JPS6329741B2 - - Google Patents

Info

Publication number
JPS6329741B2
JPS6329741B2 JP4128480A JP4128480A JPS6329741B2 JP S6329741 B2 JPS6329741 B2 JP S6329741B2 JP 4128480 A JP4128480 A JP 4128480A JP 4128480 A JP4128480 A JP 4128480A JP S6329741 B2 JPS6329741 B2 JP S6329741B2
Authority
JP
Japan
Prior art keywords
magnetic
latent image
electrostatic latent
toner
cylindrical sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4128480A
Other languages
Japanese (ja)
Other versions
JPS56137359A (en
Inventor
Takaharu Goto
Keitaro Yamashita
Koji Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4128480A priority Critical patent/JPS56137359A/en
Publication of JPS56137359A publication Critical patent/JPS56137359A/en
Publication of JPS6329741B2 publication Critical patent/JPS6329741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0907Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush with bias voltage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は静電潜像担持体表面に形成された静電
潜像を比較的高抵抗の磁性トナーを用いて現像し
ついで転写後定着を行なう電子写真法に係り、特
に静電潜像担持体表面の移動速度が比較的速い現
像に適した静電潜像現像方法に関する。 電子写真法は、感光体の光導電性表面に静電潜
像を形成しこの静電潜像を現像してトナー像を形
成し、ついでこのトナー像を直接定着するがある
いはトナー像を転写部材上に転写後定着してコピ
ーを得るものである。この電子写真法において
は、従来から現像剤として非磁性トナーと鉄粉キ
ヤリアなどの混合粉体である二成分現像剤を用い
て、磁気ブラシ法で現像することが行なわれてい
た。この二成分系現像剤を用いる磁気ブラシ現像
法はキヤリアとの摩擦帯電によりトナーを所定の
極性に帯電させてトナーのみ静電潜像担体面に付
着させるもので、転写が容易である等の利点があ
る。しかし、トナーとキヤリアを摩擦帯電させる
ための混合手段を必要としまた現像中トナーのみ
消費されるので均一なトナー濃度を保つためのト
ナー補給手段を必要とするため、現像装置が大型
化しかつ構造も複雑となり、さらに所定期間使用
するとキヤリアが疲労するのでキヤリアを交替す
る必要があるなどの問題点を有している。 そこで近年現像剤として樹脂と磁性粉を主成分
とする一成分系の磁性トナーが使用されつつあ
る。この磁性トナーを用いる現像法としては、米
国特許第3909258号公報に記載の方法が知られて
いる。この現像方法は導電性磁性トナーを用い、
これを導電性スリーブ上に保持し、静電潜像担持
体の裏面と導電性スリーブを電気的に結合して導
電性磁性トナー層を介して静電潜像担持体表面と
導電性スリーブの間に導電路を形成して誘導によ
り現像を行なうものである。しかしながらこの現
像方法では、トナーが導電性であるために現像し
て得られたトナー像を転写部材上に転写する場合
にトナー中の電荷の消失あるいは転写電極からの
電荷の注入等により転写像が乱れるなどの問題を
生じ現像後転写工程を経た後定着してコピーを得
るいわゆるPPC法には適していない。 そこで磁性トナーをPPC法に適用させるため
にトナーの電気抵抗を高めた絶縁性トナーを用い
る現像方法が提案されている。例えば米国特許第
4121931号明細書には、絶縁性磁性トナーの現像
性を高めるために、トナーを電極と電気的に接触
せしめて強制帯電させた後この帯電トナーを高速
で潜像面へ搬送することにより現像電流を倍加せ
しめよつて現像性を向上せしめることが記載され
ている。しかしながらこの方法ではトナーの移動
速度を高速とするために非磁性円筒形スリーブを
比較的高速で回転させる必要があるため、使用さ
れる磁性トナーに比較的狭く設定された流量規制
板とスリーブとの間隔部分で大きな力が働き、磁
性トナーが凝集したり、あるいはまたスリーブ表
面にこびり付いてしまうような現象が現われる。 またPPC法において現像性ならび転写性を共
に向上させる方法が米国特許第4120305号明細書
に記載されている。この現像方法は、高電場にお
いて導電性とそして低電場において絶縁性を示す
トナー粒子を用い、現像領域においてトナー粒子
に高電場を印加して導電性としてならしめて現像
を行ないついでトナー粒子を転写領域に移動せし
めて高電場がない状態で転写を行なうものであ
る。この公報においては、具体例として光導電性
表面と非磁性円筒との間に交流電場を形成するた
めに、円筒にAC電源を接続してピーク対ピーク
値が20〜100V/μ(20000〜1000000V/cm)程度
で周波数が500〜5000Hz程度の電圧を印加するこ
とが記載されている。しかしながらこのような高
