JPS63297254A - Additive for underwater concrete - Google Patents

Additive for underwater concrete

Info

Publication number
JPS63297254A
JPS63297254A JP13288887A JP13288887A JPS63297254A JP S63297254 A JPS63297254 A JP S63297254A JP 13288887 A JP13288887 A JP 13288887A JP 13288887 A JP13288887 A JP 13288887A JP S63297254 A JPS63297254 A JP S63297254A
Authority
JP
Japan
Prior art keywords
concrete
copolymer
acrylate
meth
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13288887A
Other languages
Japanese (ja)
Inventor
Shigeru Iijima
茂 飯島
Yoshihiro Kawamori
河盛 吉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP13288887A priority Critical patent/JPS63297254A/en
Publication of JPS63297254A publication Critical patent/JPS63297254A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain the titled additive giving an underwater concrete having excellent separation resistance, preventive effect to water pollution, high fluidity, self-leveling property and strength without retarding the hardening, by using a copolymer of a specific alkoxy (meth)acrylate and one or more other vinyl compounds as a component. CONSTITUTION:A copolymer having an intrinsic viscosity of >=3dl/g (measured in 1N NaOH solution at 30 deg.C) is produced by copolymerizing 1-80mol.% of an alkoxy (meth)acrylate of formula (X is 1-4C alkyl; Y is 2-4C alkoxy; n is 1-5; R is H or CH3) and other vinyl compound selected from (meth) acrylamide, (meth)acrylic acid (methyl ester), (hydroxy)ethyl (meth)acrylate, etc. The copolymer is used singly or an combination with a fluidizing agent such as cellulosic substance or salt of naphthalenesulfonic acid formalin condensation product to obtain the titled additive. Cement is mixed with 0.05-3.0wt.% of the additive.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水中においてコンクリート構造物を構築する場
合に使用される水中コンクリート用混和剤に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an underwater concrete admixture for use in constructing concrete structures underwater.

従来技術 従来より海底あるいは海底などでコンクリート構造物を
構築する場合には、矢板等で水を堰き止め、気中でコン
クリートを打ち込む工法が主として行われており、水中
に直接打設されるコンクリートは、無筋コンクリートに
限られ、構造物の基礎を造るのに僅かに使用されている
にすぎない。
Conventional technology Conventionally, when constructing concrete structures on the ocean floor or on the ocean floor, the main method used has been to dam up water with sheet piles, etc., and then pour concrete in the air. , is limited to unreinforced concrete and is only slightly used for building the foundations of structures.

これは、水中で直接打設されたコンクリートは品質に信
頼性が置けないこと、及び打設工程におけるセメント分
の水中への分散により水質汚濁公害が発生することなど
による。
This is because the quality of concrete placed directly in water is unreliable, and water pollution occurs due to dispersion of cement into water during the placing process.

即ち、従来の水中コンクリート工法は、トレミー管、コ
ンクリートポンプ、コンクリートパケットなどを使用し
、比較的高配合の生コンクリートを、水との接触が少な
いように工夫しながら打設するものであるが、いかに慎
重に施工しても、コンクリートが水に洗われ、コンクリ
ート材料の分離が生じ、強度に信頼性ある均一な製品は
得、難かったのである。
In other words, the conventional underwater concrete method uses tremie pipes, concrete pumps, concrete packets, etc., and pours fresh concrete with a relatively high mix in a way that minimizes contact with water. No matter how carefully the concrete was constructed, water washed away the concrete, causing separation of the concrete materials, making it difficult to obtain a uniform product with reliable strength.

近年、水中での土木工事の進展に伴い、水中に打設した
ときにセメントと骨材が分離することのないコンクリー
トの開発が望まれている。
In recent years, with the progress of underwater civil engineering work, there has been a desire to develop concrete that does not separate cement and aggregate when poured underwater.

