JPS63297875A - Three-way fluid control valve - Google Patents

Three-way fluid control valve

Info

Publication number
JPS63297875A
JPS63297875A JP62131681A JP13168187A JPS63297875A JP S63297875 A JPS63297875 A JP S63297875A JP 62131681 A JP62131681 A JP 62131681A JP 13168187 A JP13168187 A JP 13168187A JP S63297875 A JPS63297875 A JP S63297875A
Authority
JP
Japan
Prior art keywords
pressure
port
piston
steel ball
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62131681A
Other languages
Japanese (ja)
Inventor
Satoshi Hamamoto
浜本 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP62131681A priority Critical patent/JPS63297875A/en
Publication of JPS63297875A publication Critical patent/JPS63297875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PURPOSE:To make it possible to equilibrate the pressure of fluid so as to use a high supply pressure by forming a valve element for opening and closing the communication between ports, in a spherical shape so as to prevent a valve element from being stuck due to dust, and by driving the valve element by means of a piston. CONSTITUTION:A sleeve 33 having a pressure supply port (a), a load port (b) and a return port (c) is disposed in a housing hole 2 in a valve body 1. Steel balls 10, 11 as valve elements 13 are loosely fitted in middle diameter chambers 8, 9 in the sleeve 33, and a small diameter ball 13 is loosely fitted in a small diameter chamber 12 in the sleeve. The steel ball 10 is normally urged upward by the supply pressure, and the steel ball 11 is pressed upward through the intermediary of the small ball 13. When a solenoid section 30 is energized, movable iron core 19 is moved downward so as to move the steel balls 10, 11 by means of a piston 31 in order to change over the communication between the ports. The supply pressure is exerted to the rear of the piston 31 through a passage 35 so as to equilibrate the pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電磁力等により作動流体の制御を行う3ポート
2位置切換弁即ち3方向流体制御弁の弁構造の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in the valve structure of a three-port two-position switching valve, that is, a three-way fluid control valve, which controls a working fluid by electromagnetic force or the like.

(従来の技術) かかる3方向流体制御弁は例えば特公昭49−1037
1号および特開昭60−44671号各公報のものが知
らnている。こ几らの公報のものは弁体を横切る流体圧
力が作用しないように弁体の前後で圧力平衡をとる構造
にさ几ているため、部品点数が多くな0かつ特殊な形状
をしており高価についた。
(Prior art) Such a three-way fluid control valve is disclosed in Japanese Patent Publication No. 49-1037, for example.
No. 1 and Japanese Unexamined Patent Publication No. 60-44671 are known. The one published by these authors has a structure that balances the pressure before and after the valve body so that the fluid pressure that crosses the valve body does not act, so it has a large number of parts and a special shape. It was expensive.

本願出願人l−jかかる問題を解決する之め第3図に示
すような3方向流体制御弁を特開昭62−2084号公
報で開示しtoこのものは安価で入手し易くかつゴミに
強い鋼球を使用し安価、耐久性及び信頼性があり、上述
したものに対し改善さnているが、流体圧力の平衡がと
らnていないため、供給圧力は例え20乃至301J 
+!IJといった比較的低圧でしか使用できず、かつ供
給圧力の影響を受けて、切換応答速度が比較的に遅くな
るおモルがあっ九。
In order to solve this problem, the applicant of the present application disclosed a three-way fluid control valve as shown in FIG. The use of steel balls is inexpensive, durable, and reliable, and is an improvement over the above-mentioned ones, but since the fluid pressure is not balanced, the supply pressure is, for example, 20 to 301 J.
+! There are some types, such as IJ, which can only be used at relatively low pressures and whose switching response speed is relatively slow due to the influence of the supply pressure.

本発明の目的は、常に安定し九作動を得ることができ、
信頼性が高いかつ安価な弁であって、しかもゴミによる
固着などのない摺動部をなくした3方向流体制御弁であ
って、かつ高い供給圧力でも使用でき、そして供給圧力
の違いによる弁の応答速度の違いをなくし之ような3方
向流体制御弁を提供することにある・ (問題点を解決する之めの手段) このため本発明は特許請求の範囲記載の3方向流体制御
弁を提供することによって上述した問題点を解決した。
The purpose of the present invention is to always be able to obtain stable operation,
It is a highly reliable and inexpensive valve, and it is a three-way fluid control valve that does not have a sliding part that does not get stuck due to dirt. It can also be used at high supply pressures, and the valve does not change due to differences in supply pressure. An object of the present invention is to provide a three-way fluid control valve that eliminates the difference in response speed. By doing so, the above-mentioned problems were solved.