圧の交流電圧を印加する場合、現像キヤツプが狭
い場合には放電により使用する静電潜像担持体に
ピンホールを空ける危険性が大きい。また使用す
る磁性トナーを交流電場のピーク値付近で導電性
にまでならしめるために、静電潜像担持体表面に
導電性となつた磁性トナーより電荷が注入され、
所定の静電潜像に従つて現像が行なわれない場合
もありうる。また上記明細書における実施例では
現像キヤツプを約1.65mmとかなり広くとつている
が、このように広いキヤツプではトナー飛散ある
いは流動性の比較的悪いPPC用トナーの場合磁
気ブラシの円筒表面近くでの不動層の発生、ある
いはこれが原因となつてのトナー凝集が発生しや
すく現像不良を起す危険性が多大であり、長期間
の信頼性を必要とされる電子写真装置には適用し
かねる。 本発明は以上の如き従来技術の問題点に鑑み、
磁石およびこれを内蔵する円筒形スリーブの相対
的な回転による磁気ブラシの長期にわたる安定性
および電気的な補助出段を考慮し長期にわたる信
頼性を確保できる現像方法を提供するものであ
る。すなわち本発明の目的は比較的高速の現像に
おいても良好な現像性が得られるとともに良好な
転写性も同時に得ることができる静電潜像現像方
法を提供することにある。 本発明による静電潜像現像方法は、複数個の磁
極を有する磁石を内蔵した非磁性円筒形スリーブ
表面に10000V/cmの直流電場における体積固有
抵抗が1012〜1016Ω・cmの範囲にある磁性トナー
を吸着し、前記磁石と前記非磁性円筒形スリーブ
との回転数の比率がほぼ20以上となるように前記
磁石と前記非磁性円筒形スリーブとをともに同一
方向に回転せしめ前記非磁性円筒形スリーブ表面
に吸着した前記磁性トナーを前記非磁性円筒形ス
リーブ表面に沿つて搬送することにより形成した
磁気ブラシを静電潜像担持体表面に接触せしめて
当該静電潜像担持体表面の静電潜像を顕像化する
際に、前記磁気ブラシと前記静電潜像担持体との
接触部に特定の周波数とピーク対ピーク値を有す
る交流電圧を印加するを特徴としている。 以下本発明の詳細を図面により説明する。第1
図は本発明の静電潜像現像方法を説明するための
転写型乾式電子複写機の概略断面図である。第1
図において、感光体ドラム1の表面をコロナ帯電
器2により一様帯電しついで露光装置3により光
照射を行なつて静電潜像が形成される。ついで現
像装置4により静電潜像が現像されて感光体ドラ
ム1の表面にトナー像が形成され、コロナ放電器
5により該トナー像が転写紙6に静電転写され、
そして圧力定着装置7によつて定着が行なわれて
コピーが得られる。なお現像装置4は磁性トナー
8を収容するホツパー41とその下部開口部に面
して非磁性円筒形スリーブ42が設けられ、非磁
性スリーブ42の内部には複数の磁極を有する永
久磁石43が回転自在に保持され、また非磁性ス
リーブ42はスイツチ45を介して接地又はAC
電源に接続される。 第2図は第1図における現像装置4の拡大断面
図を示すものである。従来、一般に用いられてい
る現像方式は非磁性円筒形スリーブ42を固定し
磁石43を図示矢印x方向に回転せしめるいわゆ
るスリーブ固定方式か、あるいは磁石43を固定
し非磁性円筒形スリーブ42を図示矢印x方向あ
るいはy方向に回転せしめるいわゆる磁石固定方
式である。スリーブ固定方式の場合、非磁性円筒
形スリーブ42の表面の磁性トナー81は図示矢
印y方向に自転しながら搬送されるが、感光体1
と非磁性円筒形スリーブ42との間すなわち現像
部44に磁性トナー81の溜りが形成され、その
溜りが成長し磁石43による回転磁界に対し現像
部44で磁気ブラシの運動が追従できなくなり現
像不良を生ずる。また磁石固定方式の場合、多く
の場合には感光体1と非磁性円筒形スリーブ42
の間隔いわゆる現像キヤツプが狭くできず、高抵
抗の磁性トナーを用いるシステムには不向きであ
る。また現像キヤツプを狭くする工夫がなされた
としても非磁性円筒形スリーブ42表面への磁性
トナー8の流量規制板(図示せず)と非磁性円筒
形スリーブ42との間へほこりあるいは凝集した
磁性トナー等がつまり易く、信頼性という点で欠
ける。 そこで本発明ではスリーブ固定式あるいは磁石
固定式の欠点を解消できる現像方式を採用してい
る。この現像方式は本発明者等が先に提案(特開
昭54−116233号公報)したものである。すなわち
非磁性円筒形スリーブ42と磁石43とは供に図
示矢印x方向に回転されるが、現像部44を通り
抜けた磁性トナー83は図示矢印y方向に搬送さ
れるように非磁性円筒形スリーブ42の回転数は
比較的低回転に磁石43の回転数は比較的高速回
転に設定される。このような回転数の設定条件で
は現像部44を通り抜けることのできなかつた磁
性トナー8は非磁性円筒形スリーブ42の回転と
ともに図示矢印x方向へ移動するようになり現像
部より非磁性円筒形スリーブ42表面に沿つて図
示矢印x方向に磁性トナーの一定厚の層(明確に
図示せず)を形成するようになる。この層の厚さ
は主として非磁性円筒形スリーブ42の回転数に
より決定されるが、常に感光体1とほぼ一定の接
触幅を保つことができ、現像部44において現像
キヤツプが極端に狭くなつても磁石43による回
転磁界に磁気ブラシの運動が追従できるため常に
安定した現像と良好な現像性を得ることができる
というすぐれた特徴を有している。従つて第1図
に示す電子複写機における実験には磁石43の回
転数を800〜4000rpm、非磁性円筒形スリーブ4
2の回転数を磁石43のそれの1/30以下(25〜
80rpm)の範囲に設定した。非磁性円筒形スリー
ブ42の外径は31.4mm、磁石43は外径が29.3mm
で非磁性円筒形スリーブ42表面での磁力が700
ガウスの円筒形のものを用いた。 上記の複写機を用いたコピーテストを行なつた
結果、現像部44にN極とS極が交互に現れる回
数(以下NS交番数という)と感光体1の表面の