そこで、コンクリートの水中での分離を防止する対策と
して、例えば特開昭57−123850号公報、特開昭
58−115051号公報、特開昭58−176157
号公報、特開昭59−26955号公報、特開昭59−
26956号公報、特開昭58−69760号公報、特
開昭59−107952号公報、特開昭5 ’9−13
1548号公報及び特開昭59−54656号公報に開
示されるように、水溶性高分子材料をコンクリートに混
和する試みがなされているが、必ずしも充分な結果が得
られるものではない。
Therefore, as a measure to prevent the separation of concrete in water, for example, JP-A-57-123850, JP-A-58-115051, JP-A-58-176157,
No. 1, JP-A-59-26955, JP-A-59-
26956, JP 58-69760, JP 59-107952, JP 5'9-13
Attempts have been made to mix water-soluble polymeric materials into concrete, as disclosed in Japanese Patent Laid-open No. 1548 and Japanese Patent Application Laid-Open No. 59-54656, but satisfactory results have not always been obtained.

例えば、ポリアクリルアミド、ポリビニルアルコール、
ポリエチレンオキシド等の合成高分子やメチルセルロー
ス等のセルロースエーテルの如きノニオン性増粘剤を使
用する場合には、水中に分離しないコンクリートを得る
ためには、極めて粘稠性の高いコンクリートを調製する
必要があるため、従来のコンクリート混、練装置やコン
クリート輸送装置等では能力不足となり、装置的に問題
があるだけでなく、打設時の鉄筋部へのコンクリートの
巻き込みが不充分となり、鉄筋付着力に問題が生ずる。
For example, polyacrylamide, polyvinyl alcohol,
When using nonionic thickeners such as synthetic polymers such as polyethylene oxide or cellulose ethers such as methylcellulose, it is necessary to prepare extremely viscous concrete in order to obtain concrete that does not separate in water. As a result, conventional concrete mixing and kneading equipment, concrete transportation equipment, etc. lack capacity, which not only causes problems with the equipment, but also causes insufficient entrainment of concrete into the reinforcing bars during pouring, resulting in poor adhesion of the reinforcing bars. A problem arises.

更に、ポリビニルアルコールやセルロース、澱粉類の如
き多価アルコールはセメントの凝結を遅延させる傾向が
あり、またポリアクリル酸ナトリウム、アルギン酸ナト
リウム、カルボキシメチルセルロール等のアニオン性増
粘剤ではアニオン性基がセメントのカルシュラムイオン
と結合し、その結果、セメントを凝集させ、流動性を阻
害し、操作性を悪くする欠点がある。
Additionally, polyhydric alcohols such as polyvinyl alcohol, cellulose, and starches tend to retard the setting of cement, and anionic thickeners such as sodium polyacrylate, sodium alginate, and carboxymethylcellulose have anionic groups. It has the drawback of bonding with calcium ions in cement, resulting in agglomeration of cement, inhibiting fluidity, and impairing operability.

そこで、水中コンクリートの流動性を改良するために、
公知のコンクリート流動化側として、ナフタレンスルホ
ン酸ソーダーホルマリンm合物、メラミンスルホン酸−
ホルマリン縮合物等の併用も考えられるが、コンクリー
トの強度の低下や凝結遅延を生ずることなく、良好な結
果を得ることはできないとして、特開昭61−1915
49号公報では、非常に高分子量のアクリルアミド系重
合体と前者に比べて分子量が小であるアクリル酸又はメ
タクリル酸系重合体を水中コンクリート用混和剤として
併用することを提案している。
Therefore, in order to improve the fluidity of underwater concrete,
Known concrete fluidizers include naphthalene sulfonic acid sodium formalin m compound, melamine sulfonic acid -
Although it is possible to use formalin condensate in combination, it is not possible to obtain good results without reducing the strength of the concrete or delaying setting, as disclosed in Japanese Patent Application Laid-Open No. 1986-1915.
Publication No. 49 proposes the combined use of an acrylamide polymer with a very high molecular weight and an acrylic acid or methacrylic acid polymer with a lower molecular weight than the former as an admixture for underwater concrete.

しかし、不分離性と流動性は、まだ不満足なレベルにあ
り、その結果、充填性が悪く、圧縮強度は低くなる。
However, the inseparability and fluidity are still at an unsatisfactory level, resulting in poor filling properties and low compressive strength.

発明が解決しようとする問題点。The problem that the invention seeks to solve.