(実施例) 以下本発明の実施例を図面を参照して説明すると、第1
図でバルブ本体(1)のハウジング孔(2)内に作動流
体の出入するボー) (a、b、c)穴を有する一体も
ののスリーブ0→がねじ(至)を介して着脱容易に取付
けらnており、本体(1)とスリーブ03とはそ几と協
働する内部部材と共にカートリッジバルブを形成し、カ
ートリッジバルブ支持部02にねじ翰を介して着脱容易
に取付けら几でおり、各シール(14,14“、20)
によって保全部材間及び各ポー ) (a、b、c)間
のシールが確保さ几ている。スリーブ03の中径室(8
) (91内にはそnぞ1球状弁体である鋼球明α刀が
遊嵌さ几、鋼球αGα〃のエツジ(5)(6)が形成さ
nたスリーブ小径部(6)内には小鋼球α]が遊嵌さ几
ている・なお実施例とは異るように、本体(1)とカー
トリッジバルブ支持部Oaとは1体に形成し、スリーブ
03を2個または3個に分割さnてもよい。鋼球α力は
中径室(9)内の図示の第2位置では負荷ポート(b)
と戻りボー) (c)との連通を許容する位置にある。
(Embodiments) Below, embodiments of the present invention will be described with reference to the drawings.
In the figure, the sleeve 0→, which is an integral piece with holes (a, b, c) through which working fluid enters and exits the housing hole (2) of the valve body (1), is easily attached and detached via a screw (to). The main body (1) and the sleeve 03 together with internal members that cooperate with the body form a cartridge valve, and are easily attached to and removed from the cartridge valve support part 02 via screws. (14, 14", 20)
This ensures a seal between the maintenance members and between each port (a, b, c). Medium diameter chamber of sleeve 03 (8
) (Inside the 91, a steel ball, which is a spherical valve body, is loosely fitted, and the edges (5) and (6) of the steel ball αGα are formed in the small diameter part (6) of the sleeve. A small steel ball α] is loosely fitted in the sleeve 03.In addition, unlike the embodiment, the main body (1) and the cartridge valve support portion Oa are formed as one body, and the sleeve 03 is formed in two or three pieces. The steel ball α force is applied to the load port (b) in the second position shown in the medium diameter chamber (9).
and return bow) (c).

そして作動部材−によりピストン0ηを介して図でみて
下方にストローク(8)だけ押し下げらf′した時に、
鋼球αυはエツジ(6)に押し当てら几負荷ポート(b
)と戻りポート(C)との連通t−遮断し、かつ負荷ポ
ート(b)と圧力供給ポート(a)との連通を許容する
第1位置に移動させら几る。鋼球叫は小鋼球C13″f
、介して鋼球−と当接可能に中径室(8)内に配置さn
1図示の第2位置では、圧力供給ボー) (a)の圧油
を受けてエツジ(5)を閉止し圧力供給ポート(a)と
負荷ポート(b)との連通全遮断し、ピストン0υがス
トローク(81だけ下げら几た第1位置では、負荷ポー
ト(b)と圧力供給ポート(a)との連通を許容する。
When the actuating member pushes the piston downward by a stroke (8) f' as seen in the figure through the piston 0η,
The steel ball αυ is pressed against the edge (6) and the load port (b
) and the return port (C), and move it to a first position that allows communication between the load port (b) and the pressure supply port (a). Steel ball scream is small steel ball C13″f
, disposed in the medium diameter chamber (8) so as to be able to come into contact with the steel ball through the n
1. In the second position shown in the figure, the edge (5) is closed by receiving the pressure oil from the pressure supply bow (a), completely cutting off communication between the pressure supply port (a) and the load port (b), and the piston 0υ is In the first position, where the stroke is lowered by 81, communication between the load port (b) and the pressure supply port (a) is allowed.

eQはスナップリングで鋼球明の軸方向位置を規制する
eQ is a snap ring that regulates the axial position of the steel ball.