移動速度(以下現像速度)との間に重要な相関関
係があることがわかつた。第3図に示す如くNS
交番数をx、現像速度をyとすると良好な現像を
行なうためには各直線はy=kxなる関係でだい
たい表されることが判明した。例えば磁性トナー
のD.C10000V/cmの電場における体積固有抵抗
が108〜1011Ω.cm程度の場合、現像速度とNS交番
回数との関係はk=1.0程度以下であれば良好な
現像を行なうことができるが、1014Ω.cm以上の
体積固有抵抗を有する磁性トナーを用いる場合に
はk=0.5以下好ましくはk=0.3以下に設定しな
ければならない。kの値が少さいほど磁石43の
回転数を上げなければならないことを意味する。
NS交番数の値200は12極の磁極を有する磁石を用
いた場合には1000r.p.mに相当するものである。
第3図に示す直線は例えば現像速度が60mm/sec
の場合において体積抵抗が1014Ω.cm以上の磁性
トナーを用いて良好な現像を行なうためにはNS
交番数で200であるから12極の磁石を使用した場
合に少くとも1000r.p.m.の回転数が必要であるこ
とを意味する。 ところで現像速度がさらに早くなつた場合、第
3図に示すy=kxの関係から磁石の回転数も現
像速度に比例して増加させる必要があることが判
る。しかるに磁石の回転数を増加せしめること
は、歯車やプーリー等の減速機構の点から好まし
くない。限界的な回転数は約2000r.p.m.前後とな
る。すなわちトナーの飛散防止の点からも好まし
くない。そこで体積固有抵抗が1013Ω.cm以上の
磁性トナーを用いて感光体表面の移動速度が約
120mm/sec以上の高速で現像を行なう場合、現像
性を補償するための工夫が必要である。 そこで本発明者等は上記のような高速現像に対
応するために、第1図において現像装置の非磁性
円筒形スリーブ42をAC電圧源に接続して現像
部にACバイアスを印加して絶縁性トナーに積極
的に電荷を注入し脈動電界中における現像性の向
上を目的としてコピーテストを行なつた。まず印
加バイアスの周波数に関する検討を行なつた結
果、少くとも第2図で示されるkが0.3に相当す
るNS交番回数とほぼ等しくなるような値を有す
る周波数を設定する必要があることを見出した。
例えば現像速度が240mm/secでは少なくとも800
Hz程度の周波数のバイアスを印加する必要があ
る。このような周波数の設定により、磁石回転数
をバイアス印加しない場合の1/2以下に下げても
良好な現像を行なうことができる。 次に本発明者らは、印加電圧のピーク対ピーク
値についての検討を行つた。その結果1013Ω.cm
以上の絶縁性磁性トナーを用いピーク対ピーク値
の変化に対する画像濃度が第4図に示すような傾
向になることを見い出した。すなわち800Vpp程
度までは画像濃度が1.2付近であつたものが
1200Vppないし2200Vpp程度の電圧印加で濃度が
1.35程度まで上昇し、3200Vpp以上の電圧を印加
すると急激に濃度が低下する。ただし交流電圧の
周波数は800Hz、現像速度は200mm/sec、セレン
感光体を用い暗電位を800V現像キヤツプは0.35
mmである。また細密部の画質は800Vpp付近まで
は良好なものではないが、1300Vp−p以上を印
加することにより鮮明なものとなつた。この理由
は静電潜像面に対する電界の大きさがピークに達
する付近でスリーブ上の磁気ブラシ中の電荷の移
動が効率よく行われるため静電潜像に接触する磁
性トナー粒子が静電潜像面に対し追従よく荷電さ
せられるためであると考えられる。またピーク値
を上げすぎると画像濃度が低下してしまう現象は
絶縁性であつたはずの磁性トナーが導電性にまで
なつたために電荷が急激に磁気ブラシ中に注入さ
れ、かつ静電潜像担持体とスリーブとの間に形成
される高電界により静電潜像面にまでも電荷が注
入されてしまうためと考えられる。従つて交流バ
イアスの電圧を大きくして絶縁性の磁性トナーを
導電性にまでならしめる必要性はない。従つてス
リーブに印加する交流電圧のピーク対ピーク値を
Vp−p1静電潜像の暗電位をVsとした場合、Vpp
が1.5VsVp−p4Vsなる関係を満す範囲であ
れば必要かつ十分な条件を満すといつて良い。 なお本発明に使用される磁性トナーは現像性な
らびに転写性を考慮して10000V/cmの直流電場
において1012〜1016Ω.cmの範囲の体積抵抗を有
するものが好ましい。以下本発明の実施例を示
す。 第2図に示す電子複写機を用い各種条件の下で
コピーテストを行なつたところ下表に示す結果が
得られた。なお感光体としては外径120mmのSeド
ラムを用いた。
The present invention relates to an electrophotographic method in which an electrostatic latent image formed on the surface of an electrostatic latent image carrier is developed using a relatively high resistance magnetic toner, and then fixed after transfer. The present invention relates to an electrostatic latent image developing method suitable for development in which the surface movement speed is relatively fast. Electrophotography involves forming an electrostatic latent image on the photoconductive surface of a photoreceptor, developing