JPS63297170A - Fluid squeezing device - Google Patents

Fluid squeezing device

Info

Publication number
JPS63297170A
JPS63297170A JP62130961A JP13096187A JPS63297170A JP S63297170 A JPS63297170 A JP S63297170A JP 62130961 A JP62130961 A JP 62130961A JP 13096187 A JP13096187 A JP 13096187A JP S63297170 A JPS63297170 A JP S63297170A
Authority
JP
Japan
Prior art keywords
fluid
diameter hole
pressure
orifice
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62130961A
Other languages
Japanese (ja)
Inventor
Ryutaro Abe
安部 隆太郎
Yoshiharu Inaguma
義治 稲熊
Ryuichi Yamada
隆一 山田
Satoshi Sudou
数籐 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP62130961A priority Critical patent/JPS63297170A/en
Publication of JPS63297170A publication Critical patent/JPS63297170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE:To recover the pressure of a fluid on a collision face and prevent the occurrence of cavitation by forming the collision face against which the fluid from an orifice collides at a right angle on part of the minimum-diameter section side of a sheet union. CONSTITUTION:When a handle is operated and the pressure of a fluid in a servo valve side passage 12 becomes higher than that in a reaction mechanism side passage 13, part of the fluid in the servo valve side passage 12 flows to the reaction mechanism side passage 13 via a communicating passage 17. At this time, the fluid passes the first passage 34, the minimum-diameter hole 31, an orifice 40b, a space 40d, a circular gap 50, a communicating passage 51, and a cylindrical inner space 44 and expanded in this route, and the pressure of the fluid is decreased in stages. The fluid with its flow speed increased and pressure decreased by the orifice 40b recovers its pressure by colliding against a collision face 52, thus the occurrence of cavitation due to the decreased pressure can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、流体の圧力を段階的に下げてキャビテーショ
ンの発生を抑えるようにした流体絞り装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fluid restricting device that reduces the pressure of fluid in stages to suppress the occurrence of cavitation.

〈従来の技術〉 かかる流体絞り装置として、ハウジングの穴にカップ状
で底部にオリフィスを形成した複数の絞り部材を直列に
嵌合し、絞り部材間に流体を膨張させる内部空間を形成
したものがある。
<Prior Art> As such a fluid restriction device, a plurality of restriction members each having a cup shape and an orifice formed at the bottom are fitted in series into a hole in a housing, and an internal space for expanding fluid is formed between the restriction members. be.

〈発明が解決しようとする問題点〉 上述したものは、背圧が一番低い最終段のオリフィスで
キャビテーションが発生しやすく、しかも最終段のオリ
フィスにおける流体のぬれ面積が小さいため、キャビテ
ーションによる騒音が大きい問題があった。
<Problems to be solved by the invention> In the above-mentioned problem, cavitation is likely to occur at the final stage orifice where the back pressure is lowest, and the wetted area of the fluid at the final stage orifice is small, so the noise due to cavitation is There was a big problem.

く問題点を解決するための手段〉 本発明は上述した問題点を解決するためになされたもの
で、ハウジングに形成された小径穴と大径穴にそれぞれ
カップ状の絞り部材とシートユニオンを嵌合し、前記シ
ートユニオンに、絞り部材の円筒部とで環状隙間を形成
する最小径部と、前記大径穴とで円筒状の内部空間を形
成する小径部と、大径穴に嵌合される大径部を連続して
形成し、さらにシートユニオンの最小径穴側の一端に絞
り部材の底部から離れた位置でオリフィスからの流体が
直角に衝突する衝突面を形成し、絞り部材若しくはシー
トユニオンに環状隙間と円筒状の内部空間とを連通ずる
連通路を半径方向に形成したものである。
Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems, and includes fitting a cup-shaped aperture member and a seat union into the small-diameter hole and the large-diameter hole formed in the housing, respectively. The seat union has a minimum diameter part that forms an annular gap with the cylindrical part of the throttle member, a small diameter part that forms a cylindrical internal space with the large diameter hole, and a small diameter part that is fitted into the large diameter hole. A collision surface is formed at one end of the sheet union on the side of the smallest diameter hole at a position away from the bottom of the orifice, with which the fluid from the orifice collides at right angles. A communication path is formed in the union in the radial direction to communicate the annular gap and the cylindrical internal space.

