JPS632977B2 - - Google Patents

Info

Publication number
JPS632977B2
JPS632977B2 JP54140165A JP14016579A JPS632977B2 JP S632977 B2 JPS632977 B2 JP S632977B2 JP 54140165 A JP54140165 A JP 54140165A JP 14016579 A JP14016579 A JP 14016579A JP S632977 B2 JPS632977 B2 JP S632977B2
Authority
JP
Japan
Prior art keywords
weight
parts
vinyl chloride
chloride resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54140165A
Other languages
Japanese (ja)
Other versions
JPS5662828A (en
Inventor
Michihiko Asai
Masao Suda
Kyoshi Imada
Susumu Ueno
Hirokazu Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shin Etsu Chemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP14016579A priority Critical patent/JPS5662828A/en
Priority to DE19803040752 priority patent/DE3040752A1/en
Priority to GB8034917A priority patent/GB2061810B/en
Priority to FR8023193A priority patent/FR2468625B1/en
Priority to GB8034910A priority patent/GB2061809B/en
Publication of JPS5662828A publication Critical patent/JPS5662828A/en
Publication of JPS632977B2 publication Critical patent/JPS632977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル系樹脂成形品の製造方法に
関するものであり、特には軟質塩化ビニル系樹脂
成形品の表面に耐候(光)性、耐紫外線劣化性等
にすぐれた耐久性のある架橋層を形成することに
より成形品内部の可塑剤、その他の添加剤が時間
の経過にしたがつて成形品表面に移行しにじみ出
るとか、あるいは該成形品が他物体と密着した場
合に成形品内部の可塑剤が該他物体へ移行する現
象を長時間にわたつて防止する方法に関する。 塩化ビニル樹脂は可塑剤の配合によりその得ら
れる成形品の硬さ(柔軟性)を調節することがで
き、すぐれた物性を備えているので応用分野は広
く、たとえばフイルム、シート、合成皮革、チユ
ーブ、ホース、バツグ、パツキン、被覆材等各種
製品として医療器具、食品包装材、電線被覆材、
農業用資材、建築資材等に広く応用されている。 しかしながら、こうした軟質塩化ビニル系樹脂
成形品にはそれに含有される可塑剤、その他の添
加剤が時間の経過にしたがつて成形品表面に移行
しにじみ出るとか、あるいは他物体と密着した場
合に成形品内部の可塑剤が該他物体へ移行すると
いう現象があるため、これが外観の汚染、変質、
有害性(衛生上の安全性)、耐久性等の点で大き
な欠点とされ、特に医療用、食品用としての応用
に制限を受けるという問題がある。 塩化ビニル系樹脂成形品の表面を200nm以下
の波長域をもつ紫外光で照射処理し表面近傍に高
密度の加橋層を形成させることにより、可塑剤そ
の他の添加剤の内部からの拡散移行を防止できる
ことはすでに公知とされている(特開昭54−
64573号公報参照)。 しかし、この方法により処理を行つた成形品
は、290nm以上の紫外光の照射とか長時間にわ
たる屋外曝露により一たん形成された表面架橋層
が劣化して表面処理を行わない成形品と同様な状
態にもどつてしまい、可塑剤その他の添加剤が表
面に移行しにじみ出たり、他物体へ移行したりす
るようになる欠点を持つ。 本発明者らは200nm以下の紫外光により表面
処理することで塩化ビニル系樹脂成形品に、耐候
(光)性、耐紫外線劣化性(紫外光波長290nm以
上)を付与する方法を検討の結果、塩化ビニル系
樹脂100重量部あたり、0.1重量部以上のフエノー
ル系酸化防止剤を含有してなる塩化ビニル系樹脂
組成物を成形し、ついでこの成形品を200nm以
下の波長域をもつ紫外光で照射処理することによ
り、200nm以下の紫外光処理による表面架橋層
の生成速度を増速し、かつ長時間屋外曝露、
290nm以上の紫外線照射がなされても架橋層が
劣化することがなく、可塑剤その他の添加剤の移
行防止能が長期にわたつて維持される(耐久性に