the electrostatic latent image to form a toner image, and then fixing the toner image directly or transferring the toner image to a transfer member. A copy is obtained by transferring the image onto the surface and then fixing it. In this electrophotographic method, development has conventionally been carried out by a magnetic brush method using a two-component developer which is a mixed powder such as a non-magnetic toner and an iron powder carrier. The magnetic brush development method using this two-component developer charges the toner to a predetermined polarity by frictional charging with a carrier and causes only the toner to adhere to the electrostatic latent image carrier surface, which has advantages such as easy transfer. There is. However, since a mixing means is required to frictionally charge the toner and the carrier, and since only the toner is consumed during development, a toner replenishing means is required to maintain a uniform toner concentration, making the developing device larger and less structured. This method is complicated, and furthermore, the carrier becomes fatigued after being used for a predetermined period of time, so it is necessary to replace the carrier. Therefore, in recent years, one-component magnetic toners containing resin and magnetic powder as main components have been used as developers. As a developing method using this magnetic toner, the method described in US Pat. No. 3,909,258 is known. This development method uses conductive magnetic toner,
This is held on a conductive sleeve, and the back surface of the electrostatic latent image carrier and the conductive sleeve are electrically coupled, and a conductive magnetic toner layer is interposed between the surface of the electrostatic latent image carrier and the conductive sleeve. In this method, a conductive path is formed in the film and development is performed by induction. However, in this developing method, since the toner is conductive, when the developed toner image is transferred onto the transfer member, the transferred image may be lost due to the loss of charge in the toner or the injection of charge from the transfer electrode. This causes problems such as turbulence and is not suitable for the so-called PPC method, which involves a post-development transfer process and then fixing to obtain a copy. Therefore, in order to apply magnetic toner to the PPC method, a developing method using an insulating toner with increased electrical resistance of the toner has been proposed. For example, U.S. Patent No.