作動部材αSは可動鉄心(至)に固定さ几てピストン0
η受圧面(31a)に当接しており、可動鉄心(191
が固定鉄心(至)に、ソレノイド部c!Q(本体(1)
に固定)のソレノイドコイル翰が励磁さt′16で吸着
さ几たとき、ピストン0])を押し下げるようにさ几て
いる。ピストン01は固定鉄心αりの中央穴内に摺動可
能に支持さ几、大径スプリング受(31a)が固定さ几
ており、スプリング(ロ)がスプリング受(31):l
)とスリーブ肩部(ロ)との間に配置さn。
The actuating member αS is fixed to the movable iron core (to) and the piston 0
η is in contact with the pressure receiving surface (31a), and the movable iron core (191
is fixed iron core (to), solenoid part c! Q (Body (1)
When the solenoid coil (fixed at 0) is excited and attracted at t'16, it pushes down the piston 0]). The piston 01 is slidably supported in the center hole of the fixed iron core α, and a large diameter spring holder (31a) is fixed therein, and the spring (b) is attached to the spring holder (31):l.
) and the sleeve shoulder (b).

図示の位置からストローク(s)だけピストンG1)が
押し下げられたとき、ピストン01)を上方に向けて付
勢するようにgnでいる。ピストンG1)の作動部材側
受圧面(ata)には圧力供給ポート穴OQからポート
室(a6a)を介して、通路(ト)(aSa)から圧力
供給ポートの圧油が導かnている。そしてピストン0η
外径(d”)とエツジ(5)(6)内径(d)とはほぼ
同じにさn1作動部材側受圧面(31a)面積と、鋼球
(1G又はσ刀の圧力供給ポート圧力受圧面面槓即ちエ
ツジ(5)(6)内径面積とは、はぼ同じにさ几ている
。可動鉄心α9と固定鉄心0うの間の距離S・はストロ
ークSよりやや大きくなる様にピストン0ηと作動部材
α印の全長を決定するOこうする事により励磁状態にな
っても可動鉄心α優と固定鉄心CI!19は、完全に吸
着する事がないので、RA)ホー)(C)(タンクポー
ト)を完全に閉シル事が可能となる。
When the piston G1) is pushed down by a stroke (s) from the position shown, it is at gn so as to bias the piston 01) upwardly. Pressure oil of the pressure supply port is introduced from the passage (g) (aSa) to the pressure receiving surface (ata) on the operating member side of the piston G1) from the pressure supply port hole OQ via the port chamber (a6a). and piston 0η
The outer diameter (d'') and the inner diameter (d) of the edges (5) and (6) are almost the same. The inner diameter areas of the faces (5) and (6) are approximately the same.The distance S between the movable iron core α9 and the fixed iron core 0 is set to be slightly larger than the stroke S of the piston 0η. Determine the total length of the operating member α mark O By doing this, the movable iron core α Yu and the fixed iron core CI!19 will not be completely attracted to each other even in the energized state, so RA) Ho) (C) (Tank port) can be completely closed.

次に作動状態について説明すると、第1図に示す状態は
、ソレノイドが非励磁の場合である。
Next, the operating state will be explained. The state shown in FIG. 1 is when the solenoid is de-energized.

