JPS63297424A - Polyamide compound - Google Patents

Polyamide compound

Info

Publication number
JPS63297424A
JPS63297424A JP13128987A JP13128987A JPS63297424A JP S63297424 A JPS63297424 A JP S63297424A JP 13128987 A JP13128987 A JP 13128987A JP 13128987 A JP13128987 A JP 13128987A JP S63297424 A JPS63297424 A JP S63297424A
Authority
JP
Japan
Prior art keywords
polyamide
film
thermal expansion
polyamide compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13128987A
Other languages
Japanese (ja)
Inventor
Maki Ishizawa
真樹 石沢
Yoshiaki Hasuda
蓮田 良紀
Shigekuni Sasaki
重邦 佐々木
Shiro Nishi
西 史郎
Toshihiro Ichino
敏弘 市野
Toru Matsuura
徹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13128987A priority Critical patent/JPS63297424A/en
Publication of JPS63297424A publication Critical patent/JPS63297424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To provide the titled compound having the structure obtained by introducing a side chain alkenyl group into an aromatic polyamide, applicable by coating to give a cured polyamide film having excellent heat-resistance and low thermal expansion coefficient and useful as a material for interlaminar insulation film of LSI, etc. CONSTITUTION:The objective compound contains the recurring unit of formula I (n is integer of 0-20; two phenylene groups are bonded with each other through m- or p-position). The compound can be produced e.g. by the polycondensation of a diamine of formula II (e.g. N,N'-diallyl-p- phenylenediamine) and a dicarboxylic acid dichloride of formula III (e.g. terephthaloyl dichloride).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性に優れ、低線膨張率なポリアミド化合
物に関する。更に詳しくは、絶縁材料、成型材料等の電
気、電子部品材料、特に半導体の表面被覆材料、LSI
の層間絶縁膜、耐熱性基板材料等としてポリアミド化合
物を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a polyamide compound that has excellent heat resistance and a low coefficient of linear expansion. More specifically, electrical and electronic component materials such as insulating materials and molding materials, especially surface coating materials for semiconductors, and LSI
An object of the present invention is to provide polyamide compounds as interlayer insulating films, heat-resistant substrate materials, etc.

〔従来の技術〕[Conventional technology]

従来、半導体の表面被覆材料、LSIの層間絶縁膜とし
てポリイミドが知られている。これは、半導体、LSI
製造プロセス上高温熱処理が必要でろり、ポリイミドは
耐熱性の点では極めて優れた特性を有するためである。
Conventionally, polyimide has been known as a surface coating material for semiconductors and an interlayer insulating film for LSI. This is a semiconductor, LSI
This is because high-temperature heat treatment is required in the manufacturing process, and polyimide has extremely excellent properties in terms of heat resistance.

しかし、シリコン基板上に層間絶縁膜としてのボリイミ
ド、パシベーション膜としてのSiN等の無機膜とから
なる多層配線構造では、無機材料層の熱膨張係数に比ベ
ポリイミドの熱膨張係数が大きく、両材料の熱膨張係数
の差に起因して発生する熱応力によりはく離、反り、ク
ラック等が生じる欠点を有していた。それ故、多層配線
を形成するためには、熱膨張係数が配線材料である銅及
び半導体p−8iN、 p−810等の無機材料と整合
がとれる値を有する低熱膨張性層間絶縁膜の開発が不可
欠である。
However, in a multilayer wiring structure consisting of polyimide as an interlayer insulating film and an inorganic film such as SiN as a passivation film on a silicon substrate, the coefficient of thermal expansion of polyimide is larger than that of the inorganic material layer, and the coefficient of thermal expansion of polyimide is larger than that of the inorganic material layer. It has the disadvantage that peeling, warping, cracking, etc. occur due to thermal stress generated due to the difference in thermal expansion coefficients. Therefore, in order to form multilayer wiring, it is necessary to develop a low thermal expansion interlayer insulating film that has a coefficient of thermal expansion that matches the wiring materials such as copper and inorganic materials such as semiconductor p-8iN and p-810. It is essential.

現在、耐熱性に優れ、低熱膨張性材料として、全芳香族
ポリアミドが知られている。その芳香族環性基がバラフ
ェニレン基で代表されるポリパラフェニレンテレ7タル
アミドは分子鎖が剛直なため、その熱膨張係数は小さく
高温下においても負の熱膨張係数を示す。
Currently, fully aromatic polyamide is known as a material with excellent heat resistance and low thermal expansion. Polyparaphenylenetere-7-talamide, whose aromatic cyclic group is represented by a paraphenylene group, has a rigid molecular chain, so its coefficient of thermal expansion is small and exhibits a negative coefficient of thermal expansion even at high temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記材料は、分子間相互の親和性が高いので溶
解性が低く、有機溶媒には全く溶解せず、基板上にスピ
ンコード等の方法で塗布させるごとは困賭でおつな。
However, since the above-mentioned materials have high mutual affinity between molecules, they have low solubility and are completely insoluble in organic solvents, making it difficult to coat them onto a substrate by a method such as a spin cord.