く作用〉 ポンプから吐出されハウジングの最小径穴に流入した流
体は、オリフィス、カップ状の絞り部材内の空間を経て
衝突面に衝突し、さらに環状隙間。
The fluid discharged from the pump and flowing into the minimum diameter hole of the housing passes through the orifice and the space inside the cup-shaped throttle member, collides with the collision surface, and then passes through the annular gap.

連通路を経て円筒状の内部空間に流入する。このときオ
リフィスで圧力降下し、衝突面で圧力が回復し、環状隙
間でさらに圧力降下する。
It flows into the cylindrical internal space through the communication path. At this time, the pressure drops at the orifice, recovers at the collision surface, and further drops at the annular gap.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第4図において、10は流体を吐出するポンプ、10a
はポンプからの吐出流量を一定流量に制御する流量制御
弁、11は流量制御弁10aからの流体を一定の流量割
合でサーボ弁側通路12と反力機構側通路13に分流す
るフローデバイダ、14は回路のタイヤを操舵する力を
発生させるパワーシリンダ、14aは回路のハンドルの
操舵に応じてパワーシリンダ14の左右室に流体を分配
するサーボ弁、15は反力機構側通路13の流体の圧力
を制御する電磁弁、16はハンドル側の入力軸16aと
タイヤ側の出力軸16bとの相対回転を規制する反力機
構、17はサーボ弁側通路12と反力機構側通路13を
連絡する連絡通路、18は連絡通路17中に設置された
流体絞り装置である。ハンドルを操作してサーボ弁側通
路12の流体の圧力が反力機構側通路13より高くなる
と、サーボ弁側通路12の流体の一部が連絡通路17を
介して反力機構側通路13に流れるようになっている。
In FIG. 4, 10 is a pump that discharges fluid; 10a;
11 is a flow control valve that controls the discharge flow rate from the pump to a constant flow rate; 11 is a flow divider that divides the fluid from the flow rate control valve 10a into the servo valve side passage 12 and the reaction force mechanism side passage 13 at a constant flow rate; 14; 14a is a power cylinder that generates a force to steer the tires of the circuit; 14a is a servo valve that distributes fluid between the left and right chambers of the power cylinder 14 in accordance with the steering of the circuit handle; 15 is the pressure of the fluid in the reaction force mechanism side passage 13; 16 is a reaction force mechanism that regulates the relative rotation between the input shaft 16a on the handle side and the output shaft 16b on the tire side, and 17 is a connection that connects the servo valve side passage 12 and the reaction force mechanism side passage 13. The passage, 18, is a fluid restriction device installed in the communication passage 17. When the handle is operated and the pressure of the fluid in the servo valve side passage 12 becomes higher than the reaction force mechanism side passage 13, a part of the fluid in the servo valve side passage 12 flows to the reaction mechanism side passage 13 via the communication passage 17. It looks like this.

この結果反力機構側通路13の流体の圧力が上昇し、ハ
ンドルが重くなる。連絡通路17を流れる流体の圧力は
流体絞り装置18により低下し、サーボ弁側通路12か
ら反力機構側通路13に流れる流体の流量を制限する役
割を持つ。
As a result, the pressure of the fluid in the reaction mechanism side passage 13 increases, making the handle heavier. The pressure of the fluid flowing through the communication passage 17 is reduced by the fluid restricting device 18, which has the role of restricting the flow rate of the fluid flowing from the servo valve side passage 12 to the reaction force mechanism side passage 13.

第1図において30は、流体絞り装置18のハウジング
であり、このハウジング30には最小径穴31と小径穴
32と大径穴33が直列に連続して形成されている。又
ハウジング30には最小径穴31と直角に連通する第一
流路34と大径穴33と直角に連通する第二流路35が
形成され、第一流路34はサーボ弁側通路12に連通し
、第二流路35は反力機構側通路13に連通している。
In FIG. 1, 30 is a housing of the fluid restricting device 18, and the housing 30 is formed with a minimum diameter hole 31, a small diameter hole 32, and a large diameter hole 33 in series. Further, the housing 30 is formed with a first passage 34 that communicates at right angles with the minimum diameter hole 31 and a second passage 35 that communicates at right angles with the large diameter hole 33, and the first passage 34 communicates with the servo valve side passage 12. , the second passage 35 communicates with the reaction force mechanism side passage 13.