この時、圧力供給ポート(a)より流体が流入するが供
給圧力により鋼球αOがスリーブ小径部(6)のエツジ
(5)に押しつけられて、供給ポート(a)は閉じら几
ている。他・方の鋼球αηはピストン0め側に押しつけ
らnている。その結果負荷ポー) (b)と戻リボ−)
 (c) (タンクポート)は連通状態となるO この時、供給圧力は前述の供給ポー1−(a)の連通状
態に従い鋼球側とピストン0ηの背面受圧面(ala)
に加圧される。鋼球(IQの当几り部であるエツジ(5
)の内径dとピストン0没の外径d1とをほぼ同じにし
であるので、上述の供給圧力は鋼球■をエツジ(5)に
押し付ける力とピストン01)の背面受圧面(aXa)
に加わる押し付は力が等しくなるが、スプリング(ロ)
がピストンG1)の押し付は力に相対しているため、結
果として鋼球(10はスプリング(ロ)のスプリング力
分だけ鋼球当九り部であるエツジ(5)に押し付けらn
ることになる。従って供給ボー) (a)は閉じられる
ことになる。他方鋼球(ロ)は鋼球αOがエツジ(5)
に押し付けらnている之め小径部(イ)のエツジ(6)
即ち鋼球迎の当り部からストロークSだけ離nているこ
とになり負荷ポート(b)と戻りポート(C)は連通状
態が保持さ几ることになる。
At this time, fluid flows in from the pressure supply port (a), but the supply pressure forces the steel ball αO against the edge (5) of the sleeve small diameter portion (6), so that the supply port (a) is not closed. The other steel ball αη is pressed against the zero side of the piston. As a result, the load (b) and the return (return))
(c) (Tank port) is in communication state O At this time, the supply pressure is between the steel ball side and the rear pressure receiving surface (ala) of piston 0η according to the communication state of supply port 1-(a) described above.
is pressurized. Steel ball (Edge, which is the main part of IQ)
) and the outer diameter d1 when the piston is fully retracted, the above-mentioned supply pressure is equal to the force that presses the steel ball ■ against the edge (5) and the back pressure receiving surface (aXa) of the piston 01).
The force applied to the spring (b) is equal, but the force applied to the spring (b)
Since the pressing of piston G1) is relative to the force, as a result, the steel ball (10) is pressed against the edge (5), which is the steel ball abutting part, by the spring force of the spring (B).
That will happen. Therefore, supply bow) (a) will be closed. On the other hand, the steel ball (b) has an edge (5) on the steel ball αO.
The edge (6) of the small diameter part (a) that is pressed against the
In other words, the distance from the abutment part of the steel ball receiver is a stroke S, and the load port (b) and return port (C) are kept in communication with each other.

次にソレノイドコイル翰が励磁さnると可動鉄心α傷が
固定鉄心へ5に吸引されるため、ストロークSだけスト
ローク変位する。このストローク変位は、作動部材α枠
及びピストン(31)を介して鋼球燵ηに伝達さn鋼球
αυ1は、小径部(2)のエツジI; (6)ヲ押しつけらnるまでストロークSだけストロー
ク変位する。同時に・そのストロークf位は小鋼球a3
を介して鋼球(ICIにも伝達さnる。実施例では鋼球
(IGの中径室(8)内での軸方向遊動距離S1はスト
ロークSの2倍となるようにB”=2Bとしであるので
、鋼球a刀がエツジ(6)に着座しても鋼球C1Gはス
ナップリングhctに接触しないようにさ几ており、供
給流体はポート穴(ト)、ポート室(36a)、ポート
(a)及び円筒状の中径室(8)を通り小径部αのに入
り負荷ポート(b)へと連通ずる。他方、戻ジポート(
C)側は、鋼球σηがエツジ(6)に着座しているため
、閉じらnることになる。この時の鋼球αMに働く、力
のバランスを考えてみると、鋼球(IIJは、供給圧力
にエツジ(6)内径dによる受圧面積を乗じた分の力で
ソレノイドの吸引力に相対する方向すなわち、鋼球(l
IUtエツジ(6)から離す方向の力が働くが、前述の
供給ポートの連通状態に従い、ピストンGυの背面受圧
面(31a)にもエツジ内径dと同じ外径a+に供給圧
力が働く之め、ピストン0ηには鋼球lJiに加わる力
と同じ力が反対方きに加わることになる。従ってソレノ
イドの吸引力と相対する力は、スプリング(ロ)による
スプリング力だけということになる。この結果バルブ切
換時の応答性は供給圧力によらず、常に一定のものとな
り、特開昭62−2084号公報で問題になった問題点
は解決さ几た。
Next, when the solenoid coil is energized, the movable core α flaw is attracted to the fixed core 5, so that the stroke is displaced by the stroke S. This stroke displacement is transmitted to the steel ball η via the operating member α frame and the piston (31), and the steel ball αυ1 continues the stroke S until it is pressed against the edge I; stroke displacement. At the same time, the stroke f is a small steel ball A3
It is also transmitted to the steel ball (ICI) via the steel ball (IG). Therefore, even if the steel ball C1G is seated on the edge (6), the steel ball C1G is prevented from coming into contact with the snap ring hct, and the supply fluid is supplied through the port hole (G) and the port chamber (36a). , passes through the port (a) and the cylindrical medium diameter chamber (8), enters the small diameter part α, and communicates with the load port (b).On the other hand, the return port (
On the C) side, the steel ball ση is seated on the edge (6), so it is closed. Considering the balance of forces acting on the steel ball αM at this time, the steel ball (IIJ) opposes the suction force of the solenoid with a force equal to the supply pressure multiplied by the pressure receiving area due to the inner diameter d of the edge (6). direction, that is, the steel ball (l
A force is applied in the direction of separating the IUt edge (6), but according to the above-mentioned communication state of the supply port, supply pressure is also applied to the rear pressure receiving surface (31a) of the piston Gυ at the outer diameter a+, which is the same as the edge inner diameter d. The same force as the force applied to the steel ball lJi is applied to the piston 0η in the opposite direction. Therefore, the only force that opposes the suction force of the solenoid is the spring force caused by the spring (b). As a result, the responsiveness at the time of valve switching is always constant regardless of the supply pressure, and the problem that occurred in Japanese Patent Application Laid-Open No. 62-2084 has been solved.

