient corresponding to the change in speed to compensate for the change in speed. By setting the amount to 10, the speed can be gradually increased to the desired speed without causing a large error.
第3図は、掛算器27を含む可変速学習器21を備えた
制御装置の実施例であり、速度を上昇させる際にメモリ
6の出力に、速度の変化に対応する適当な係数を掛算器
27により掛け、補償15tl。FIG. 3 shows an embodiment of a control device equipped with a variable speed learning device 21 including a multiplier 27. When increasing the speed, the output of the memory 6 is multiplied by an appropriate coefficient corresponding to the change in speed. Multiply by 27, compensation 15tl.
としている。It is said that
〔発明の効果〕
以上述べたように、本発明に係る制御装置は、繰り返し
動作における学習制御を、一旦低速において動作させる
ように構成したので、すべての繰り返しに対して大きな
誤差を生じることのない制御装置を提供しうろこととな
った。[Effects of the Invention] As described above, the control device according to the present invention is configured such that the learning control in the repetitive operation is performed once at a low speed, so that the control device according to the present invention does not cause a large error for all repetitions. It became a scale that provided the control device.
第1図は本発明の一実施例である制御装置を示す構成図
、第2図は本発明の他の実施例による制御装置の構成図
、第3図は本発明のさらに他の実施例である制御装置の
構成図、第4図は従来の制御装置の構成図、第5図は応
答の一例を示す線図である。
図中2はPD制御器、3は制御対象、5は演算器、6は
メモリ、7は指令値、8は出力、9は誤差、10は補償
量、11は振作量、20は可変速指令値、21は可変速
学習制御器、22は速度設定器、23.24.26、は
速度設定値、25はダイナミックス演算器、27は掛算
器である。
なお、各図中同一符号は同一または相当部分を示す。
代 理 人 弁理士 佐々木 宗 冶
6、補正の内容
手続補正書(自発)
1、事件の表示
特願昭62−131576号
2、発明の名称
制御装置
3、補正をする者
事件との関係 特許出願人
住 所 東京都千代田区丸の内二丁目2番3号名
称 (601)三菱電機株式会社
代表者 志岐守哉
4、代理人
住 所 東京都港区虎ノ門五丁目8番6号5、補
正の対象
明細書の「発明の詳細な説明」の欄並びに図面j =
nk −1a qk a qnJ 洋i
fl qn
を以下の式に補正する。
(2)図面の第1図、第2図を補正図面のように補正す
る。FIG. 1 is a block diagram showing a control device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a control device according to another embodiment of the present invention, and FIG. 3 is a block diagram showing a control device according to another embodiment of the present invention. FIG. 4 is a block diagram of a certain control device, FIG. 4 is a block diagram of a conventional control device, and FIG. 5 is a line diagram showing an example of a response. In the figure, 2 is the PD controller, 3 is the controlled object, 5 is the computing unit, 6 is the memory, 7 is the command value, 8 is the output, 9 is the error, 10 is the compensation amount, 11 is the vibration amount, and 20 is the variable speed command 21 is a variable speed learning controller, 22 is a speed setter, 23, 24, 26 is a speed setting value, 25 is a dynamics calculator, and 27 is a multiplier. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Souji Sasaki, Patent Attorney 6, Contents of amendment Procedural amendment (voluntary) 1. Indication of the case Japanese Patent Application No. 1983-131576 2. Name control device for the invention 3. Person making the amendment Relationship with the case Patent application Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4 Address of agent 5-8-6-5 Toranomon, Minato-ku, Tokyo Subject to amendment “Detailed Description of the Invention” column of the specification and drawings j =
nk -1a qk a qnJ Yoi
Correct fl qn to the following formula. (2) Figures 1 and 2 of the drawings are corrected to look like corrected drawings.
Claims (4)
における補償量と誤差によって、出力をより指令値に近
づけるように補正量を修正する手段と、メモリを用いて
この補償量を保存し、i回目の繰り返しにおいて、この
補償量を用い誤差を減少させる学習制御、あるいは繰り
返し制御において、 可変速度設定手段を有し、少なくとも一回、所望の動作
速度よりも低い速度で動作させて補償量を修正するよう
に構成した可変速学習制御器を備えたことを特徴とする
制御装置。(1) means for repeating the operation and correcting the amount of correction so as to bring the output closer to the command value based on the amount of compensation and error in the i-1th repetition or earlier, and storing this amount of compensation using a memory; In the i-th repetition, in the learning control or repetition control that uses this compensation amount to reduce the error, the variable speed setting means is provided and the compensation amount is adjusted by operating at a speed lower than the desired operation speed at least once. A control device comprising a variable speed learning controller configured to correct.
の動作速度よりも低い速度で動作し、この結果得られた
補償量を所望の速度で得られたものとして時間軸を短縮
して修正し、所望の速度での動作に移行する際に、この
補正量を用いて出力を指令値に近づけるように構成され
ていることを特徴とする特許請求の範囲第1項記載の制
御装置。(2) The variable speed learning controller operates at least once at a speed lower than the desired operating speed, and shortens the time axis by assuming that the compensation amount obtained as a result is obtained at the desired speed. 2. The control device according to claim 1, wherein the control device is configured to use this correction amount to bring the output closer to the command value when moving to a desired speed.