本発明は、このような不分離性と流動性を大幅に改良し
、その結果、圧縮強度ケ高く、水中供試体強度/気中供
試体伸度比が高い、強度に信頼性あるコンクリート構造
惣を、凝結時間を実質的に遅延することなく、水中で構
築可能とする水中コンクリート用混和剤の提供を目的と
する。
The present invention significantly improves such non-separability and fluidity, and as a result, a concrete structure with high compressive strength, high underwater specimen strength/in-air specimen elongation ratio, and reliable strength. The object of the present invention is to provide an admixture for underwater concrete that enables construction of concrete in water without substantially delaying the setting time.

問題点を解決するための手段 本発明は、特殊なビニル共重合、体の使用にょって、所
期の目的を達成した。即ち、本発明の水中コンクリート
混和剤は、一般式 %式%(11 (ただし、Xは炭素数1〜4のアルキル基を示し、Yは
炭素数2〜4のアルコキシル基を示し、nは1〜5の整
数を示し、Rは水素又はメチル基を示す)で表されるア
ルコキシアクリレート又はメタアクリレートと他のビニ
ル化合物の一種以上との共重合体を含をするものである
SUMMARY OF THE INVENTION The present invention achieves its objectives through the use of a special vinyl copolymer. That is, the underwater concrete admixture of the present invention has the general formula % (11 (where X represents an alkyl group having 1 to 4 carbon atoms, Y represents an alkoxyl group having 2 to 4 carbon atoms, and n represents 1 It contains a copolymer of an alkoxy acrylate or methacrylate represented by (representing an integer of ~5, R represents hydrogen or a methyl group) and one or more other vinyl compounds.

上記共重合体中の(1)式で表されるアルコキシアクリ
レート又はメタアクリレートは1〜80モル%の割合で
含まれるのが好ましく、この含有率が1モル%未満であ
ると水中打設時の分離抵抗性が劣り、水汚濁防止効果が
低下する。なた、逆に80モル%を越えると水中コンク
リート中の空気量が過多となり、また、水溶性が減少し
て水汚濁防止効果が低下するなど好ましくない。
The alkoxy acrylate or methacrylate represented by formula (1) in the above copolymer is preferably contained in a proportion of 1 to 80 mol%, and if this content is less than 1 mol%, Separation resistance is poor and water pollution prevention effect is reduced. On the other hand, if it exceeds 80 mol %, the amount of air in the underwater concrete becomes too large, and the water solubility decreases, resulting in a decrease in the water pollution prevention effect, which is undesirable.

□なお、上記共重合体の極限粘度〔η〕は3dl/g以
上であるのが好ましく、3dl/g未満であると充分な
分離抵抗性を得るために、多量の添加を必要とし、不経
済となる。但し、上記極限粘度はl規定の苛性ソーダ溶
液中、30℃における数値を示す。
□The intrinsic viscosity [η] of the above copolymer is preferably 3 dl/g or more; if it is less than 3 dl/g, a large amount must be added in order to obtain sufficient separation resistance, making it uneconomical. becomes. However, the above-mentioned intrinsic viscosity indicates the numerical value at 30° C. in a normal caustic soda solution.

上記共重合体の製造に使用される他のビニル化合物とし
ては、通常の水溶性モノマーだけでなく、水不溶性モノ
マーであっても、共重合体が水溶性として存在するもの
であれば使用できる。一般に有用なモノマーとしては次
のようなものがある。
As the other vinyl compound used in the production of the above copolymer, not only ordinary water-soluble monomers but also water-insoluble monomers can be used as long as the copolymer is present as water-soluble. Commonly useful monomers include:

アクリルアミド、メタクリルアミド、アクリル酸、メタ
クリル酸、アクリルアミドメチルプロパンスルフォン酸
及びこれらの水溶性塩類、メチルアクリレート、メチル
メタクリレート、エチルアクリレート、エチルメタクリ
レート、ヒドロキシエチルアクリレート及びヒドロキシ
エチルメタクリレートなどである。
These include acrylamide, methacrylamide, acrylic acid, methacrylic acid, acrylamide methylpropanesulfonic acid and water-soluble salts thereof, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, hydroxyethyl acrylate, and hydroxyethyl methacrylate.

なお、共重合体の製造方法は、通常のアクリル系モノマ
ーの重合法がいずれも使用できる。
Incidentally, as a method for producing the copolymer, any ordinary polymerization method of acrylic monomers can be used.