ここで再びソレノイドコイル(イ)が非励磁状態となる
と、スプリング(ロ)によるスプリング力により、図示
の第2位置即ち最初の状態にピストン(3刀、鋼球αO
Qη、及び小鋼球α3が復帰する。なお小鋼球α3は負
荷ポートCI:l)を形成するポート穴Φ& 及び小径部α2を幅広にしてこれらの加工を容易にする
ためのもので、前記ポート穴及び小径部(6)を幅狭に
して小鋼球υを省略してもよい。
Here, when the solenoid coil (A) becomes de-energized again, the spring force of the spring (B) causes the piston (three swords, steel ball αO
Qη and small steel ball α3 return. The small steel ball α3 is used to widen the port hole Φ & forming the load port CI:l) and the small diameter part α2 to facilitate the machining of these parts. The small steel ball υ may be omitted.

第2図は第1図とは異る本発明の実施例3方向流体制御
弁で、スリーブ(a31 )には、スナップリングGO
が挿入さn、ておらず、代りにスリーブ(33°)端部
止設けた穴(33’)にエツジ□□□を形成するエツジ
リング(26’)が打込固定さnている。エツジ□□□
は負荷ポート中)の圧力が圧力供給ポー) (a)の圧
力より上昇したとき、鋼球αQに作用してエツジ四に着
座し、圧力供給ポー) (a)を閉止して負荷ポート(
b)から遮し、負荷ポート(b)の圧油が圧力供給ポー
ト(a)に逆流しないようにしている。即ち作動におい
て、ソレノイドコイル(イ)が励磁され、圧力供給ボー
)(a)と負荷ポート(b)とが連通状態にある場合に
於いて、負荷ポー ) (b)に圧力供給ボー) (a
)の圧力よりも高い圧力が加わると、鋼球C1Oはその
圧力により小鋼球α3を介して鋼球(Jlから離れて、
エツジリング(26′)のエツジ□□□に着座し、負荷
ポー) (b)に対し圧力供給ポート(a)を閉じてし
まう0すなわち負荷ポー) (b)から圧力供給ボー)
 (a)には作動流体が流nることはなく、チェック弁
の機能を有することになる。この時の負荷ポート伽)の
ブロック状態を見ると、圧力供給ボー) (al側は鋼
球(7)とシート(2)とのコーン当たり、戻りポート
側は、鋼球αaとエツジ(イ)とのコーン当f?:、り
となっている。そして鋼球叩小鋼球時も圧力バランスし
て両側から圧力を受けるので、その結果例nのポート側
にもコーン当たり以外の摺動部等存在せず、チェック機
能を完全なものとしている。
Fig. 2 shows a three-way fluid control valve according to an embodiment of the present invention, which is different from Fig. 1, and the sleeve (a31) has a snap ring GO.
is not inserted, but instead an edge ring (26') forming an edge □□□ is driven and fixed into the hole (33') provided at the end of the sleeve (33°). Etsuji□□□
When the pressure in the load port (a) rises above the pressure in the pressure supply port (a), it acts on the steel ball αQ and seats on the edge 4, closing the pressure supply port (a) and increasing the pressure in the load port (a).
b) to prevent pressure oil from the load port (b) from flowing back into the pressure supply port (a). That is, in operation, when the solenoid coil (a) is energized and the pressure supply port (a) and the load port (b) are in communication, the pressure supply port (a) is connected to the load port (b).
), the steel ball C1O moves away from the steel ball (Jl) via the small steel ball α3 due to the pressure.
Seats on edge □□□ of edge ring (26') and closes pressure supply port (a) from load port) (b) to pressure supply port (0 or load port) (b) to pressure supply port)
No working fluid flows through (a), and it functions as a check valve. Looking at the blocked state of the load port 佽) at this time, the pressure supply bow) The cone contact f?:, ri.And even when the steel ball is struck by a small steel ball, the pressure is balanced and pressure is received from both sides, so as a result, there is no sliding part other than the cone contact on the port side in example n. etc. does not exist, making the checking function complete.