No. 4121931 discloses that in order to improve the developability of insulating magnetic toner, the toner is forcibly charged by bringing it into electrical contact with an electrode, and then the charged toner is conveyed at high speed to the latent image surface to increase the developing current. It is described that the developability can be improved by doubling the . However, in this method, it is necessary to rotate the non-magnetic cylindrical sleeve at a relatively high speed in order to increase the moving speed of the toner. A large force acts on the spaced portion, causing phenomena such as magnetic toner agglomerating or even sticking to the sleeve surface. Further, a method for improving both developability and transferability in the PPC method is described in US Pat. No. 4,120,305. This development method uses toner particles that are conductive in a high electric field and insulative in a low electric field.A high electric field is applied to the toner particles in a development area to make them conductive, and development is performed.Then, the toner particles are transferred to a transfer area. The transfer is performed in the absence of a high electric field. In this publication, as a specific example, in order to form an alternating current electric field between a photoconductive surface and a non-magnetic cylinder, an AC power source is connected to the cylinder and the peak-to-peak value is 20 to 100 V/μ (20000 to 1000000 V). It is described that a voltage of about 500 to 5000 Hz is applied at a frequency of about 500 to 5000 Hz. However, when such a high alternating current voltage is applied, if the developing cap is narrow, there is a great risk of creating pinholes in the electrostatic latent image carrier used due to discharge. In addition, in order to make the magnetic toner used conductive near the peak value of the AC electric field, charges are injected from the magnetic toner that has become conductive onto the surface of the electrostatic latent image carrier.
There may be cases in which development does not occur in accordance with a predetermined electrostatic latent image. Furthermore, in the embodiments in the above specification, the developing cap is quite wide at approximately 1.65 mm, but such a wide cap may cause toner scattering, or in the case of PPC toner, which has relatively poor fluidity, near the cylindrical surface of the magnetic brush. The formation of a passive layer or toner aggregation caused by this tends to occur, and there is a great risk of developing defects, and it cannot be applied to electrophotographic devices that require long-term reliability. In view of the problems of the prior art as described above, the present invention
The present invention provides a developing method that can ensure long-term reliability by considering the long-term stability of the magnetic brush due to the relative rotation of the magnet and the cylindrical sleeve containing the magnet, and the electrically auxiliary stage. That is, an object of the present invention is to provide an electrostatic latent image developing method that can provide good developability even in relatively high-speed development and can also provide good transferability at the same time. In the electrostatic latent image developing method according to the present invention, the surface of a non-magnetic cylindrical sleeve containing a magnet having a plurality of magnetic poles has a volume resistivity in the range of 10 12 to 10 16 Ω·cm in a DC electric field of 10000 V/cm. A certain magnetic toner is attracted, and the magnet and the non-magnetic cylindrical sleeve are both rotated in the same direction so that the ratio of the number of rotations between the magnet and the non-magnetic cylindrical sleeve is approximately 20 or more. A magnetic brush formed by conveying the magnetic toner adsorbed on the surface of the cylindrical sleeve along the surface of the non-magnetic cylindrical sleeve is brought into contact with the surface of the electrostatic latent image carrier, and the surface of the electrostatic latent image carrier is When the electrostatic latent image is visualized, an alternating current voltage having a specific frequency and peak-to-peak value is applied to the contact portion between the magnetic brush and the electrostatic latent image carrier. The details of the present invention will be explained below with reference to the drawings. 1st
The figure is a schematic sectional view of a transfer type dry type electronic copying machine for explaining the electrostatic latent image developing method of the present invention. 1st
In the figure, the surface of a photoreceptor drum 1 is uniformly charged by a corona charger 2 and then exposed to light by an exposure device 3 to form an electrostatic latent image. Next, the electrostatic latent image is developed by the developing device 4 to form a toner image on the surface of the photoreceptor drum 1, and the toner image is electrostatically transferred to the transfer paper 6 by the corona discharger 5.
Then, the pressure fixing device 7 performs fixing to obtain a copy. The developing device 4 includes a hopper 41 that accommodates the magnetic toner 8 and a non-magnetic cylindrical sleeve 42 facing the lower opening of the hopper 41. Inside the non-magnetic sleeve 42, a permanent magnet 43 having a plurality of magnetic poles rotates. The non-magnetic sleeve 42 is connected to ground or AC via a switch 45.
Connected to power. FIG. 2 shows an enlarged sectional view of the developing device 4 in FIG. 1. Conventionally, the development method generally used is the so-called sleeve fixing method in which the non-magnetic cylindrical sleeve 42 is fixed and the magnet 43 is rotated in the direction of the arrow x shown in the figure, or the magnet 43 is fixed and the non-magnetic cylindrical sleeve 42 is rotated in the direction shown by the arrow This is a so-called magnet fixing method that rotates in the x direction or the y direction. In the case of the sleeve fixation method, the magnetic toner 81 on the surface of the non-magnetic cylindrical sleeve 42 is transported while rotating in the direction of the arrow y in the figure.