このようにして得られた共重合体は、単独でコンクリー
ト混和剤として使用されてもよいが、他の混和剤または
添加剤と混合して使用されてもよい。例えば、上記共重
合体はメチルセルロース、メチルヒドロキシエチルセル
ロース、メチルヒドロキシプロピルセルロース、ヒドロ
キシエチルセルロース等のセルロース系の水中コンクリ
ート用混和剤と併用でき、また、ナフタレンスルフォン
酸ホルマリン縮金物塩、メラミンスルフォン酸ホ、ルマ
リン縮合物塩、リグニンスルフォン酸塩等の流動化剤と
併用して水中コンクリートの流動性を高めることもでき
る。
The copolymer thus obtained may be used alone as a concrete admixture, or may be used in combination with other admixtures or additives. For example, the above copolymer can be used in combination with cellulose-based underwater concrete admixtures such as methyl cellulose, methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, and hydroxyethyl cellulose. It can also be used in combination with a fluidizing agent such as a condensate salt or lignin sulfonate to increase the fluidity of underwater concrete.

本発明の混和剤を使用した水中コンクリートの製造法と
しては、該混和剤を予めセメント及び骨材と予備混合し
た後、混練水を添加し、これらの成分を混合する方法だ
けでなく、生コンクリートに混和剤を添加混合する方法
によってもよく、混練機としては通常のコンクリートミ
キサーやミキサー も使用できるが、強制練りミキサー
を使用するのが好ましい。
Methods for producing underwater concrete using the admixture of the present invention include premixing the admixture with cement and aggregate in advance, adding kneading water, and mixing these components; A method of adding an admixture to the mixture may also be used, and a conventional concrete mixer or mixer can be used as the kneading machine, but it is preferable to use a forced mixing mixer.

上記共重合体のセメントに対する添加混合割合は、要求
される水中分散抵抗性に応じて任意に選べるが、セメシ
トに対し、0.05〜3.0重量%程度であるのが好ま
しく、更に0.2〜1.5重量%程度であるのが好まし
い。共重合体のセメントに対する添加割合が0.05重
量%未満では粘稠性が低下し、水中分離防止性能が不充
分となり、一方3゜0重量%を越えると過度の粘稠性に
より流動性が低下する。
The mixing ratio of the above-mentioned copolymer to the cement can be arbitrarily selected depending on the required water dispersion resistance, but it is preferably about 0.05 to 3.0% by weight, and more preferably about 0.05 to 3.0% by weight based on the cement. It is preferably about 2 to 1.5% by weight. If the proportion of the copolymer added to the cement is less than 0.05% by weight, the viscosity will decrease and the ability to prevent separation in water will be insufficient, while if it exceeds 3.0% by weight, the fluidity will deteriorate due to excessive viscosity. descend.

実施例1 一本発明の混和剤の製造− アクリルアミド36.6 g 、メトキシエチルアクリ
レート19.5 g 、イオン交換水500gからなる
混合液に、重合触媒として過硫酸アンモニウム0.01
g、還元剤として亜硫酸ソーダ0.01 gを加え、水
溶液−重合を行い、固形公約10%の水溶液を得た。こ
の水溶液を真空乾燥した後、固形物を粉砕して、粉末共
重合体を得た。このものの極限粘度〔η〕は11.5で
あった。
Example 1 Production of an admixture of the present invention - 0.01 g of ammonium persulfate was added as a polymerization catalyst to a mixed solution consisting of 36.6 g of acrylamide, 19.5 g of methoxyethyl acrylate, and 500 g of ion-exchanged water.
g, 0.01 g of sodium sulfite as a reducing agent was added, and aqueous solution polymerization was carried out to obtain an aqueous solution with a solid content of about 10%. After drying this aqueous solution in vacuum, the solid matter was pulverized to obtain a powder copolymer. The intrinsic viscosity [η] of this product was 11.5.