(発明の効果) 本発明は、以上述べたように本発明によると、鋼球QO
及びαυは摺動部分が無いため極めてゴミに強く耐久性
、信頼性が高い。また鋼球を使用していることで、特殊
な加工を必要とせず、安価なものとなっている。加えて
ピストン(3])により流体圧力の平衡をとっているた
め、例えば7 Q ’yld乃至200 ’y/cJと
いった高い供給圧力で使用でき、かつ供給圧力の差によ
り応答性が異なるといった欠点が解消さ几、常に一定し
友応答性が確保できる。従って、本発明は、常に安定し
た作動を得ることができ、耐久性、信頼性が高く、かつ
供給圧力変動に対しても安定し九作動が確保できる*m
造を安価に得ることができるといったすぐ几た3方向流
体制御弁を提供するものとなった。
(Effects of the Invention) As described above, according to the present invention, the steel ball QO
and αυ have no sliding parts, so they are extremely dust resistant, durable, and reliable. Also, since steel balls are used, no special processing is required, making it inexpensive. In addition, since the fluid pressure is balanced by the piston (3), it can be used at high supply pressures such as 7 Q'yld to 200'y/cJ, and there is a drawback that the response varies depending on the difference in supply pressure. The problem is always constant and responsiveness can be ensured. Therefore, the present invention can always obtain stable operation, is highly durable and reliable, and is stable even against fluctuations in supply pressure, ensuring nine operations *m
The present invention provides a simple three-way fluid control valve that can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である3方向流体制御弁の要部
断面図、第2図は第1図とは異る実施例を示す3方向流
体制御弁の要部断面図、第3図は従来の3方向流量切換
弁の断面図である。 1・・・・・・バルブ本体 5.6・・・・・・エツジ(圧力供給ポート受圧面積)
lO・・・・・・鋼球(第2球状弁体)1)・・・・・
・鋼球(第1球状弁体)13・・・・・・小鋼球(中間
部材) 31・・・・・・ビストス 31a・・・・・・作動部材側受圧面 33.33’・・・スリーブ a・・・・・・圧力供給ポート b・・・・・・負荷ポート C・・・・・・戻りポート
FIG. 1 is a sectional view of a main part of a three-way fluid control valve according to an embodiment of the present invention, FIG. 2 is a sectional view of a main part of a three-way fluid control valve showing an embodiment different from that in FIG. The figure is a sectional view of a conventional three-way flow rate switching valve. 1... Valve body 5.6... Edge (pressure supply port pressure receiving area)
lO... Steel ball (second spherical valve body) 1)...
・Steel ball (first spherical valve body) 13... Small steel ball (intermediate member) 31... Vistos 31a... Operating member side pressure receiving surface 33.33'...・Sleeve a...Pressure supply port b...Load port C...Return port

Claims (3)