すぐれている)ことを確認し、本発明を完成し
た。 以下、本発明を詳細に説明する。 本発明の方法で使用される塩化ビニル系樹脂
は、ポリ塩化ビニルおよび塩化ビニルを主体とす
る共重合体のいずれでもよく、この場合の塩化ビ
ニルと共重合されるコモノマーとしてはビニルエ
ステル、ビニルエーテル、アクリル酸またはメタ
クリル酸およびそれらのエステル、マレイン酸ま
たはフマル酸あるいはそれらのエステルならびに
無水マレイン酸、芳香族ビニル化合物、ハロゲン
化ビニリデン、アクリロニトリルまたはメタクリ
ロニトリル、エチレン、プロピレンなどのオレフ
インが例示される。 塩化ビニル系樹脂成形品の製造にあたつては、
その柔軟性、硬さ等を調節するために可塑剤が使
用されるが、この可塑剤としてはジ−2−エチル
ヘキシルフタレート、ブチルベンジルフタレート
等のフタル酸エステル、アジピン酸2−エチルヘ
キシル、セバシン酸ジブチル等の脂肪族二塩基酸
エステル、ペンタエリスリトールエステル、ジエ
チレングリコールジベンゾエート等のグリコール
エステル、アセチルリシノール酸メチル等の脂肪
酸エステル、トリクレジルホスフエート、トリフ
エニルホスフエート等のりん酸エステル、アセチ
ルトリブチルシトレート、アセチルトリオクチル
シトレート等のクエン酸エステル、トリアルキル
トリメリテート、テトラ−n−オクチルピロメリ
テート、ポリプロピレンアジペート、その他ポリ
エステル系の可塑剤が例示される。 また、本発明においては塩化ビニル系樹脂に通
常添加される市販の熱安定剤、滑剤、充てん剤そ
の他の助剤を配合することが可能である。 つぎに、本発明においては表面架橋層生成速度
にすぐれているフエノール系酸化防止剤の添加が
必須とされ、これにはベンゼン環に結合した水酸
基を1個有するもののほか、2個以上有するもの
も包含され、具体的例示をあげればつぎのとおり
である。 2・6−ジ−t−ブチルフエノール、3−メチ
ル−6−t−ブチルフエノール、2・4−ジ−t
−ブチルフエノール、3−メチル−4−イソプロ
ピルフエノール、2・6−ジ−t−ブチル−4−
メチルフエノール、2・4・6−トリ−t−ブチ
ルフエノール、p−フエニルオキシフエノール、
2・5−ジ−t−ブチルパラクレゾール、3・5
−ジ−t−ブチル−4−ヒドロキシベンジルアル
コール、p−ヒドロキシジフエニルハイドロキノ
ンモノベンジルエーテル、カテコール、p−t−
ブチルカテコール、2−t−ブチル−パラクレゾ
ール、p−ヒドロキシアニソール、3−t−ブチ
ル−4−ヒドロキシアニソール、4・6−ジ−t
−ブチルレゾルシン、2・4−キシレノール、
2・5−ジ−t−ブチルハイドロキノン、没食子
酸プロピル、6−(4−オキシ−3・5−ジ−t
−ブチルアニリノ)−2・4−ビス(n−オクチ
ルチオ)−1・3・5−トリアジン、(4−オキシ
−3・5−ジ−t−ブチルベンジル)オクタデシ
ルりん酸エステル、dl−α−トコフエロール、ナ
フトール、2・4−ジ−t−ブチル−α−ナフト
ール、n−オクタデシル−3−(3′・5′−ジ−t
−ブチル−4′−ヒドロキシフエニル)プロピオネ
ート、テトラキス〔3−(4−ヒドロキシ−3・
5−ジ−t−ブチルフエニル)プロプオニルオキ
シメチル〕メタン、4・4′−イソプロピリデンビ
スフエノール(ビスフエノールA)、2・2′−メ
チレンビス(4−メチル−6−t−ブチルフエノ
ール)、4・4′−ブチリデン−ビス(3−メチル
−6−t−ブチルフエノール)、4・4′−メチリ
デン−ビス(2・6−ジ−t−ブチルフエノー
ル)、1・1−ビス(4−オキシフエニル)シク
ロヘキサン、2・2′−メチレンビス(4−エチル
−6−t−ブチルフエノール)、2・2′−チオビ
ス(4−メチル−6−t−ブチルフエノール)、
2・2′−チオビス(4・6−ジ−t−ブチルレゾ
ルシン)、1・1・3−トリス(2−メチル−4
−ヒドロキシ−5−t−ブチルフエニル)ブタ
ン、2・6−ビス(2′−ヒドロキシ−3′−t−ブ
チル−5′−メチルベンジル)−4−メチルフエノ
ール、ノルジヒドログアヤレジツク酸。 フエノール系酸化防止剤の使用量は塩化ビニル
系樹脂100重量部あたり、0.1重量部以上の範囲で
使用することが必要とされ、これが少なすぎる場
合には200nm以下の紫外光処理により目的とす
る十分な表面架橋層の形成が困難であり、一方多
量に添加しても表面架橋層形成のそれ以上の効果
は望めず、かえつて成形品の機械的物性に悪影響
があらわれる。 本発明の方法は、まず塩化ビニル系樹脂原料に
フエノール系酸化防止剤およびその他必要とされ
る添加剤たとえば可塑剤、安定剤等を配合して成
形品を作るが、この成形方法としては押出成形、
射出成形、カレンダー成形、インフレーシヨン成
形、圧縮成形等従来塩化ビニル樹脂の成形で採用
されている成形手段によればよく、成形品の種
類、形状については特に制限はない。 つぎに、成形品を紫外光処理するのであるが、
この紫外光処理のための光源としては200nm以
下の輝線または連続光を発生するものであればよ
く特に制限はない。たとえば低圧水銀ランプ(輝
線スペクトル:185nm、254nm、313nm、365n
m)等が好適であり、その形状が処理効率に与え