−水中コンクリートの製造− 強制練りコンクリートミキサーにセメント6.76kg
、川砂13.00kg、粗骨材(最大寸法20mm)2
0.38kgと所定量の水中コンクリート用混和剤を混
合した汲水4,4kg(w/c65%)を添加し、2喬
間練って20m1の水中コンクリートを得た。
- Production of underwater concrete - 6.76 kg of cement in a forced mixing concrete mixer
, river sand 13.00 kg, coarse aggregate (maximum dimension 20 mm) 2
4.4 kg (w/c 65%) of pumped water mixed with 0.38 kg and a predetermined amount of an admixture for underwater concrete were added and kneaded for 2 qiao to obtain 20 ml of underwater concrete.

実施例2〜8 モノマー組成を表1の通り変化させた以外は、実施例1
と同様の方法で、本発明の混和剤及び水中コンクリート
の製造をした。
Examples 2 to 8 Example 1 except that the monomer composition was changed as shown in Table 1.
The admixture and underwater concrete of the present invention were produced in the same manner as described above.

比較例1〜5 混和剤として、表1記載の組成からなるものを使用した
以外は実施例1と同様にして、水中コンクリートを製造
した。
Comparative Examples 1 to 5 Underwater concrete was produced in the same manner as in Example 1, except that an admixture having the composition shown in Table 1 was used.

実施例1〜8及び比較例1〜5で得られるコンクリート
の性能試験を実施した。その結果を表1に示す。
Performance tests were conducted on the concrete obtained in Examples 1 to 8 and Comparative Examples 1 to 5. The results are shown in Table 1.

この結果から、本発明の混和剤を使用した実施例1〜8
では、いずれもスランプフローが40〜44cmと大き
く、水質汚濁の指標となるSS値やpH値が低いのに対
して、ポリアクリルアミドやその部分加水分解物(比較
例1及び2)の使用ではスランプフローが著しく小さく
、また、公知のアクリル系水中コンクリート用混和剤を
使用する比較例3及び4では、比較的良好な流動性と水
質汚濁防止性が得られるが、本発明の製品に比べて、そ
の効果は劣る。なお、本発明と同様のモノマー組成から
なるものであっても極限粘度〔η〕が低いものは、添加
量0.8%ではSS値及びpH値が低く、実用化し難い
ものであった。
From this result, Examples 1 to 8 using the admixture of the present invention
In all cases, the slump flow is large at 40 to 44 cm, and the SS value and pH value, which are indicators of water pollution, are low. In Comparative Examples 3 and 4, in which the flow is extremely small and a known acrylic admixture for underwater concrete is used, relatively good fluidity and water pollution prevention properties are obtained, but compared to the product of the present invention, Its effectiveness is inferior. Note that even if the monomer composition is the same as that of the present invention, those with a low intrinsic viscosity [η] have low SS values and pH values when the addition amount is 0.8%, making it difficult to put them into practical use.

実施例9〜16 七ツマー組成を表2の如く変化させ、実施例1と同様の
方法で共重合体を得た。実施例9.11.13.15で
はこの共重合体を直接本発明の混和剤として使用し、実
施例10.12.14.16では該共重合体にメラミン
フルフォン酸系の流動化剤(有効成分35%品)を添加
して本発明の混和剤として使用し、実施例1と同様の方
法で水中コンクリートを製造した。
Examples 9 to 16 Copolymers were obtained in the same manner as in Example 1 except that the seven-mer composition was changed as shown in Table 2. In Example 9.11.13.15, this copolymer was used directly as an admixture of the present invention, and in Example 10.12.14.16, the copolymer was added with a melamine-fulphonic acid-based fluidizing agent ( Underwater concrete was produced in the same manner as in Example 1 by adding 35% active ingredient) and using it as an admixture of the present invention.

比較例7〜lO 混和剤の組成を変化させた以外は実施例1と同様にして
水中コンクリートを製造した。なお、比較例8及び10
では混和剤に流動化剤を含有させている。
Comparative Example 7~1O Underwater concrete was produced in the same manner as in Example 1 except that the composition of the admixture was changed. In addition, Comparative Examples 8 and 10
In this case, the admixture contains a fluidizing agent.

実施例9〜16及び比較例7〜10のコンクリートにつ
いて性能試験をした結果を表2に示す。
Table 2 shows the results of performance tests on the concretes of Examples 9 to 16 and Comparative Examples 7 to 10.