【特許請求の範囲】[Claims] (1)作動部材により選択的に、バルブ本体にそれぞれ
設けた負荷ポートに対し圧力供給ポートとの連通を許容
しかつ戻りポートとの連通を遮断する第1位置、または
負荷ポートと戻りポートとの連通を許容する第2位置、
の間を移動可能にバルブ本体内に配置された第1球状弁
体と、前記圧力供給ポートの圧力を受けかつ前記第1球
状弁体に直接にまたは中間部材を介して間接に当接して
、前記第1位置では前記負荷ポートと圧力供給ポートと
の連通を許容し、前記第2位置では負荷ポートと圧力供
給ポートとの連通を遮断するよう移動可能にバルブ本体
内に配置された第2球状弁体と、を含む3方向流体制御
弁において、前記第1及び第2球状弁体はピストンを介
して前記作動部材により移動可能にされ、かつ前記ピス
トンの作動部材側受圧面面積と各前記球状弁体の圧力供
給ポート圧力受圧面積とは圧力平衡せしめたことを特徴
とする3方向流体制御弁。
(1) A first position in which the actuating member selectively allows the load ports provided in the valve body to communicate with the pressure supply port and cuts off communication with the return port; or a second position allowing communication;
a first spherical valve body disposed within the valve body so as to be movable between the valve body; a second spherical shape movably disposed within the valve body so as to allow communication between the load port and the pressure supply port in the first position and to block communication between the load port and the pressure supply port in the second position; A three-way fluid control valve including a valve body, wherein the first and second spherical valve bodies are movable by the actuating member via a piston, and the area of the actuating member side pressure receiving surface of the piston and each of the spherical valve bodies are A three-way fluid control valve characterized in that the pressure is balanced with the pressure receiving area of the pressure supply port of the valve body.
(2)前記第2球状弁体は負荷ポートの圧力が圧力供給
ポートの圧力より高いとき、圧力供給ポートを負荷ポー
トに対して締切可能にされた特許請求の範囲第1項記載
の3方向流体制御弁。
(2) The three-way fluid according to claim 1, wherein the second spherical valve body is capable of closing off the pressure supply port from the load port when the pressure of the load port is higher than the pressure of the pressure supply port. control valve.
(3)前記ピストン、第1及び第2球状弁体を取囲み前
記各ポートが形成されるスリーブは一体もので形成され
かつ本体に容易に着脱可能に取付けられた特許請求の範
囲第1項又は第2項記載の3方向流体制御弁。
(3) The sleeve that surrounds the piston, the first and second spherical valve bodies, and in which the ports are formed is integrally formed and is attached to the main body so as to be easily attachable and detachable. 3. The three-way fluid control valve according to item 2.
JP62131681A 1987-05-29 1987-05-29 Three-way fluid control valve Pending JPS63297875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131681A JPS63297875A (en) 1987-05-29 1987-05-29 Three-way fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131681A JPS63297875A (en) 1987-05-29 1987-05-29 Three-way fluid control valve

Publications (1)

Publication Number Publication Date
JPS63297875A true JPS63297875A (en) 1988-12-05

Family

ID=15063732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131681A Pending JPS63297875A (en) 1987-05-29 1987-05-29 Three-way fluid control valve

Country Status (1)

Country Link
JP (1) JPS63297875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874533B2 (en) * 2003-06-25 2005-04-05 Delphi Technologies, Inc. 3/2 Normally closed module
CN109027309A (en) * 2018-10-15 2018-12-18 成都华科阀门制造有限公司 A kind of motor three-way flow distributing valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874533B2 (en) * 2003-06-25 2005-04-05 Delphi Technologies, Inc. 3/2 Normally closed module
CN109027309A (en) * 2018-10-15 2018-12-18 成都华科阀门制造有限公司 A kind of motor three-way flow distributing valve
CN109027309B (en) * 2018-10-15 2023-09-12 成都华科阀门制造有限公司 Three-way flow distribution valve

Similar Documents

Publication Publication Date Title
US4860792A (en) Electromagnetic control valve
US4494726A (en) Control valve
US7159615B2 (en) Flow control valve
JPS5815707Y2 (en) Pilot type directional valve
US7523763B2 (en) Three-port electromagnetic valve
US4585206A (en) Proportional flow control valve
US4848721A (en) Hydraulic valve with integrated solenoid
US6935374B2 (en) Pressure proportional control valve
JPS60258615A (en) Pressure regulating valve
JP2001227670A (en) Solenoid-driven pilot valve
WO1996038672A1 (en) Load sensing proportional pressure control valve
JP3392301B2 (en) Boost valve
US3065735A (en) Servoactuator
JPS63297875A (en) Three-way fluid control valve
US5024254A (en) Liquid shut-off valve
US5238018A (en) Proportional pressure control valve
JP4146652B2 (en) Capacity control valve
KR102128375B1 (en) Three way solenoid valve
JP3758109B2 (en) Pressure reducing valve
JPS5918593B2 (en) solenoid operated valve
JPH0535313B2 (en)
US7597306B2 (en) Directional control seat valve
JP2829884B2 (en) Pressure balanced 3-way valve
JPH06700Y2 (en) solenoid valve
JPH08193670A (en) Solenoid valve