A pool of magnetic toner 81 is formed between the cylindrical sleeve 42 and the non-magnetic cylindrical sleeve 42, that is, in the developing section 44, and as this pool grows, the movement of the magnetic brush in the developing section 44 cannot follow the rotating magnetic field generated by the magnet 43, resulting in poor development. will occur. In addition, in the case of the magnet fixing method, in many cases the photoreceptor 1 and the non-magnetic cylindrical sleeve 42 are
The interval between the developing caps, so-called development caps, cannot be narrowed, making it unsuitable for systems using high-resistance magnetic toner. Furthermore, even if the developing cap is narrowed, dust or aggregated magnetic toner may be deposited between the flow rate regulating plate (not shown) of the magnetic toner 8 to the surface of the non-magnetic cylindrical sleeve 42 and the non-magnetic cylindrical sleeve 42. etc. are easily clogged and lack reliability. Therefore, the present invention employs a developing method that can eliminate the drawbacks of the sleeve-fixed type or magnet-fixed type. This developing method was previously proposed by the present inventors (Japanese Unexamined Patent Publication No. 116233/1983). That is, the non-magnetic cylindrical sleeve 42 and the magnet 43 are both rotated in the direction of the arrow x shown in the figure, but the magnetic toner 83 that has passed through the developing section 44 is rotated by the non-magnetic cylindrical sleeve 42 so that it is transported in the direction of the arrow y shown in the figure. The rotation speed of the magnet 43 is set to a relatively low rotation speed, and the rotation speed of the magnet 43 is set to a relatively high rotation speed. Under these rotational speed setting conditions, the magnetic toner 8 that could not pass through the developing section 44 begins to move in the direction of the arrow x shown as the non-magnetic cylindrical sleeve 42 rotates, and moves from the developing section to the non-magnetic cylindrical sleeve. 42, a layer (not explicitly shown) of a certain thickness of magnetic toner is formed in the direction of the arrow x shown in the figure. The thickness of this layer is mainly determined by the rotational speed of the non-magnetic cylindrical sleeve 42, but it can always maintain a nearly constant contact width with the photoreceptor 1, and the developing cap in the developing section 44 becomes extremely narrow. Also, since the motion of the magnetic brush can follow the rotating magnetic field generated by the magnet 43, it has the excellent feature that stable development and good developability can always be obtained. Therefore, in the experiment using the electronic copying machine shown in FIG.
The number of rotations of magnet 2 is 1/30 or less of that of magnet 43 (25~
80rpm) range. The outer diameter of the non-magnetic cylindrical sleeve 42 is 31.4 mm, and the outer diameter of the magnet 43 is 29.3 mm.
The magnetic force on the surface of the non-magnetic cylindrical sleeve 42 is 700
A Gaussian cylinder was used. As a result of a copy test using the above-mentioned copying machine, we found that the number of times N and S poles alternately appear in the developing section 44 (hereinafter referred to as NS alternation number) and the moving speed of the surface of the photoreceptor 1 (hereinafter referred to as developing speed) It was found that there was a significant correlation between NS as shown in Figure 3
It has been found that when the number of alternations is x and the development speed is y, each straight line is approximately expressed by the relationship y=kx in order to perform good development. For example, when the volume resistivity of magnetic toner in an electric field of D.C10000V/cm is about 10 8 to 10 11 Ω.cm , the relationship between the development speed and the number of NS alternations is about 1.0 or less for good development. However, 10 14 Ω. When using a magnetic toner having a volume resistivity of cm or more, k must be set to 0.5 or less, preferably 0.3 or less. The smaller the value of k, the more the rotation speed of the magnet 43 must be increased.
The value of the NS alternation number of 200 corresponds to 1000 rpm when a magnet with 12 magnetic poles is used.
For example, the straight line shown in Figure 3 has a development speed of 60 mm/sec.
In the case of , the volume resistance is 10 14 Ω. In order to perform good development using magnetic toner of cm or larger, NS
Since the number of alternations is 200, this means that if a 12-pole magnet is used, a rotation speed of at least 1000 rpm is required. By the way, when the development speed becomes faster, it is clear from the relationship y=kx shown in FIG. 3 that the number of rotations of the magnet needs to be increased in proportion to the development speed. However, increasing the number of rotations of the magnet is not preferable from the viewpoint of speed reduction mechanisms such as gears and pulleys. The critical rotation speed is around 2000rpm. That is, this is not preferable from the viewpoint of preventing toner scattering. Therefore, the volume resistivity is 10 13 Ω. When using magnetic toner with a diameter of cm or more, the moving speed of the photoreceptor surface is approximately
When developing at a high speed of 120 mm/sec or higher, it is necessary to take measures to compensate for developing performance. Therefore, in order to cope with the above-mentioned high-speed development, the present inventors connected the non-magnetic cylindrical sleeve 42 of the developing device to an AC voltage source and applied an AC bias to the developing section as shown in FIG. A copy test was conducted with the purpose of actively injecting charge into the toner to improve its developability in a pulsating electric field. First, as a result of examining the frequency of the applied bias, we found that it is necessary to set a frequency that has a value that is at least approximately equal to the number of NS alternations, where k is equivalent to 0.3 as shown in Figure 2. .