る影響は小さい。また当該紫外光処理は真空下の
みでなく、空気中でも行うことが可能であり、い
ずれの場合にも成形品に効率的に目的とする改質
特性を付与できる。 一般に塩化ビニル系樹脂成形品に関しては、そ
れに配合添加された酸化防止剤が親水性付与、接
着性向上等の改質を目的とした通常の紫外光処理
時においては、紫外光エネルギーによつて発生し
たポリマーラジカルを捕捉し不活性化するため、
酸化防止剤の配合添加は避ける傾向にあるのであ
るが、本発明の方法によりフエノール系酸化防止
剤が表面架橋層形成に大きく寄与するという事実
は注目すべき点である。 この架橋層形成により成形品中の可塑剤、酸化
防止剤、その他安定剤等の添加剤の移行が防止さ
れ、また内部ポリマーの劣化が防止され、ひいて
は成形品特に軟質成形品の耐候性、耐紫外光劣化
性が飛躍的に向上する。 つぎに、具体的実験データをあげて詳しく説明
する。 実施例(実験No.1〜10) 実験No.1 塩化ビニル樹脂100重量部、可塑剤(ジ−2−
エチルヘキシルフタレート)50重量部、カルシウ
ム−亜鉛系安定剤3重量部からなる配合物を成形
加工し、シートを作成した。この作成シートをス
プラジールガラス管中に水銀とアルゴンとの蒸気
を封じ込んだ50W低圧水銀ランプ(輝線スペクト
ル:185nm、254nm、313nm、365nm)により
大気中で2分間紫外光処理を行つた。処理を行つ
たシートを半分に分け、一方はただちに下記に示
すn−ヘキサン抽出法により移行する可塑剤の量
を測定し(劣化前)、他方は紫外光処理により形
成された表面架橋層の劣化を調べるため、ウエザ
ーオーメーターに100時間かけた後に、同じくn
−ヘキサン抽出法で移行する可塑剤の量を測定し
(劣化後)、結果を比較した。これを表−1に示
す。 n−ヘキサン抽出量測定法: 100mlの円筒形抽出容器の底にシート状の試料
をセツトし、この26cm2の表面積を50mlのn−ヘキ
サンと接触させ、37℃ウオーターパス中で2時間
振とうして、n−ヘキサン中に移行した可塑剤の
量をガスクロマトグラフイにより定量分析した。 実験No.2 塩化ビニル樹脂100重量部、可塑剤(アジピン
酸2−エチルヘキシル)30重量部、カルシウム−
亜鉛系安定剤3重量部からなる配合物を成形加工
し、シートを作成した。この成形シートをスプラ
ジールガス管中に水銀とアルゴンとの蒸気を封じ
込んだ30W低圧水銀ランプ(輝線スペクトル:
185nm、254nm、313nm、365nm)により50ト
ルの圧力下で3分間紫外光処理を行つた。この処
理シートについて実験1と同様にして劣化前と劣
化後における可塑剤溶出量を測定し、表−1に示
した。 実験No.3 塩化ビニル樹脂100重量部、可塑剤(ジ−2−
エチルヘキシルフタレート)50重量部、カルシウ
ム−亜鉛系安定剤3重量部、ビスフエノールA1
重量部からなる配合物を成形加工し、シートを作
成した。このシートを実験1と同じ条件下、同一
ランプで処理を行つた。この処理シートについて
実験1と同様にして劣化前と劣化後における可塑
剤溶出量を測定し、表−1に示した。 実験No.4 塩化ビニル樹脂100重量部、可塑剤(ジ−2−
エチルヘキシルフタレート)50重量部、バリウム
−亜鉛系安定剤3重量部、ビスフエノールA3重
量部からなる配合物を成形加工し、シートを作成
した。このシートをスプラジールガラス管中に水
銀とアルゴンとの蒸気を封じ込んだ50W低圧水銀
ランプにより5トルの圧力下で1分間紫外光処理
を行つた。この処理シートについて実験1と同様
にして劣化前と劣化後における可塑剤溶出量を測
定し、表−1に示した。 実験No.5 実験No.4において、紫外光処理の際、ランプと
成形シートとの間にパイコール製フイルターを設
けて185nm光がシートに到達しないようにした。
この処理シートについて実験1と同様にして劣化
前と劣化後における可塑剤溶出量を測定し、表−
1に示した。 実験No.6 塩化ビニル樹脂100重量部、可塑剤(ジ−2−
エチルヘキシルフタレート)50重量部、カルシウ
ム−亜鉛系安定剤3重量部、ビスフエノール
A0.03重量部からなる配合物を成形加工し、シー
トを作成した。このシートを実験No.1と同じ条件
下、同一ランプで処理を行つた。この処理シート
について実験1と同様にして劣化前と劣化後にお
ける可塑剤溶出量を測定し、表−1に示した。 実験No.7 塩化ビニル樹脂100重量部、可塑剤(アジピン
酸2−エチルヘキシル)30重量部、カルシウム−
亜鉛系安定剤3重量部、3−ターシヤリ−ブチル
−4−ハイドロオキシアニソール(表中TBAと
記す)5重量部からなる配合物を成形加工し、シ
ートを形成した。このシートを実験No.2と同一条
件下、同一ランプで処理を行つた。この処理シー
トについて実験1と同様にして劣化前と劣化後に
おける可塑剤溶出量を測定し、表−1に示した。 実験No.8 塩化ビニル樹脂100重量部、可塑剤(アジピン
酸2−エチルヘキシル)30重量部、カルシウム−
亜鉛系安定剤3重量部、ビスフエノールA0.04重
量部、オクタデシル−3−(3′・5′−ジターシヤ
リ−ブチル−4′−ヒドロキシフエニル)プロピオ