小径穴32にはカップ状で底部40aにオリフィス40
bを形成した絞り部材40が前記底部40aを最小径穴
31側に向けて嵌合されている。絞り部材40には底部
40aと直角に連続し、内部に一端が開口する空間40
dを形成した円筒部40Cが形成されている。大径穴3
3にはシートユニオン43がねじ込み固定され、このシ
ートユニオン43には絞り部材40の円筒部40cの内
周より少し径の小さい最小径部43aと絞り部材40と
同径で一端が絞り部材40に当接する小径部43bと大
径穴33と同径の大径部43cが連続して形成され、絞
り部材40の円筒部40cと最小径部43a間には第2
図にも示すように環状隙間50が形成され、大径穴33
と小径部43b間には円筒状の内部空間44が形成され
ている。前記円筒部40cの一端には第3図にも示すよ
うに環状隙間50と円筒状の内部空間44とが半径方向
に連通ずる連通路(スリット)51が形成され、この連
通路51は流体の流れを大きく絞らない程度の大きさが
良い。他の変形例として前記連通路51は丸穴であって
も良く、さらに連通路51はシートユニオン43の小径
部43bの一端に形成されたスリットであっても良い。
The small diameter hole 32 has a cup-shaped orifice 40 at the bottom 40a.
The aperture member 40 having the shape b is fitted with the bottom portion 40a facing the minimum diameter hole 31 side. The aperture member 40 has a space 40 which is continuous with the bottom part 40a at right angles and has one end open inside.
A cylindrical portion 40C having a shape d is formed. Large diameter hole 3
A seat union 43 is screwed and fixed to 3, and this seat union 43 has a minimum diameter part 43a that is slightly smaller in diameter than the inner circumference of the cylindrical part 40c of the aperture member 40, and a minimum diameter part 43a that has the same diameter as the aperture member 40 and has one end attached to the aperture member 40. A small-diameter portion 43b and a large-diameter portion 43c having the same diameter as the large-diameter hole 33 are continuously formed in contact with each other, and a second
As shown in the figure, an annular gap 50 is formed, and the large diameter hole 33
A cylindrical internal space 44 is formed between the small diameter portion 43b and the small diameter portion 43b. As shown in FIG. 3, a communication path (slit) 51 is formed at one end of the cylindrical portion 40c, through which the annular gap 50 and the cylindrical internal space 44 communicate in the radial direction. It is good to have a size that does not restrict the flow too much. As another modification, the communication path 51 may be a round hole, and furthermore, the communication path 51 may be a slit formed at one end of the small diameter portion 43b of the seat union 43.

またシートユニオン43には最小径部43aの連通路5
1に対応する位置で径の小さい(びれ部dが形成され、
最小径部43a側の一端には絞り部材40の底部40a
と離れた位置でこの底部40aと平行に衝突面52が形
成されている。
In addition, the seat union 43 has a communication path 5 at the minimum diameter portion 43a.
The diameter is small at the position corresponding to 1 (a fin d is formed,
A bottom portion 40a of the aperture member 40 is located at one end on the side of the minimum diameter portion 43a.
A collision surface 52 is formed parallel to this bottom portion 40a at a position apart from the bottom portion 40a.

次に上述した構成に基づいて作用について説明する。ハ
ンドルを操作してサーボ弁側通路12の流体の圧力が反
力機構側通路13より高くなると、サーボ弁側通路12
の流体の一部が連絡通路17を介して反力機構側通路1
3に流れる。この時流体は第一流路34.最小径穴31
.オリフィス4ob、空間40d、環状隙間50.連通
路51゜円筒状の内部空間44を介して第二流路35に
流れる。オリフィス40bと環状隙間5oで流体が圧縮
され、空間40dと円筒状の内部空間44で流体が膨張
し、流体の圧力が多段階にダウンする。
Next, the operation will be explained based on the above-described configuration. When the pressure of the fluid in the servo valve side passage 12 becomes higher than that of the reaction force mechanism side passage 13 by operating the handle, the servo valve side passage 12
A part of the fluid flows through the communication passage 17 to the reaction mechanism side passage 1.
It flows to 3. At this time, the fluid flows through the first flow path 34. Minimum diameter hole 31
.. Orifice 4ob, space 40d, annular gap 50. The communication path 51 flows into the second flow path 35 via the cylindrical internal space 44 . The fluid is compressed in the orifice 40b and the annular gap 5o, expands in the space 40d and the cylindrical internal space 44, and the pressure of the fluid decreases in multiple stages.