For example, if the development speed is 240 mm/sec, at least 800
It is necessary to apply a bias with a frequency of about Hz. By setting such a frequency, it is possible to perform good development even when the magnet rotation speed is lowered to 1/2 or less of that when no bias is applied. Next, the present inventors conducted a study on the peak-to-peak value of the applied voltage. The result was 10 13 Ω. cm
Using the above insulating magnetic toner, it has been found that the image density with respect to the change in peak-to-peak value has a tendency as shown in FIG. In other words, up to about 800Vpp, the image density was around 1.2.
The concentration increases by applying a voltage of about 1200Vpp to 2200Vpp.
The concentration increases to about 1.35, and when a voltage of 3200 Vpp or more is applied, the concentration decreases rapidly. However, the frequency of the AC voltage is 800Hz, the development speed is 200mm/sec, the dark potential is 800V using a selenium photoreceptor, and the development cap is 0.35.
mm. Furthermore, although the image quality of detailed areas was not good up to around 800 Vpp, it became clearer by applying 1300 Vp-p or more. The reason for this is that the electric charge in the magnetic brush on the sleeve moves efficiently near the peak of the electric field against the electrostatic latent image surface, so that the magnetic toner particles that come into contact with the electrostatic latent image This is thought to be because the charge follows the surface well. In addition, the phenomenon that image density decreases when the peak value is increased too much is because the magnetic toner, which should have been insulating, has become conductive, so charges are rapidly injected into the magnetic brush, and the electrostatic latent image is retained. This is thought to be because the high electric field formed between the body and the sleeve causes charges to be injected even into the electrostatic latent image surface. Therefore, there is no need to increase the AC bias voltage to make the insulating magnetic toner conductive. Therefore, the peak-to-peak value of the AC voltage applied to the sleeve is
Vp−p 1 If the dark potential of the electrostatic latent image is Vs, then Vpp
If the range satisfies the relationship 1.5VsVp-p4Vs, it can be said that the necessary and sufficient conditions are satisfied. The magnetic toner used in the present invention has a resistance of 10 12 to 10 16 Ω in a DC electric field of 10,000 V/cm in consideration of developability and transferability. Preference is given to those having a volume resistivity in the cm range. Examples of the present invention will be shown below. A copy test was conducted under various conditions using the electronic copying machine shown in FIG. 2, and the results shown in the table below were obtained. Note that a Se drum with an outer diameter of 120 mm was used as the photoreceptor.

【表】 上表において、No.1〜4は本発明による実験結
果を示したもので、現像性ならびに転写性にすぐ
れていることが明らかである。すなわち1015Ω.
cm程度の抵抗の高い磁性トナーを用いても良好な
現像画像を得ることができるため、転写紙として
普通紙を用いた場合でも高品質の画像が得られ
る。
[Table] In the above table, Nos. 1 to 4 show the experimental results according to the present invention, and it is clear that they have excellent developability and transferability. That is 10 15 Ω.