ネート(表中OHPと記す)0.04重量部からなる
配合物を成形加工し、シートを作成した。このシ
ートを実験No.2と同一条件下、同一ランプで処理
を行つた。この処理シートについて実験1と同様
にして劣化前と劣化後における可塑剤溶出量を測
定し、表−1に示した。 実験No.9 塩化ビニル樹脂100重量部、可塑剤(アジピン
酸2−エチルヘキシル)30重量部、カルシウム−
亜鉛系安定剤3重量部、1・3−ジフエニル−2
−チオ尿素2重量部、3−ターシヤリーブチル−
4−ハイドロキシアニソール2重量部からなる配
合物を成形加工し、シートを作成した。このシー
トを実験No.2と同一条件下、同一ランプで処理を
行つた。この処理シートについて実験1と同様に
して劣化前と劣化後における可塑剤溶出量を測定
し、表−1に示した。 実験No.10 塩化ビニル樹脂100重量部、可塑剤(アジピン
酸2−エチルヘキシル)30重量部、カルシウム−
亜鉛系安定剤3重量部、1・3−ジフエニル−2
−チオ尿素4重量部からなる配合物を成形加工
し、シートを作成した。このシートを実験No.2と
同一条件下、同一ランプで処理を行つた。この処
理シートについて実験1と同様にして劣化前と劣
化後における可塑剤溶出量を測定し、表−1に示
した。
The present invention relates to a method for manufacturing a vinyl chloride resin molded article, and in particular, a method for manufacturing a soft vinyl chloride resin molded article, in which a durable crosslinked layer with excellent weather resistance (light) resistance, ultraviolet deterioration resistance, etc. is provided on the surface of a soft vinyl chloride resin molded article. By forming the molded product, the plasticizer and other additives inside the molded product may migrate to the surface of the molded product over time and ooze out, or if the molded product comes into close contact with another object, the plasticizer inside the molded product may ooze out. The present invention relates to a method for preventing the phenomenon in which particles transfer to other objects over a long period of time. The hardness (flexibility) of vinyl chloride resin can be adjusted by adding a plasticizer, and as it has excellent physical properties, it has a wide range of applications, such as films, sheets, synthetic leather, and tubes. , hoses, bags, packing materials, covering materials, and other products such as medical equipment, food packaging materials, electrical wire covering materials,
It is widely applied to agricultural materials, construction materials, etc. However, the plasticizers and other additives contained in these soft vinyl chloride resin molded products may migrate to the surface of the molded product over time and ooze out, or if the molded product comes into close contact with other objects. There is a phenomenon in which the internal plasticizer migrates to other objects, which may cause contamination, deterioration, or deterioration of the appearance.