この結果から、市販のメチルセルロースを混和剤として
使用した場合(比較例7及び8)には凝結時間が著しく
遅延するのに対して、本発明の混和剤を使用した場合(
実施例9〜16)では、凝結時間の遅延が小であり、短
時間で性能のよいコンクリートが得られることがわかる
0本発明に従った実施例では、水中充填/気中充填供試
体圧縮強度比が高く、水中での不分離性が高く、流動性
のよいコンクリートが得られるのに対して、アクリルア
ミド部分加水分解物を混和物として使用した比較例9及
び10では、コンクリートの流動性が悪く、充填性に欠
けるため、圧縮強度の悪い製品しか得られなかった。
These results show that when commercially available methylcellulose was used as an admixture (Comparative Examples 7 and 8), the setting time was significantly delayed, whereas when the admixture of the present invention was used (
In Examples 9 to 16), it can be seen that the delay in setting time is small and concrete with good performance can be obtained in a short time. In contrast, in Comparative Examples 9 and 10, in which acrylamide partial hydrolyzate was used as a mixture, the concrete had poor fluidity. However, due to the lack of filling properties, only products with poor compressive strength were obtained.

なお、表1及び表2の性能試験は下記の方法に従って実
施した。
Note that the performance tests in Tables 1 and 2 were conducted according to the following method.

空気量 JIS  A−1123による スランプフロー コンクリートのスランプ試験方法(JtS  A−11
01)に規定されたスランプ測定器に、コンクリートの
スランプ測定と同様の操作で水中コンクリートを詰め、
コーンを鉛直に引き上げた後、5分後の水中コンクリー
トの広がりの直径を測定し、流動性の指標とした。
Air content Slump test method for slump flow concrete according to JIS A-1123 (JtS A-11
Fill the slump measuring device specified in 01) with underwater concrete in the same manner as measuring the slump of concrete,
After lifting the cone vertically, the diameter of the spread of the underwater concrete 5 minutes later was measured and used as an index of fluidity.

量  (水中 N氏La−) 外径110+*m、高さ150mmのIQOOcc用ビ
ーカーに、800ccの水を入れ、この水面に、水中コ
ンクリート500gを10等分に分割して静かに落下さ
せる。この落下は10秒から20秒の間に終了させ、そ
の後3分間ビーカーを静置し、ビーカー内の水をスポイ
トを用いて、コンクリートが混ざらないように静かに6
00cc分取する。
Amount (Underwater Mr. N La-) Pour 800 cc of water into an IQOOcc beaker with an outer diameter of 110+*m and a height of 150 mm, and gently drop 500 g of underwater concrete into 10 equal parts onto the water surface. This drop should be completed within 10 to 20 seconds, then the beaker should be allowed to stand still for 3 minutes, and the water in the beaker should be poured out using a dropper to prevent the concrete from mixing.
Take out 00cc.

この水に対して、速やかにSS(懸濁物質)及びpH試
験を実施した。
This water was immediately subjected to SS (suspended solids) and pH tests.

pH測定は、3回実施し、その平均値をpl(値とした
。また、且且の測定は、JISK、0102r工場排水
試験方法J14.1懸濁物質に従って行った。
The pH measurement was carried out three times, and the average value was taken as the pl (value).The measurement was also carried out in accordance with JISK, 0102r factory wastewater test method J14.1 suspended solids.

王且笈皮 圧縮強度はJIS  A  1108rコンクリートの
圧縮強度試験方法」により試験した。供試体は下記に示
す要領で作成し、脱型後圧縮強度試験を実施するまでの
間は、温度20±1℃の水中標準養生を行った。供試体
の数は各バッチにつき3本とし、平均値を気中又は水中
作成供試体のその材令における圧縮強度とした。
The compressive strength of the concrete was tested in accordance with JIS A 1108r concrete compressive strength test method. The specimens were prepared according to the procedure shown below, and were subjected to standard curing in water at a temperature of 20±1° C. until the compressive strength test was conducted after demolding. The number of specimens was three for each batch, and the average value was taken as the compressive strength of the specimens prepared in air or underwater at that age.

気中乍成 晋 圧縮強度試験に用いる気中作成供試体の作り方は、JI
S  A  1132rコンクリートの強度試験用供試
体の作り方」によった。
JI
S A 1132r How to make concrete strength test specimens”.