オリフィス40bによって流速が高まり、圧力が低下し
た流体は、衝突面52に衝突することにより圧力が回復
し、圧力が大きく低下してキャビテーションが発生しや
すくなるのを防ぐ。前記環状隙間50はオリフィス40
bに比較して流体のぬれ面積を大きくとることができ、
この流体のぬれ面積を大きくしたことにより背圧が低く
てもキャビテーションの発生を抑えることができる。
The fluid whose flow velocity is increased by the orifice 40b and whose pressure has decreased collides with the collision surface 52 to recover the pressure, thereby preventing the pressure from greatly decreasing and causing cavitation. The annular gap 50 is an orifice 40
Compared to b, the wetted area of the fluid can be larger,
By increasing the wetted area of the fluid, cavitation can be suppressed even when the back pressure is low.

〈発明の効果〉 以上述べたように本発明は、ハウジングに形成された小
径穴と大径穴にそれぞれカップ状の絞り部材とシートユ
ニオンを嵌合し、前記シートユニオンに、絞り部材の円
筒部とで環状隙間を形成する最小径部と、前記大径穴と
で円筒状の内部空間を形成する小径部と、大径穴に嵌合
される大径部を連続して形成し、さらにシートユニオン
の最小径穴側の一端に絞り部材の底部から離れた位置で
オリフィスからの流体が直角に衝突する衝突面を形成し
、絞り部材若しくはシートユニオンに環状隙間と円筒状
の内部空間とを連通ずる連通路を半径方向に形成した構
成であるので、前記衝突面によって流体の圧力を回復さ
せることができ、キャビテーションの発生を抑えること
ができる。また環状隙間によって流体のぬれ面積を大き
くしたことにより、キャビテーションの発生をおさえる
ことができる。この結果全体としてキャビテーションの
発生を抑えることができ、キャビテーションによる騒音
の発生を抑えることができる利点が得られる。
<Effects of the Invention> As described above, the present invention includes a cup-shaped aperture member and a seat union that are fitted into a small diameter hole and a large diameter hole formed in a housing, respectively, and a cylindrical portion of the aperture member that is fitted into the seat union. A minimum diameter portion forming an annular gap with the large diameter hole, a small diameter portion forming a cylindrical internal space with the large diameter hole, and a large diameter portion fitting into the large diameter hole are continuously formed, and the sheet A collision surface is formed at one end of the union on the side of the smallest diameter hole at a position away from the bottom of the throttle member, on which the fluid from the orifice collides at right angles, and the annular gap and the cylindrical internal space are connected to the throttle member or the seat union. Since the communication path is formed in the radial direction, the pressure of the fluid can be recovered by the collision surface, and the occurrence of cavitation can be suppressed. Further, by increasing the wetted area of the fluid with the annular gap, the occurrence of cavitation can be suppressed. As a result, it is possible to suppress the occurrence of cavitation as a whole, and it is possible to obtain the advantage that the generation of noise due to cavitation can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

゛図面は本発明の実施例を示すもので、第1図は流体絞
り装置の断面図、第2図は第1図において■−■線で断
面した図、第3図は第1図において■−■線で断面した
図、第4図は前記流体絞り装置を動力舵取装置に適用し
た図。 30・・・ハウジング、31・・・最小径穴、32・・
・小径穴、33・・・大径穴、40・・・絞り部材、4
0a・・・底部、40b・・・オリフィス、40c・・
・円筒部、40d・・・空間、43・・・シートユニオ
ン、43a・・・最小径部、43b・・・小径部、43
c・・・大径部、44・・・円筒状の内部空間、50・
・・環状隙間、51・・・連通路、52・・・衝突面。
゛The drawings show an embodiment of the present invention. Fig. 1 is a cross-sectional view of the fluid restricting device, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a cross-sectional view taken along the line -■ in Fig. A cross-sectional view taken along the line -■, and FIG. 4 is a diagram in which the fluid restricting device is applied to a power steering device. 30...Housing, 31...Minimum diameter hole, 32...
・Small diameter hole, 33...Large diameter hole, 40...Aperture member, 4
0a...bottom, 40b...orifice, 40c...
・Cylindrical part, 40d...Space, 43...Seat union, 43a...Minimum diameter part, 43b...Small diameter part, 43
c...Large diameter portion, 44...Cylindrical internal space, 50.
...Annular gap, 51...Communication path, 52...Collision surface.