It is considered to have major drawbacks in terms of toxicity (hygienic safety), durability, etc., and there is a problem in that it is particularly limited in its application to medical and food applications. By irradiating the surface of a vinyl chloride resin molded product with ultraviolet light with a wavelength range of 200 nm or less to form a high-density cross-linked layer near the surface, we can prevent the diffusion and transfer of plasticizers and other additives from within. It is already known that it can be prevented (Japanese Unexamined Patent Application Publication No. 1989-1999).
(See Publication No. 64573). However, in molded products treated using this method, the surface crosslinked layer once formed deteriorates due to irradiation with ultraviolet light of 290 nm or higher or prolonged outdoor exposure, resulting in a condition similar to that of molded products without surface treatment. It has the disadvantage that plasticizers and other additives can migrate to the surface, ooze out, or migrate to other objects. The present inventors investigated a method of imparting weather resistance (light) and ultraviolet deterioration resistance (ultraviolet light wavelength of 290 nm or more) to vinyl chloride resin molded products by surface treatment with ultraviolet light of 200 nm or less. A vinyl chloride resin composition containing 0.1 parts by weight or more of a phenolic antioxidant per 100 parts by weight of vinyl chloride resin is molded, and the molded product is then irradiated with ultraviolet light having a wavelength range of 200 nm or less. The treatment increases the rate of formation of a surface crosslinked layer due to ultraviolet light treatment of 200 nm or less, and also increases the resistance to long-term outdoor exposure.
We confirmed that the crosslinked layer does not deteriorate even when exposed to ultraviolet rays of 290 nm or more, and that its ability to prevent migration of plasticizers and other additives is maintained over a long period of time (excellent durability). Completed the invention. The present invention will be explained in detail below. The vinyl chloride resin used in the method of the present invention may be either polyvinyl chloride or a copolymer mainly composed of vinyl chloride, and in this case, the comonomers copolymerized with vinyl chloride include vinyl ester, vinyl ether, Examples include acrylic acid or methacrylic acid and esters thereof, maleic acid or fumaric acid or esters thereof, maleic anhydride, aromatic vinyl compounds, vinylidene halides, acrylonitrile or methacrylonitrile, ethylene, propylene, and other olefins. When manufacturing vinyl chloride resin molded products,
Plasticizers are used to adjust the flexibility, hardness, etc., and these plasticizers include phthalate esters such as di-2-ethylhexyl phthalate and butylbenzyl phthalate, 2-ethylhexyl adipate, and dibutyl sebacate. aliphatic dibasic acid esters such as pentaerythritol esters, glycol esters such as diethylene glycol dibenzoate, fatty acid esters such as methyl acetyl ricinoleate, phosphate esters such as tricresyl phosphate and triphenyl phosphate, acetyl tributyl citrate. , citric acid esters such as acetyl trioctyl citrate, trialkyl trimellitate, tetra-n-octyl pyromellitate, polypropylene adipate, and other polyester plasticizers. Furthermore, in the present invention, commercially available heat stabilizers, lubricants, fillers, and other auxiliaries that are usually added to vinyl chloride resins can be blended. Next, in the present invention, it is essential to add a phenolic antioxidant that has an excellent surface crosslinking layer formation rate, and this includes not only one hydroxyl group bonded to a benzene ring but also one having two or more hydroxyl groups. Specific examples are as follows. 2,6-di-t-butylphenol, 3-methyl-6-t-butylphenol, 2,4-di-t-butylphenol
-butylphenol, 3-methyl-4-isopropylphenol, 2,6-di-t-butyl-4-
Methylphenol, 2,4,6-tri-t-butylphenol, p-phenyloxyphenol,
2,5-di-t-butyl para-cresol, 3,5
-di-t-butyl-4-hydroxybenzyl alcohol, p-hydroxydiphenylhydroquinone monobenzyl ether, catechol, p-t-
Butylcatechol, 2-t-butyl-paracresol, p-hydroxyanisole, 3-t-butyl-4-hydroxyanisole, 4,6-di-t
-butylresorcin, 2,4-xylenol,
2,5-di-t-butylhydroquinone, propyl gallate, 6-(4-oxy-3,5-di-t)
-butylanilino)-2,4-bis(n-octylthio)-1,3,5-triazine, (4-oxy-3,5-di-t-butylbenzyl)octadecyl phosphate, dl-α-tocopherol, Naphthol, 2,4-di-t-butyl-α-naphthol, n-octadecyl-3-(3',5'-di-t
-butyl-4'-hydroxyphenyl)propionate, tetrakis[3-(4-hydroxy-3.