米主生嵐1栽兎 φ100100XH200(の円筒形型枠を水深50c
+aに保つことができるように作られた容器中に入れ、
容器に水を型枠底面までの水深が50C1lになるよう
に満たした。水温は20±1℃とする。
A cylindrical formwork for rice cultivation Arashi 1 φ 100 100 x H 200 (water depth 50 cm)
Place it in a container designed to keep it at +a,
The container was filled with water so that the water depth to the bottom of the form was 50C1l. The water temperature is 20±1℃.

型枠の上端に、直径100au+、高さ300mmの円
筒形の金14(Iolメッシェ)を鉛直に立て、金網の
上端が水面に接するようにセットする。練り上がった水
中コンクリートを金網を通して水面から静かに落下させ
、型枠に充填する。型枠1本当たりの水中コンクリート
の投入量は約21とし、これをほぼ等量ずつ15回に分
けて投入した。投入に要する時間は、型枠1本につき3
0秒以上1分以内とした。投入の前後で水深が変化しな
いようにする。水中コンクリートの投入を完了した後、
型枠を15分間水中に静置し、その後に気中に取り出し
、型枠内の水とコンクリートの置換を促進する目的で型
枠の側面2方向から各2〜3回軽く木槌で叩き、型枠内
壁とコンクリートの境界面から水が出ないことを確認し
た後、頂部の均らしを行った。
A cylindrical gold 14 (Iol mesh) with a diameter of 100 au+ and a height of 300 mm is vertically placed on the upper end of the form and set so that the upper end of the wire mesh is in contact with the water surface. Mixed underwater concrete is gently dropped from the water surface through a wire mesh and filled into formwork. The amount of underwater concrete added per formwork was approximately 21 kg, and this was divided into 15 approximately equal amounts. The time required for input is 3 times per formwork.
The duration was 0 seconds or more and 1 minute or less. Make sure that the water depth does not change before and after injection. After completing the pouring of underwater concrete,
The formwork was left in water for 15 minutes, then taken out into the air and lightly tapped with a mallet from two sides of the formwork two to three times on each side in order to promote the replacement of water and concrete within the formwork. After confirming that no water came out from the interface between the inner wall of the formwork and the concrete, the top was leveled.

その後の養生、キャンピング、脱型方法はJIS  A
  1132rコンクリートの強度試験用供試体の作り
方」に従った。
Subsequent curing, camping, and demolding methods are JIS A.
1132r Concrete Strength Test Specimen Preparation” was followed.

凝結時間 水中コンクリートの配合から粗骨材を予め除いた配合で
モルタルを練り、JIS  A  6204発明の効果 本発明の混和剤は、少量の添加で水中コンクリートの分
離抵抗性を高くし、水中打設時の水汚濁防止効果が高い
、また、水中コンクリートの流動性を高く保ち、セルフ
レベリング性も良好に保つ、更に、セルロース系混和剤
と異なり、添加によるコンクリートの凝結遅延が少なく
、硬化後のコンクリートの強度低下も少ない。
Setting time A mortar is prepared by removing coarse aggregate from the underwater concrete formulation in advance. In addition, it maintains high fluidity of underwater concrete and good self-leveling properties.Furthermore, unlike cellulose-based admixtures, there is little delay in setting of concrete due to addition, and the concrete after hardening is highly effective. There is also little decrease in strength.

特許出願人 第−工業製薬株式会社 代  理  人  新  実  健  部外1名Patent applicant Dai-Kogyo Seiyaku Co., Ltd. 1 person from outside the group: Ken Shin Minoru

Claims (4)