て所望の動作速度において出力を指令値に近づけるため
に必要な操作量を演算し、所望の動作速度へ移行する際
に、この値を低速で得られた補償量に加算するように構
成されていることを特徴とする特許請求の範囲第2項記
載の制御装置。(3) The variable speed learning controller uses the model of the controlled object to calculate the amount of operation required to bring the output close to the command value at the desired operating speed, and when shifting to the desired operating speed, 3. The control device according to claim 2, wherein the control device is configured to add the value to the compensation amount obtained at low speed.
させる際に、i−1回目における補償量と誤差によって
補償量を修正し、さらに時間軸を短縮してi回目の補償
量とするように構成されていることを特徴とする特許請
求の範囲第1項記載の制御装置。(4) When the variable speed learning controller increases the operating speed for the i-th time, it modifies the compensation amount based on the compensation amount and error at the i-1st time, further shortens the time axis, and adjusts the compensation amount for the i-th time. 2. The control device according to claim 1, wherein the control device is configured to:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13157687A JPS63298501A (en) | 1987-05-29 | 1987-05-29 | Controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13157687A JPS63298501A (en) | 1987-05-29 | 1987-05-29 | Controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63298501A true JPS63298501A (en) | 1988-12-06 |
Family
ID=15061282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13157687A Pending JPS63298501A (en) | 1987-05-29 | 1987-05-29 | Controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63298501A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340106A (en) * | 1989-07-07 | 1991-02-20 | Mitsubishi Heavy Ind Ltd | Robust controller |
WO1992020019A1 (en) * | 1991-04-24 | 1992-11-12 | Fanuc Ltd | Method and apparatus for prediction repetition control of servo motor |
JP2012240142A (en) * | 2011-05-17 | 2012-12-10 | Fanuc Ltd | Spot welding robot provided with learning control function |
JP2013041478A (en) * | 2011-08-17 | 2013-02-28 | Fanuc Ltd | Robot with learning control function |
US8886359B2 (en) | 2011-05-17 | 2014-11-11 | Fanuc Corporation | Robot and spot welding robot with learning control function |
-
1987
- 1987-05-29 JP JP13157687A patent/JPS63298501A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340106A (en) * | 1989-07-07 | 1991-02-20 | Mitsubishi Heavy Ind Ltd | Robust controller |
WO1992020019A1 (en) * | 1991-04-24 | 1992-11-12 | Fanuc Ltd | Method and apparatus for prediction repetition control of servo motor |
US5371451A (en) * | 1991-04-24 | 1994-12-06 | Fanuc Ltd. | Predictive repetition control method for a servo motor and an apparatus therefor |
JP2012240142A (en) * | 2011-05-17 | 2012-12-10 | Fanuc Ltd | Spot welding robot provided with learning control function |
US8886359B2 (en) | 2011-05-17 | 2014-11-11 | Fanuc Corporation | Robot and spot welding robot with learning control function |
JP2013041478A (en) * | 2011-08-17 | 2013-02-28 | Fanuc Ltd | Robot with learning control function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108319144B (en) | Robot trajectory tracking control method and system | |
Gilbert et al. | An approach to nonlinear feedback control with applications to robotics | |
Tomizuka et al. | On the optimal digital state vector feedback controller with integral and preview actions | |
Zhang et al. | Stepsize range and optimal value for Taylor–Zhang discretization formula applied to zeroing neurodynamics illustrated via future equality-constrained quadratic programming | |
Raibert | Manipulator control using the configuration space method | |
Escobar et al. | Output-feedback global stabilization of a nonlinear benchmark system using a saturated passivity-based controller | |
US4580229A (en) | Method and apparatus for control of an articulated robot | |
Liu et al. | DLR's multisensory articulated hand. II. The parallel torque/position control system | |
JPS63298501A (en) | Controller | |
JP2709773B2 (en) | Servo motor control method | |
JP2783321B2 (en) | Control device for articulated robot | |
Trautt et al. | Inverse dyamics of non-minimum phase systems with non-zero initial conditions | |
Monroy et al. | An application of real-time control systems to robotics | |
JPH01150912A (en) | Adjusting device for digital servo control device | |
JP2629758B2 (en) | Trajectory correction method | |
Khosla | Recent advances in experimental robot control | |
JPS6245562B2 (en) | ||
JPH03182910A (en) | Digital adaptive controller | |
Zhu et al. | A robust output feedback link position tracking controller for BDC RLED robots | |
KR0161002B1 (en) | Circular interpolation method of robot | |
Arimoto et al. | Learning control for robot motion under geometric end-point constraint | |
Chan | Real time control of robot manipulator using a neural network based learning controller | |
Fardanesh et al. | Model based controllers for robot manipulators using basis trajectory inverse dynamics | |
Behzadpour et al. | Simulation of the Admittance Control Based Haptic Interface Device | |
JPH0470199B2 (en) |