5-di-t-butylphenyl)propionyloxymethyl]methane, 4,4'-isopropylidene bisphenol (bisphenol A), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), 4,4'-methylidene-bis(2,6-di-t-butylphenol), 1,1-bis(4- oxyphenyl)cyclohexane, 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 2,2'-thiobis(4-methyl-6-t-butylphenol),
2,2'-thiobis(4,6-di-t-butylresorcin), 1,1,3-tris(2-methyl-4
-hydroxy-5-t-butylphenyl)butane, 2,6-bis(2'-hydroxy-3'-t-butyl-5'-methylbenzyl)-4-methylphenol, nordihydroguaiarezuccinic acid. The amount of phenolic antioxidant used must be 0.1 part by weight or more per 100 parts by weight of vinyl chloride resin. If this is too small, treatment with ultraviolet light of 200 nm or less will be sufficient to achieve the desired effect. It is difficult to form a surface crosslinked layer, and on the other hand, even if a large amount is added, no further effect of forming a surface crosslinked layer can be expected, and on the contrary, the mechanical properties of the molded article are adversely affected. In the method of the present invention, a phenolic antioxidant and other necessary additives such as plasticizers, stabilizers, etc. are first blended into a vinyl chloride resin raw material to form a molded product. ,
Any molding method conventionally employed in molding vinyl chloride resin, such as injection molding, calendar molding, inflation molding, or compression molding, may be used, and there are no particular restrictions on the type or shape of the molded product. Next, the molded product is treated with ultraviolet light.
The light source for this ultraviolet light treatment is not particularly limited as long as it generates a bright line or continuous light of 200 nm or less. For example, a low-pressure mercury lamp (emission line spectrum: 185nm, 254nm, 313nm, 365nm)
m) etc. are preferable, and the influence of the shape on processing efficiency is small. Further, the ultraviolet light treatment can be performed not only under vacuum but also in air, and in either case, the desired modification characteristics can be efficiently imparted to the molded product. In general, for vinyl chloride resin molded products, the antioxidants added to them are generated by ultraviolet light energy during normal ultraviolet light treatment for the purpose of improving properties such as imparting hydrophilicity and improving adhesion. In order to capture and inactivate polymer radicals,
Although there is a tendency to avoid blending and adding antioxidants, the fact that phenolic antioxidants greatly contribute to the formation of a surface crosslinked layer by the method of the present invention is noteworthy. The formation of this crosslinked layer prevents the migration of additives such as plasticizers, antioxidants, and other stabilizers in the molded product, and also prevents deterioration of the internal polymer, which in turn improves the weather resistance of molded products, especially soft molded products. Ultraviolet light deterioration resistance is dramatically improved. Next, specific experimental data will be given and explained in detail. Examples (Experiments No. 1 to 10) Experiment No. 1 100 parts by weight of vinyl chloride resin, plasticizer (di-2-
A sheet was prepared by molding a mixture consisting of 50 parts by weight of ethylhexyl phthalate and 3 parts by weight of a calcium-zinc stabilizer. This prepared sheet was subjected to ultraviolet light treatment for 2 minutes in the atmosphere using a 50W low-pressure mercury lamp (emission line spectrum: 185 nm, 254 nm, 313 nm, 365 nm) in which mercury and argon vapor was sealed in a Splaisir glass tube. The treated sheet was divided into halves, and one half was immediately measured for the amount of plasticizer transferred (before deterioration) using the n-hexane extraction method shown below, and the other half was used to measure the deterioration of the surface crosslinked layer formed by ultraviolet light treatment. After running the weather-o-meter for 100 hours to check the
- The amount of plasticizer transferred by hexane extraction method was measured (after deterioration) and the results were compared. This is shown in Table-1. Method for measuring the amount of n-hexane extracted: A sheet-like sample was set at the bottom of a 100 ml cylindrical extraction container, the 26 cm 2 surface area was brought into contact with 50 ml of n-hexane, and the sample was shaken in a 37°C water path for 2 hours. Then, the amount of plasticizer transferred into n-hexane was quantitatively analyzed by gas chromatography. Experiment No. 2 100 parts by weight of vinyl chloride resin, 30 parts by weight of plasticizer (2-ethylhexyl adipate), calcium
A sheet was prepared by molding a formulation containing 3 parts by weight of a zinc-based stabilizer. A 30W low-pressure mercury lamp (emission line spectrum:
185 nm, 254 nm, 313 nm, 365 nm) for 3 minutes under a pressure of 50 Torr. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 3 100 parts by weight of vinyl chloride resin, plasticizer (di-2-
ethylhexyl phthalate) 50 parts by weight, calcium-zinc stabilizer 3 parts by weight, bisphenol A1
A sheet was prepared by molding a compound consisting of parts by weight. This sheet was treated under the same conditions and with the same lamp as in Experiment 1. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 4 100 parts by weight of vinyl chloride resin, plasticizer (di-2-
A sheet was prepared by molding a mixture consisting of 50 parts by weight of ethylhexyl phthalate, 3 parts by weight of a barium-zinc stabilizer, and 3 parts by weight of bisphenol A. This sheet was subjected to ultraviolet light treatment for 1 minute under a pressure of 5 torr using a 50W low-pressure mercury lamp containing vapors of mercury and argon in a Splaisir glass tube. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 5 In Experiment No. 4, during ultraviolet light treatment, a Pycor filter was installed between the lamp and the molded sheet to prevent 185 nm light from reaching the sheet.