Since a good developed image can be obtained even when using a magnetic toner with a high resistance of about cm, a high quality image can be obtained even when plain paper is used as the transfer paper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される転写型乾式電子複
写機の一例を示す概略断面図、第2図に第1図に
おける現像装置の拡大断面図、第3図は現像速度
とNS交番数の関係を示す図、そして第4図は印
加電圧と画像濃度の関係を示す図である。 1:感光体ドラム、4:現像装置、41:ホツ
パー、42:非磁性スリーブ、43:永久磁石、
44:現像部、8:磁性トナー。
Fig. 1 is a schematic cross-sectional view showing an example of a transfer type dry type electronic copying machine used in the present invention, Fig. 2 is an enlarged sectional view of the developing device in Fig. 1, and Fig. 3 is a diagram showing the development speed and the number of NS alternations. FIG. 4 is a diagram showing the relationship between applied voltage and image density. 1: Photosensitive drum, 4: Developing device, 41: Hopper, 42: Non-magnetic sleeve, 43: Permanent magnet,
44: developing section, 8: magnetic toner.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の磁極を有する非磁性円筒形スリーブ
表面に10000V/cmの直流電場における体積固有
抵抗が1012〜1016Ω・cmの範囲にある磁性トナー
を吸着し、前記磁石と前記非磁性円筒形スリーブ
との回転数の比率がほぼ20以上となるように前記
磁石と前記非磁性円筒形スリーブとをともに同一
方向に回転せしめ、前記非磁性円筒形スリーブ表
面に吸着した前記磁性トナーを前記非磁性円筒形
スリーブ表面に沿つて搬送することにより形成し
た磁気ブラシを静電潜像担持体表面に接触せしめ
て当該静電潜像担持体表面の静電潜像を顕像化す
る方法において、前記磁気ブラシと前記静電潜像
担持体との接触部に交流電圧を印加するととも
に、前記交流電圧の周波数をF(Hz)、ピーク対ピ
ーク値をVp-p、前記静電潜像担持体表面の移動
速度をυ(mm/sec)、前記静電潜像の暗電位をVs
とした時に、F≧υ/0.3および1.5VsVp-p
4Vsに設定することを特徴とする静電潜像現像方
法。
1. Magnetic toner having a volume resistivity in the range of 10 12 to 10 16 Ω·cm in a DC electric field of 10000 V/cm is adsorbed onto the surface of a non-magnetic cylindrical sleeve having a plurality of magnetic poles, and the magnet and the non-magnetic cylinder are The magnet and the non-magnetic cylindrical sleeve are both rotated in the same direction so that the rotation speed ratio with the non-magnetic cylindrical sleeve is approximately 20 or more, and the magnetic toner adsorbed on the surface of the non-magnetic cylindrical sleeve is removed from the non-magnetic cylindrical sleeve. In the method of visualizing an electrostatic latent image on the surface of an electrostatic latent image carrier by bringing a magnetic brush formed by conveying it along the surface of a magnetic cylindrical sleeve into contact with the surface of the electrostatic latent image carrier, the method includes: An alternating current voltage is applied to the contact portion between the magnetic brush and the electrostatic latent image carrier, and the frequency of the alternating voltage is F (Hz), the peak-to-peak value is Vpp , and the surface of the electrostatic latent image carrier is The moving speed is υ (mm/sec), and the dark potential of the electrostatic latent image is V s
When F≧υ/0.3 and 1.5V s V pp
An electrostatic latent image developing method characterized by setting the voltage to 4V s .
JP4128480A 1980-03-31 1980-03-31 Developing method of electrostatic latent image Granted JPS56137359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128480A JPS56137359A (en) 1980-03-31 1980-03-31 Developing method of electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128480A JPS56137359A (en) 1980-03-31 1980-03-31 Developing method of electrostatic latent image

Publications (2)

Publication Number Publication Date
JPS56137359A JPS56137359A (en) 1981-10-27
JPS6329741B2 true JPS6329741B2 (en) 1988-06-15

Family

ID=12604138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128480A Granted JPS56137359A (en) 1980-03-31 1980-03-31 Developing method of electrostatic latent image

Country Status (1)

Country Link
JP (1) JPS56137359A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146064A (en) * 1983-02-08 1984-08-21 Fujitsu Ltd Development system
US4496644A (en) * 1983-02-28 1985-01-29 Eastman Kodak Company Electric field adjustment for magnetic brushes
DE3338692A1 (en) * 1983-10-25 1985-05-02 Develop Dr. Eisbein Gmbh & Co, 7016 Gerlingen Method and device for developing a toner image
JPS6173973A (en) * 1984-09-20 1986-04-16 Matsushita Electric Ind Co Ltd Method and device for development

Also Published As

Publication number Publication date
JPS56137359A (en) 1981-10-27

Similar Documents

Publication Publication Date Title
US4508052A (en) Developing device
US4165393A (en) Magnetic brush developing process for electrostatic images
JPH01304477A (en) Developing apparatus free from image sweeping
EP0106322B1 (en) Developing apparatus
JPH0353632B2 (en)
US4499169A (en) Developing method
JPH09311539A (en) Developing device
JPS6374083A (en) Wet type developing device
JPS6329741B2 (en)
JPS6255147B2 (en)
US4675266A (en) Dry developing method for latent image by one-component developer
JPS62211674A (en) Developing device
JPS627542B2 (en)
JPS6217224B2 (en)
JPH046950B2 (en)
JP2855593B2 (en) Developing device
KR910010217B1 (en) Developing method for electro graphic
JPS5948383B2 (en) developing device
JPS623949B2 (en)
JPS6250822B2 (en)
JPH0360436B2 (en)
JP3193228B2 (en) Contact charging particles used in particle charging method and image forming method
JPS60133478A (en) Image forming device
JPS6061774A (en) Developing device
JP3142034B2 (en) Apparatus and method for charging photoreceptor