本発明の目的は、上記の欠点を解決し、優れた耐熱性を
有し低熱膨張係数でコーティング可能なポリアミド化合
物を提供するこ゛とにある。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a polyamide compound that has excellent heat resistance, has a low coefficient of thermal expansion, and can be coated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明の第1の発明はポリアミド
化合物に関する発明でろって、下記一般式(1): (但し、nはO≦n≦20の範囲の整数であり、2つの
フェニレン基はメタ位又はパラ位に結合している)で表
される繰り返し単位を含有していることを特徴とする◇ そして、本発明の第2の発明は他のポリアミド化合物に
関する発明であって、第1の発明のポリアミド化合物の
硬化反応体であることを特徴とする。
To summarize the present invention, the first invention of the present invention relates to a polyamide compound having the following general formula (1): (where n is an integer in the range of O≦n≦20, and two phenylene The second invention of the present invention is an invention relating to another polyamide compound, which is characterized by containing a repeating unit represented by (the group is bonded at the meta or para position). It is characterized by being a curing reactant of the polyamide compound of the first invention.

本発明者らは、側鎖の化学構造が異なる種々のポリアミ
ドを合成し、特性評価を行った。その結果、芳香族ポリ
アミド中にアルケニル基を導入すると有機溶剤に溶解し
、更に基板上に塗布後、加熱等の処理により側鎖アルケ
ニル基を架橋させると、目的とする低熱膨張性及び耐熱
性の両方を満足する絶縁膜になることを見出した。
The present inventors synthesized various polyamides with different chemical structures of side chains and evaluated their properties. As a result, when an alkenyl group is introduced into an aromatic polyamide, it dissolves in an organic solvent, and when the side chain alkenyl group is cross-linked by heating or other treatment after coating on a substrate, it is possible to achieve the desired low thermal expansion and heat resistance. We have discovered that an insulating film that satisfies both requirements can be obtained.

本発明における前記繰少返し単位(1)で表されるポリ
アミドは、下記反応式に従って、ジカルボン酸ジ塩化物
とジアミンとを重縮合反応させる方法 (但し、nはO≦n≦20の範囲の整数であり、2つの
)ユニしン基はメタ位又はパラ位に結合している) 又は、下記反応式に従ってポリアミドにハロゲン化アル
ケニルをN−置換反応させる方法によシ作製できる。
The polyamide represented by the repeating unit (1) in the present invention can be prepared by polycondensation reaction of dicarboxylic acid dichloride and diamine according to the following reaction formula (where n is in the range of O≦n≦20). (integer, and the two unicine groups are bonded to the meta or para position) Alternatively, it can be produced by subjecting polyamide to an N-substitution reaction with an alkenyl halide according to the reaction formula below.

(但し、nは0≦n≦20の範囲の整数、Xは塩素、臭
素又はヨウ素から選ばれた)10ゲン基であり、2つの
7二二レン基はメタ位又はパラ位に結合している) ここで、nは0〜20であることが好ましい。
(However, n is an integer in the range of 0≦n≦20, X is a 10-gen group selected from chlorine, bromine, or iodine), and the two 72-2lene groups are bonded to the meta or para position. ) Here, n is preferably 0 to 20.

但し、nが21以上の場合は、マトリックス中の主鎖の
剛直な部分の濃度が減少し、側鎖の屈曲性部分の@度が
増大するため、重合反応後も好ましい低熱膨張性を付与
することは期待できないので好ましくない。
However, when n is 21 or more, the concentration of the rigid portion of the main chain in the matrix decreases and the degree of bending of the side chain increases, so that favorable low thermal expansion properties are imparted even after the polymerization reaction. I don't like it because I can't expect that.

本発明においては、nの小さい前記繰り返し単位(1)
で表されるポリアミドとnの大きい前記繰り返し単位(
1)で表されるポリアミドと混合して用いることも可能
であり、混合割合を振らせることにより、熱膨張係数を
任意に制御することが可能である。
In the present invention, the repeating unit (1) with a small n
Polyamide represented by and the repeating unit with large n (
It is also possible to use it by mixing it with the polyamide represented by 1), and by varying the mixing ratio, it is possible to arbitrarily control the coefficient of thermal expansion.