For this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1.
Shown in 1. Experiment No. 6 100 parts by weight of vinyl chloride resin, plasticizer (di-2-
ethylhexyl phthalate) 50 parts by weight, calcium-zinc stabilizer 3 parts by weight, bisphenol
A compound containing 0.03 parts by weight of A was molded into a sheet. This sheet was treated under the same conditions and with the same lamp as in Experiment No. 1. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 7 100 parts by weight of vinyl chloride resin, 30 parts by weight of plasticizer (2-ethylhexyl adipate), calcium
A blend consisting of 3 parts by weight of a zinc-based stabilizer and 5 parts by weight of 3-tertiary-butyl-4-hydroxyanisole (denoted as TBA in the table) was molded to form a sheet. This sheet was treated under the same conditions and with the same lamp as in Experiment No. 2. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 8 100 parts by weight of vinyl chloride resin, 30 parts by weight of plasticizer (2-ethylhexyl adipate), calcium
From 3 parts by weight of zinc-based stabilizer, 0.04 parts by weight of bisphenol A, and 0.04 parts by weight of octadecyl-3-(3',5'-ditertially-butyl-4'-hydroxyphenyl)propionate (denoted as OHP in the table). A sheet was created by molding the mixture. This sheet was treated under the same conditions and with the same lamp as in Experiment No. 2. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 9 100 parts by weight of vinyl chloride resin, 30 parts by weight of plasticizer (2-ethylhexyl adipate), calcium
3 parts by weight of zinc stabilizer, 1,3-diphenyl-2
-2 parts by weight of thiourea, 3-tert-butyl-
A sheet was prepared by molding a compound consisting of 2 parts by weight of 4-hydroxyanisole. This sheet was treated under the same conditions and with the same lamp as in Experiment No. 2. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1. Experiment No. 10 100 parts by weight of vinyl chloride resin, 30 parts by weight of plasticizer (2-ethylhexyl adipate), calcium
3 parts by weight of zinc stabilizer, 1,3-diphenyl-2
- A sheet was prepared by molding a blend consisting of 4 parts by weight of thiourea. This sheet was treated under the same conditions and with the same lamp as in Experiment No. 2. Regarding this treated sheet, the amount of plasticizer eluted before and after deterioration was measured in the same manner as in Experiment 1, and the results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル系樹脂100重量部あたり、0.1重量
部以上のフエノール系酸化防止剤を含有してなる
塩化ビニル系樹脂組成物を成形し、ついでこの成
形品表面を200nm以下の波長域をもつ紫外光で
照射処理して耐久性にすぐれた架橋層を形成する
ことを特徴とする塩化ビニル系樹脂成形品の製造
方法。
1. Molding a vinyl chloride resin composition containing 0.1 part by weight or more of a phenolic antioxidant per 100 parts by weight of vinyl chloride resin, and then exposing the surface of this molded product to ultraviolet light with a wavelength range of 200 nm or less. 1. A method for producing a vinyl chloride resin molded article, which comprises irradiating it to form a crosslinked layer with excellent durability.