【特許請求の範囲】[Claims] (1)一般式 XO−(Y)_mOCC(R)=CH_2 (ただし、Xは炭素数1〜4のアルキル基を示し、Yは
炭素数2〜4のアルコキシル基を示し、nは1〜5の整
数を示し、Rは水素又はメチル基を示す)で表されるア
ルコキシアクリレート又はメタアクリレートと他のビニ
ル化合物の一種以上との共重合体を含有することを特徴
とする水中コンクリート用混和剤。
(1) General formula: XO-(Y)_mOCC(R)=CH_2 (where, An admixture for underwater concrete, characterized in that it contains a copolymer of an alkoxy acrylate or methacrylate represented by the integer , R represents hydrogen or a methyl group, and one or more other vinyl compounds.
(2)上記共重合体の30℃、1規定の苛性ソーダ溶液
中で測定した極限粘度〔η〕が、3dl/g以上である
特許請求の範囲第1項記載の水中コンクリート混和剤。
(2) The underwater concrete admixture according to claim 1, wherein the copolymer has an intrinsic viscosity [η] of 3 dl/g or more as measured in a 1N caustic soda solution at 30°C.
(3)上記共重合体の上記アルコキシアクリレート又は
メタアクリレート含有率が1〜80モル%である特許請
求の範囲第1項又は第2項記載の水中コンクリート混和
剤。
(3) The underwater concrete admixture according to claim 1 or 2, wherein the alkoxy acrylate or methacrylate content of the copolymer is 1 to 80 mol%.
(4)上記他のビニル化合物がアクリルアミド、メタク
リルアミド、アクリル酸、メタクリル酸、アクリルアミ
ドメチルプロパンスルフォン酸及びこれらの水溶性塩類
、メチルアクリレート、メチルメタクリレート、エチル
アクリレート、エチルメタクリレート、ヒドロキシエチ
ルアクリレート及びヒドロキシエチルメタクリレートか
らなる群から選ばれる特許請求の範囲第1項〜第3項い
ずれか1項記載の水中コンクリート混和剤。
(4) The above other vinyl compounds include acrylamide, methacrylamide, acrylic acid, methacrylic acid, acrylamide methylpropanesulfonic acid and water-soluble salts thereof, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, hydroxyethyl acrylate and hydroxyethyl The underwater concrete admixture according to any one of claims 1 to 3, which is selected from the group consisting of methacrylates.
JP13288887A 1987-05-28 1987-05-28 Additive for underwater concrete Pending JPS63297254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13288887A JPS63297254A (en) 1987-05-28 1987-05-28 Additive for underwater concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13288887A JPS63297254A (en) 1987-05-28 1987-05-28 Additive for underwater concrete

Publications (1)

Publication Number Publication Date
JPS63297254A true JPS63297254A (en) 1988-12-05

Family

ID=15091898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13288887A Pending JPS63297254A (en) 1987-05-28 1987-05-28 Additive for underwater concrete

Country Status (1)

Country Link
JP (1) JPS63297254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012045A1 (en) * 1987-10-08 1990-10-18 Hitachi Chemical Company Ltd. Resin composition for cement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012045A1 (en) * 1987-10-08 1990-10-18 Hitachi Chemical Company Ltd. Resin composition for cement
US5109088A (en) * 1987-10-08 1992-04-28 Hitachi Chemical Company Ltd. Resin composition for cement

Similar Documents

Publication Publication Date Title
EP2181079B1 (en) A liquid admixture composition
EP0520413B1 (en) Concrete composition
JP2811336B2 (en) New cement dispersant
AU2006278152B2 (en) Additive with applications in construction chemistry
WO2010029117A2 (en) Dynamic copolymers for workability retention of cementitious composition
CZ2004596A3 (en) Super plasticizing agent for concrete and self-leveling mixtures
US4792360A (en) Workable cement composition of low water content containing a hydroxyalkyl (meth)acrylate polymer
EP1893548A2 (en) Fast binder compositions for concrete parts and works containing a calcium salt
JPH0218346A (en) Cementitious composition
EP0097513A1 (en) Cementiferous compositions
CN109704619B (en) Sulfamate high-efficiency water reducing agent and preparation process thereof
EP0162114B1 (en) Concrete composition for underwater application
JPS6235984B2 (en)
JPS63297254A (en) Additive for underwater concrete
JPS6339906A (en) Cement additive
JPH0952749A (en) Admixture for high flowability concrete and concrete material containing the same
EP0107086A2 (en) Concrete set modification with encapsuled surfactant
JPS60161363A (en) Cement dispersant
EP0100671B1 (en) Water-inseparable cement compositions
US5047087A (en) Cementiferous composition and additives for use in such compositions
JPH0155210B2 (en)
JPH0323497B2 (en)
JPS62226849A (en) Manufacture of ready mixed concrete for underwater construction
JPH0224778B2 (en)
JP4509272B2 (en) Cement admixture and method for producing concrete using the same