本発明における前記繰り返し単位(1)で表されるポリ
アミドのフルケニル基の硬化反応は、150℃以上で単
に熱処理するか、ジクミルペルオキシド、ベンゾイルペ
ルオキシド、ジ−t−ブチルペルオキシド、2.5−ジ
−t−ブチルペルオキシヘキセン−5、゛ 過酸化ラウロイル、次亜硝酸−t−ブチル、アゾビスイ
ソブチロニトリル、アゾビスシクロヘキサンカルボニト
リル等の有機退散化物系架橋剤を用いる方法、塩化硫黄
、ジチオアジピン醗、ペンタメチレンジオール、ジニト
ロソ、ジニトリルオキシド等の付加反応による方法、硫
黄を用いる架橋灰石による方法によれば、150℃以下
の温度で架橋させることが可能でちる。
In the present invention, the curing reaction of the fluorenyl group of the polyamide represented by the repeating unit (1) can be carried out by simply heat-treating at 150°C or higher, or by using dicumyl peroxide, benzoyl peroxide, di-t-butyl peroxide, 2.5-di - t-Butylperoxyhexene-5, lauroyl peroxide, t-butyl hyponitrite, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, etc. method using an organic degenerate crosslinking agent, sulfur chloride, dithio According to the addition reaction method using adipine, pentamethylene diol, dinitroso, dinitrile oxide, etc., and the crosslinking method using sulfur, crosslinking can be carried out at a temperature of 150° C. or lower.

〔実施例〕〔Example〕

以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 ジメチルスルホキシド750を中にナトリウムハイドラ
イドt 1 (60%パラフィン中)fを添加し、80
℃1時間加熱して溶解させたのち、501:まで冷却さ
せポリパラフエ△レンチレフタルアミド粉末5ft−上
記溶液に添加し、4時間かくはんした0次いで、臭化ア
リルt−五日f添加して、30℃にて8時間反応させた
のち、水を加えて反応を停止させポリマーを沈殿させた
。これをろ別し、水及びイングロビルアルコールでよく
洗浄し友。洗浄後、60℃減圧乾燥すると、粉末状のポ
リマーを得た。このボリマーハ、ナト2クロロエチレン
、1,2−ジクロロエタン等ポリパラフェニレンテレフ
タルアミドが溶解しない溶剤に溶解するようになり、孔
径5βmのフィルターを通して未反応物を除去した後、
アセトンで再沈させ精製した。
Example 1 Sodium hydride t 1 (60% in paraffin) f was added to 750 ml of dimethyl sulfoxide, and 80 ml of dimethyl sulfoxide was added.
℃ for 1 hour to dissolve, cooled to 501℃, added 5ft of polyparaphelene lentilophthalamide powder to the above solution, stirred for 4 hours, then added allyl bromide t for 5 days. After reacting at 30°C for 8 hours, water was added to stop the reaction and precipitate the polymer. Filter this and wash thoroughly with water and Inglobil alcohol. After washing, drying at 60° C. under reduced pressure yielded a powdery polymer. The polyparaphenylene terephthalamide becomes soluble in solvents such as 2-chloroethylene, 1,2-dichloroethane, etc., and unreacted substances are removed through a filter with a pore size of 5βm.
It was purified by reprecipitation with acetone.

このポリ!−の1.2−ジクロロエタン溶液をガラスシ
ャーしく注ぎ、50℃、24h乾燥させ溶媒を除去した
後、250℃、4h熱処理すると強靭なフィルムが得ら
れる0 このフィルムの赤外吸収スペクトルを測定した結果、2
950〜5 G 90 an−” K −CHl−の吸
収を示し、1540crn″″1の一冊一の吸収が消え
ていることから、ポリN−アリルパラフェニレンテレフ
タルアミドであることが確認された。
This poly! Pour the 1,2-dichloroethane solution of - into a glass, dry it at 50°C for 24 hours, remove the solvent, and then heat it at 250°C for 4 hours to obtain a tough film.Results of measuring the infrared absorption spectrum of this film ,2
It was confirmed that it was polyN-allylparaphenylene terephthalamide because it showed absorption of 950-5 G 90 an-'' K -CHl- and the absorption of 1540 crn''''1 disappeared.