JP14016579A 1979-10-30 1979-10-30 Production of formed product of vinyl chloride resin Granted JPS5662828A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14016579A JPS5662828A (en) 1979-10-30 1979-10-30 Production of formed product of vinyl chloride resin
DE19803040752 DE3040752A1 (en) 1979-10-30 1980-10-29 METHOD FOR MODIFYING THE SURFACE PROPERTIES OF PVC MOLDING MATERIALS
GB8034917A GB2061810B (en) 1979-10-30 1980-10-30 Method for modifying surface properties of a shaped article of a polyvinyl chloride resin
FR8023193A FR2468625B1 (en) 1979-10-30 1980-10-30 PROCESS FOR MODIFYING THE SURFACE PROPERTIES OF ARTICLES MADE OF POLYVINYL CHLORIDE RESIN, BY EXPOSURE TO U.V. LIGHT
GB8034910A GB2061809B (en) 1979-10-30 1980-10-30 Method for modifying surface properties of a shaped article of a polyvinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14016579A JPS5662828A (en) 1979-10-30 1979-10-30 Production of formed product of vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPS5662828A JPS5662828A (en) 1981-05-29
JPS632977B2 true JPS632977B2 (en) 1988-01-21

Family

ID=15262384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14016579A Granted JPS5662828A (en) 1979-10-30 1979-10-30 Production of formed product of vinyl chloride resin

Country Status (4)

Country Link
JP (1) JPS5662828A (en)
DE (1) DE3040752A1 (en)
FR (1) FR2468625B1 (en)
GB (1) GB2061809B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453277U (en) * 1990-09-10 1992-05-07

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759646B2 (en) * 1990-01-23 1995-06-28 工業技術院長 Surface treatment method for thermoplastic resin moldings
JPH0649788B2 (en) * 1990-01-23 1994-06-29 工業技術院長 Surface activation method for thermoplastic resin molding
DE102013109408A1 (en) * 2013-08-29 2015-03-05 Benecke-Kaliko Ag Multilayer sheet and method for its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464573A (en) * 1977-11-01 1979-05-24 Agency Of Ind Science & Technol Method of treating the surface of molded product of vinyl chloride resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464573A (en) * 1977-11-01 1979-05-24 Agency Of Ind Science & Technol Method of treating the surface of molded product of vinyl chloride resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453277U (en) * 1990-09-10 1992-05-07

Also Published As

Publication number Publication date
FR2468625A1 (en) 1981-05-08
GB2061809B (en) 1983-11-30
FR2468625B1 (en) 1987-08-28
GB2061809A (en) 1981-05-20
DE3040752A1 (en) 1981-05-21
JPS5662828A (en) 1981-05-29

Similar Documents

Publication Publication Date Title
JP3615769B2 (en) Low migration initiator for oxygen scavenging compositions
AU650140B2 (en) Methods and compositions for oxygen scavenging
US6254804B1 (en) Oxygen scavengers with reduced oxidation products for use in plastic films
JP5127808B2 (en) Oxygen scavenger with reduced oxidation products for use in plastic film and beverage and food containers
US5811027A (en) Methods and compositions for improved initiation of oxygen scavenging
US2919259A (en) Light stabilized polyvinyl chloride compositions
US3882196A (en) Odor-free thermoformed heat-degraded polyvinyl alcohol
JPS632977B2 (en)
JPH04173868A (en) Biodegradable thermoplastic resin composition and product therefrom
US3574156A (en) Antistatic resinous compositions
US3759856A (en) Inyl chloride polymers metal halide and polyglyceral carboxylic acid ester stabilizers for v
US4272559A (en) Method for surface treatment of shaped articles of polyvinyl chloride resins
WO2002036670A1 (en) Active masterbatch using stearate and an oxidizable resin carrier
US5643501A (en) Additives for polymer compositions
JPS632978B2 (en)
JP3172921B2 (en) Additives for polymer compositions
EP0549210A2 (en) Crosslinkable polymeric conposition
JPS5846144B2 (en) Manufacturing method of polyvinyl chloride products
US3943097A (en) Polyvinyl chloride compositions containing trixylyl phospate and a second plasticizer
KR950000989B1 (en) Polyvinyl chloride compositions for medical use
JP2684761B2 (en) Stabilized styrene-butadiene block copolymer composition
JPS6023622B2 (en) Vinyl chloride resin medical equipment
GB2061810A (en) Method for modifying surface properties of a shaped article of a polyvinyl chloride resin
US3829398A (en) Plasticized vinyl chloride polymer composition for transparent packing film
JP2010179643A (en) Method of manufacturing oxygen absorptive resin composition and oxygen absorptive resin composition