Claims (1)

【特許請求の範囲】[Claims] (1)ハウジングにポンプに通じる最小径穴と小径穴と
流体機器に通じる大径穴を連続して形成し、円筒部と底
部とからなるカップ状で底部にオリフィスを形成した絞
り部材を前記底部を最小径穴側に向けて前記小径穴に嵌
合し、前記大径穴に嵌合されるシートユニオンに、絞り
部材の円筒部とで環状隙間を形成する最小径部と、前記
大径穴とで円筒状の内部空間を形成する小径部と、大径
穴に嵌合される大径部を連続して形成し、さらにシート
ユニオンの最小径部側の一端に絞り部材の底部から離れ
た位置でオリフィスからの流体が直角に衝突する衝突面
を形成し、絞り部材若しくはシートユニオンに環状隙間
と円筒状の内部空間とを連通する連通路を半径方向に形
成したことを特徴とする流体絞り装置。
(1) A minimum diameter hole, a small diameter hole communicating with the pump, and a large diameter hole communicating with the fluid equipment are formed in succession in the housing, and a throttle member having a cup shape consisting of a cylindrical part and a bottom part and an orifice formed in the bottom part is attached to the bottom part. is fitted into the small diameter hole with the cylindrical portion of the aperture member forming an annular gap, and the seat union is fitted into the large diameter hole with the smallest diameter portion facing the smallest diameter hole side, and the seat union is fitted into the large diameter hole. A small diameter part that forms a cylindrical internal space and a large diameter part that fits into the large diameter hole are continuously formed. A fluid restrictor characterized in that a collision surface is formed at which the fluid from the orifice collides at right angles at the position, and a communication path is formed in the restrictor member or the seat union in the radial direction to communicate the annular gap and the cylindrical internal space. Device.
JP62130961A 1987-05-27 1987-05-27 Fluid squeezing device Pending JPS63297170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130961A JPS63297170A (en) 1987-05-27 1987-05-27 Fluid squeezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130961A JPS63297170A (en) 1987-05-27 1987-05-27 Fluid squeezing device

Publications (1)

Publication Number Publication Date
JPS63297170A true JPS63297170A (en) 1988-12-05

Family

ID=15046676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130961A Pending JPS63297170A (en) 1987-05-27 1987-05-27 Fluid squeezing device

Country Status (1)

Country Link
JP (1) JPS63297170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299888A (en) * 2004-04-15 2005-10-27 Rubutec Kk Control unit and its assembling method
JP2009534582A (en) * 2006-04-25 2009-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel high pressure pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299888A (en) * 2004-04-15 2005-10-27 Rubutec Kk Control unit and its assembling method
JP2009534582A (en) * 2006-04-25 2009-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel high pressure pump

Similar Documents

Publication Publication Date Title
JPH08320074A (en) Valve boundary section structure for poppet valve
JPH02267076A (en) Open center flow rate controller with magnifying faculty of flow rate
US4712775A (en) Construction of control valve for air suspension
JPS63297170A (en) Fluid squeezing device
JPH02227372A (en) Torque generating steering device with load sensing capability
JPH11319637A (en) Fine bubble generating nozzle
JPH0337646B2 (en)
JPH11248033A (en) High-pressure-reducing regulating valve
JPH0781593A (en) Power steering device
JPS6030586B2 (en) control valve
JP3690839B2 (en) Pressure control device for flow control of negative control variable displacement pump hydraulic circuit
JPH0749797B2 (en) Hydraulic pump
JPS5828144B2 (en) Special piston pump
JPH0645106Y2 (en) Valve device
JPS626310Y2 (en)
JP4641948B2 (en) Damper valve
JPH03109172A (en) Reaction force controller for power steering device
US2023043A (en) Homogenizer
JP3869688B2 (en) Flow control valve
JPH0447502Y2 (en)
JP2582249Y2 (en) Hydraulic power steering device
JP2001027380A (en) Hose attaching metal fitting changeable in flow path section
JP2002031437A (en) Expansion valve
WO2023104542A1 (en) Shock-valve
JPH11190302A (en) Accumulator