また、このフィルムの耐熱性を熱重量分析(島津裂作所
製T()A−!10)から測定した結果、空気中での熱
分解温度420℃であった。更に、このフィルムの線膨
張係数を微小定荷重熱膨張率針(真空理工社TM−70
00)で測定した結果、2 X 1 (1’(C−リ 
でめった。
Further, the heat resistance of this film was measured by thermogravimetric analysis (T()A-!10 manufactured by Shimadzu Rakusho Co., Ltd.), and as a result, the thermal decomposition temperature in air was 420°C. Furthermore, the linear expansion coefficient of this film was measured using a minute constant load thermal expansion coefficient needle (Shinku Rikosha TM-70).
As a result of measurement with 00), 2
I failed.

実施例2 実施例1の臭化アリルの代りに、4−ブロモ1−ブテン
(A7F)を用いて同様の条件でポリアミドフィルムを
作製した。このフィルムの熱分解温度410℃、線膨張
係数A3X10−6(℃−っでめった。
Example 2 A polyamide film was produced under the same conditions as in Example 1, using 4-bromo-1-butene (A7F) instead of allyl bromide. The thermal decomposition temperature of this film was 410° C., and the linear expansion coefficient was A3×10 −6 (° C.).

実施例3 実施例1で臭化アリルを反応させたボリマ一しに注ぎ、
50℃、24h乾燥させ溶媒を除去した後、130℃、
4h窒素雰囲気中で熱処理した0このフィルムの熱分解
温度は420℃、線膨張係数はzxlo−a(℃−りで
あった0実施例4 凡N′−ジアリルーp−〕ユニレンジアミン(五765
1)、テレフタル醗ジ塩化物(4,060f)、20メ
ツシユのマグネシウム粉末(a、12t)、乾燥させた
テトラクロロエタン(12〇−)を混合させ、窒素気流
中で7時間還流させた。塩化水素の発生は最初の2時間
でほぼ終了し、次第に溶液の粘度が増大した。孔径5μ
mのフィルターを通して未反応物を除去した後、アセト
ンで再沈させ精製した。次に、実施例1と同様の方法で
フィルムを作製し赤外吸収スペクトルを測定した結果、
2950へ5090cm−1に−〇H,−の吸収を示し
、1540cM−’の−NH−の吸収が消えていること
から、ポリN−アリルパラフェニレンテレフタルアミド
であることがvi認された。また、このフィルムの空気
中での熱分解温度は420℃及び線膨張係数は2×10
″″・(tlニー”)であった。
Example 3 Pour allyl bromide into the reacted bolimar in Example 1,
After drying at 50°C for 24 hours to remove the solvent, drying at 130°C,
The thermal decomposition temperature of this film, which was heat-treated in a nitrogen atmosphere for 4 hours, was 420°C, and the linear expansion coefficient was zxlo-a (°C-ri).
1), terephthal dichloride (4,060f), 20 meshes of magnesium powder (a, 12t), and dried tetrachloroethane (120-) were mixed and refluxed in a nitrogen stream for 7 hours. The evolution of hydrogen chloride was almost complete within the first 2 hours, and the viscosity of the solution gradually increased. Pore diameter 5μ
After removing unreacted substances through a filter, the product was purified by reprecipitation with acetone. Next, a film was prepared in the same manner as in Example 1, and the infrared absorption spectrum was measured.
It was confirmed that it was poly-N-allylparaphenylene terephthalamide because it showed -○H,- absorption at 2950 to 5090 cm-1 and the -NH- absorption at 1540 cM-' disappeared. In addition, the thermal decomposition temperature of this film in air is 420°C and the coefficient of linear expansion is 2 x 10
It was ``''・(tl knee).

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなように、芳香族ポリアミド中に
アルケニル基を導入すると有機溶剤に溶解し、更に基板
上に塗布後、加熱等の処理によシ側鎖アルケニル基を重
合させると、半導体基板材料と同程度の低熱膨張係数で
優れた耐熱性を有するポリアミド膜が作製できる。した
がって、本発明によるポリアミド化合物を用いれば、ク
ラック等が発生しない高温特性に優れた半導体の表面被
機材料、LSIの層間絶縁膜を提供できる。
As is clear from the above results, when an alkenyl group is introduced into an aromatic polyamide, it dissolves in an organic solvent, and when the side chain alkenyl group is polymerized by treatment such as heating after coating on a substrate, a semiconductor substrate A polyamide film with a low coefficient of thermal expansion comparable to that of the material and excellent heat resistance can be produced. Therefore, by using the polyamide compound according to the present invention, it is possible to provide surface covering materials for semiconductors and interlayer insulating films for LSIs that are free from cracks and have excellent high-temperature properties.

Claims (1)

【特許請求の範囲】 1、下記一般式(1): ▲数式、化学式、表等があります▼・・・(1) (但し、nは0≦n≦20の範囲の整数であり、2つの
フェニレン基はメタ位又はパラ位に結合している)で表
される繰り返し単位を含有していることを特徴とするポ
リアミド化合物。 2、下記一般式(1): ▲数式、化学式、表等があります▼・・・(1) (但し、nは0≦n≦20の範囲の整数であり、2つの
フェニレン基はメタ位又はパラ位に結合している)で表
される繰り返し単位を含有するポリアミド化合物の硬化
反応体であることを特徴とするポリアミド化合物。
[Claims] 1. The following general formula (1): ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (However, n is an integer in the range of 0≦n≦20, and two A polyamide compound characterized in that it contains a repeating unit represented by the following (phenylene group is bonded at meta-position or para-position). 2. The following general formula (1): ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (However, n is an integer in the range of 0≦n≦20, and the two phenylene groups are in the meta position or A polyamide compound characterized in that it is a curing reactant of a polyamide compound containing a repeating unit represented by ) bonded at the para position.
JP13128987A 1987-05-29 1987-05-29 Polyamide compound Pending JPS63297424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13128987A JPS63297424A (en) 1987-05-29 1987-05-29 Polyamide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13128987A JPS63297424A (en) 1987-05-29 1987-05-29 Polyamide compound

Publications (1)

Publication Number Publication Date
JPS63297424A true JPS63297424A (en) 1988-12-05

Family

ID=15054477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13128987A Pending JPS63297424A (en) 1987-05-29 1987-05-29 Polyamide compound

Country Status (1)

Country Link
JP (1) JPS63297424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096482C (en) * 1997-09-19 2002-12-18 南京大学 Sulfonated polyamide and its preparing method and use
CN104513391A (en) * 2013-09-30 2015-04-15 北京大学 Aromatic polyamide resin containing allyloxy group, preparation method and application thereof
CN104513392A (en) * 2013-09-30 2015-04-15 北京大学 Aromatic polyamide resin containing hydroxyl group and allyl group, preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096482C (en) * 1997-09-19 2002-12-18 南京大学 Sulfonated polyamide and its preparing method and use
CN104513391A (en) * 2013-09-30 2015-04-15 北京大学 Aromatic polyamide resin containing allyloxy group, preparation method and application thereof
CN104513392A (en) * 2013-09-30 2015-04-15 北京大学 Aromatic polyamide resin containing hydroxyl group and allyl group, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4871414B2 (en) Polyimide polymer with oligomeric silsesquioxane
EP0328027B1 (en) Novel soluble polyimidesiloxanes and methods for their preparation and use
JP2843044B2 (en) Novel soluble polyimide siloxane and methods for their production
EP0284803B1 (en) Novel soluble polymidesiloxanes and methods for their preparation and use
JPH01217037A (en) Production of silicon-containing polyimide having low moisture absorption and high adhesiveness and precursor thereof
JPH06510816A (en) Polyimide copolymer containing 3,3',4,4'-tetracarboxybiphenyl dianhydride (BPDA) moiety
JPH06107791A (en) Low permittivity fluorinated polymer and its production
CN1215049C (en) Polybenzoxazole resin and precursor thereof
JPH04277526A (en) Fluorinated polyimide polymer
JPS63254131A (en) Production of aromatic polyimide
TW555787B (en) Synthesis of poly(imide-benzoxazole) copolymer
KR20180001249A (en) Polyimide-based random copolymers and polyimide-based film comprising the same
JPS63297424A (en) Polyamide compound
EP0417778A1 (en) Polyimide compositions containing polyorganosiloxane for improving atomic oxygen resistance
JP2992326B2 (en) Solvent-resistant polyimide siloxane
EP0371313B1 (en) Polyimide siloxanes and methods for their preparation and use
US5077370A (en) Novel polyimidesiloxanes and methods for their preparation and use
JPS633024A (en) Polymeric compound containing ionic bond
JPS62223228A (en) Production of heat-resistant resin
JP2001122964A (en) Method for producing siloxane-containing polyamideimide, siloxane-containing polyamideimide obtained thereby and varnish containing the same
JPH11236450A (en) Production of fluorine-containing polybenzoxazole-polyimide and interlayer insulation film for multilayer interconnection of semiconductor
JP2700703B2 (en) Polybenzobisoxazole molecular composite and method for producing the same
JPH02276825A (en) Polyamide-imide polymer having 12f-fluorinated bonding group
KR102067226B1 (en) Polyimide-based block copolymers and polyimide-based film comprising the same
JP4620946B2 (en) Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide