JPS63296857A - Separation of fine particles - Google Patents

Separation of fine particles

Info

Publication number
JPS63296857A
JPS63296857A JP13133287A JP13133287A JPS63296857A JP S63296857 A JPS63296857 A JP S63296857A JP 13133287 A JP13133287 A JP 13133287A JP 13133287 A JP13133287 A JP 13133287A JP S63296857 A JPS63296857 A JP S63296857A
Authority
JP
Japan
Prior art keywords
air
powder
cylindrical container
fine particles
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13133287A
Other languages
Japanese (ja)
Other versions
JPH07121373B2 (en
Inventor
Yuji Tai
田井 雄二
Shinichi Fukutome
信一 福留
Kazuo Nagaai
永合 一雄
Masanobu Nakamura
中村 昌允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP13133287A priority Critical patent/JPH07121373B2/en
Publication of JPS63296857A publication Critical patent/JPS63296857A/en
Publication of JPH07121373B2 publication Critical patent/JPH07121373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate fine particles from a powder, by a method wherein the fine particle-containing powder is guided into a cylindrical container while accompanied by the first air steam forming a whirling stream and the second air stream forming a whirling stream in the direction reverse to that of the first air steam is introduced into said container. CONSTITUTION:A fine particle-containing powder being an object to be treated is guided into a cylindrical container from the first air introducing port 15 while accompanied by air and, at the same time, only air is introduced into said container from the second air introducing port 19. As a result, the fine particles in the powder are discharged from an air discharge port 11 while accompanied by air while the large particle powder from which the fine particles are removed falls in a powder recovery port 21. The first air stream 31 and second air stream 33 carrying the powder are reverse in a whirling direction and collide with the cylindrical container 17 and the powder accompanied by the first air stream is dispersed in the cylindrical container 17.

Description

【発明の詳細な説明】 投批分国 本発明は、微粒子を含む粉体から、微粒子を効率よく連
続的に分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently and continuously separating fine particles from powder containing fine particles.

災米技権 従来から、粉体中の微粒子を連続的に分離する方法とし
て、数多くの装置が考案されており、これらを大別する
とスクリーン式分級器と風力式分級器に分類することが
できる。これら多くの分級器はそれぞれの特徴を有し、
固有の分離効率を備えているものの、必ずしもすへての
条件を満足させるものではなし1゜ 一般的に言われている個々の分級器の特性を述べれば次
の通りである。
A large number of devices have been devised to continuously separate fine particles in powder, and these can be broadly classified into screen classifiers and wind classifiers. . These many classifiers each have their own characteristics,
Although they have a unique separation efficiency, they do not necessarily satisfy all conditions.1 The characteristics of individual classifiers that are generally considered are as follows.

スクリーン分級器は、能力の増加に伴ってスクリーン面
積を広くする必要があり、設備の大型化を招く。また、
長期間使用すること1′−より、粉体粒子同志の凝集か
らスクリーンの目詰まりが発生し、分離効率が低下して
しま)N、特[こイ寸着性粉体を処理する場合にこの傾
向力1著しし1゜風力式分級器は、重力・慣性力を利用
したものと、遠心力を利用したものに分tすることカス
できる。
As the capacity of the screen classifier increases, it is necessary to increase the screen area, which leads to an increase in the size of the equipment. Also,
After long-term use, the screen will become clogged due to agglomeration of powder particles, reducing separation efficiency. Tendency force: 1° to 1° Wind classifiers can be divided into those that use gravity and inertial force, and those that use centrifugal force.

重力・慣性力を利用したものは、処理能力を大きくしよ
うとすると装置の大型化力〜不可欠となり、分離効率も
あまり良好な値1土望めなし)。
For those that utilize gravity and inertia, increasing the size of the equipment is essential to increasing processing capacity, and the separation efficiency cannot be expected to be very good.

また、付着性粉体を処理する場合番こむよ、装置内部へ
の付着という問題も生じる。
Furthermore, when processing adhesive powder, the problem of adhesion to the inside of the device often arises.

遠心力を利用したものは、分離限界粒子径が小さく汎用
性に欠けるという欠点をもっている。
Methods that utilize centrifugal force have the drawback of having a small separation limit particle size and lack of versatility.

、このよ、うなことから、実際のプロセス、では装置を
頻繁に停止して清掃を行なうなど、多少の不便さを我慢
して使用しでいるのが現状である。
Because of this, in actual processes, the current situation is that the equipment has to be stopped frequently for cleaning, which means some inconvenience is put up with it.

発明の目的 本発明は、粉体から微粒子を効率良く連続的に分離する
ことを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to efficiently and continuously separate fine particles from powder.

発明の構成 本発明の微粒子の分離方法は、微粒子を含む粉体を、円
筒容器内で旋回流を形成する第’1’ m空気流に同伴
させて該円筒容器内に導くとと”もに、この第1の空気
磁を逆方向の旋回流を形成する第2の空気流を該円筒器
内に導入して該円筒容器内で分離し、該円筒容器ゆ1ら
排出される空気流に粉体中の微粒子を同伴させることを
特徴とする。
Structure of the Invention The method for separating fine particles of the present invention involves introducing a powder containing fine particles into a cylindrical container by entraining it into a '1' m-th air flow that forms a swirling flow within the cylindrical container. , a second air flow forming a swirling flow in the opposite direction of the first air magnet is introduced into the cylindrical container and separated within the cylindrical container, and the air flow discharged from the cylindrical container is It is characterized by entraining fine particles in the powder.

以下、添付図面に沿って本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明に用いられる装置を示す正面図である。FIG. 1 is a front view showing an apparatus used in the present invention.

円筒容器17の側壁の上部方向には第1の空気導入口1
5が、また、この下部には第2、の空□気導入口19が
設けらねでいる。円筒容器の下端部は粉体回収口21を
形成し、粉体回収槽23辷蓮設している。□」方、上部
は空気排出口11を□形成し、誘引ファン(図示せず)
などにより、空気が外部に排出されるようになっている
。円筒容器17は、テーパ部13を形感して縮径し、空
気i1理□対−である微粒子を含む粉体を、空気に゛ 
同イ♀さ”せて第1の空気導入口15から円筒容器内に
導くと同時に、第2の空気導入目方1ら皐気の□みを導
入すると、粉体中の微粒子は空気に同伴されて空気排出
口IIから排出され、一方、微i子が除かれた大粒の粉
体が粉体回収口21に落下する。
A first air inlet 1 is provided in the upper direction of the side wall of the cylindrical container 17.
5, and a second air inlet 19 is provided at the bottom thereof. A powder recovery port 21 is formed at the lower end of the cylindrical container, and a powder recovery tank 23 is installed therein. □" side, the upper part forms an air outlet 11 □, and an induction fan (not shown)
Air is exhausted to the outside. The cylindrical container 17 reduces its diameter by sensing the tapered portion 13, and transfers powder containing fine particles to the air.
When the air is introduced into the cylindrical container from the first air introduction port 15 in the same way, and at the same time, air is introduced from the second air introduction port 1, the fine particles in the powder are entrained in the air. The large particles of powder from which the particles have been removed fall into the powder recovery port 21.

第2図は、円筒容器内における空気の流れの状態を示す
説明図である。粉体を同伴する第1の空気流31と、第
2の空気流33とは旋回方向が逆であり、円筒容器17
内で衝突し、第1の空気流に同伴された粉体が円筒容器
内で分散する。
FIG. 2 is an explanatory diagram showing the state of air flow within the cylindrical container. The first air flow 31 entraining the powder and the second air flow 33 have opposite swirling directions, and the cylindrical container 17
The powder collided within and entrained in the first air flow is dispersed within the cylindrical container.

このとき1円筒容器17の上部および下部付近では、そ
れぞれ第1および第2の空気流31.33によりその方
向が保たれているが、中央部では逆方向2つの旋回流の
力が拮抗している。
At this time, near the top and bottom of the first cylindrical container 17, the direction is maintained by the first and second air flows 31 and 33, respectively, but in the center, the forces of the two opposite swirling flows are counterbalanced. There is.

第1の空気と共に供給された粉体は、第1の空気流入口
15から円筒容器17内に入った後、粒径等により円筒
内壁面上の粒子の落下・移動軌跡が異なり、各々の粒子
が第2の空気旋回流と衝突する場所が異なる。この衝突
の結果、円筒容器17の内部に同伴された粉体粒子のう
ち、比較的小さな粒子は、円筒内下部に分散し、上昇気
流により排出される。また、比較的大きな粒子は、円筒
内下部に分散し、すみやかに捕集される。
After the powder supplied together with the first air enters the cylindrical container 17 from the first air inlet 15, the falling and moving trajectory of the particles on the inner wall surface of the cylinder differs depending on the particle size, etc., and each particle The location where the air collides with the second swirling air flow is different. As a result of this collision, relatively small particles among the powder particles entrained inside the cylindrical container 17 are dispersed in the lower part of the cylinder and are discharged by an upward air current. In addition, relatively large particles are dispersed in the lower part of the cylinder and quickly collected.

円筒容器17内に供給された第1の空気と第2の空気と
は排出日月より排出され、円筒容器17内には全体とし
て上昇気流が発生する。上昇気流の速度は、円筒容器1
7の下部では第2の空気流だけから算出される速度とな
り、一方、円筒容器17の上部では第1の空気流と第2
の空気流とを加えた風量により算出される速度となる。
The first air and the second air supplied into the cylindrical container 17 are discharged from the discharge date, and an upward air current is generated within the cylindrical container 17 as a whole. The velocity of the updraft is the cylindrical container 1
7, the velocity is calculated only from the second air flow, while in the upper part of the cylindrical container 17, the velocity is calculated from the first air flow and the second air flow.
The speed is calculated by adding the air flow and the air volume.

このように円筒容器17内部には、分散された粉体の粒
子径分布と、上昇気流の速度分布とが存在する。この結
果、円筒容器内分布の粉体の分散状態と上昇気流変化と
が相剰的に作用し、簡便かつ効率的に分級、すなわち粉
体中の微粒子を除去することができる。そのため、従来
の重力・慣性力を利用する風力分級器の如く大規模なも
のとはならず、その能力に較べて、非常に小型化が可能
である。また、サイクロンに代表される従来の遠心力型
風力分級と異なり、比較的大きな粒子径を分級基準とし
て採用することができる。
As described above, inside the cylindrical container 17, there exists a particle size distribution of the dispersed powder and a velocity distribution of the upward air current. As a result, the dispersion state of the powder distributed within the cylindrical container and the change in the upward air flow interact, and it is possible to easily and efficiently classify, that is, remove fine particles in the powder. Therefore, it is not as large-scale as conventional wind classifiers that utilize gravity and inertial force, and can be made extremely compact compared to its capabilities. Furthermore, unlike conventional centrifugal force-type wind classification represented by cyclones, relatively large particle diameters can be used as classification criteria.

また、円筒容器の構造や運転条件を考慮することにより
、分離効率をよりm−改善することができる。まず、第
1の空気流と第2の空気流との風量の比率は0.8〜1
.2程度が好ましい。また、第1の空気流入口の下端は
、第2め空気流入口の上端より上にあることが望ましい
Furthermore, by considering the structure and operating conditions of the cylindrical container, the separation efficiency can be further improved. First, the ratio of air volume between the first air flow and the second air flow is 0.8 to 1.
.. About 2 is preferable. Further, it is desirable that the lower end of the first air inlet is higher than the upper end of the second air inlet.

第1の空気流と第2の空気流の円筒容器内への流入角度
は、円筒断面の接線方向が望ましいが、旋回流を生じせ
しめることができれば必ずしもその必要はない。
The inflow angle of the first air flow and the second air flow into the cylindrical container is preferably tangential to the cylindrical cross section, but this is not necessary as long as a swirling flow can be generated.

また、第1の空気導入口】5と第2の空気導入口19の
円筒容器17への取付は位置は、生じる2つの旋回流が
逆方向になるような位置関係であれば、どのような方向
からでも円筒容器への取付けが可能である。円筒容器I
7の上部と下部はテーパ状とすることが望ましい。上部
テーパ角(第2図中α)は、30度以上、より好ましく
は45度以」二が好適であり、これにより分離効率が向
上する。また、下部テーパ角は粉体粒子が堆積しない程
度とすることが望ましい。
The first air inlet 5 and the second air inlet 19 can be attached to the cylindrical container 17 in any position as long as the two swirling flows are in opposite directions. It can be attached to a cylindrical container even from any direction. Cylindrical container I
It is desirable that the upper and lower parts of 7 are tapered. The upper taper angle (α in FIG. 2) is preferably 30 degrees or more, more preferably 45 degrees or more, which improves the separation efficiency. Further, it is desirable that the lower taper angle is set to such an extent that powder particles do not accumulate.

分離する限界粒子径の設定は、風量、円筒径等を設定し
て調製する。
The limit particle size for separation is adjusted by setting the air volume, cylinder diameter, etc.

本発明方法は、限界粒子径の設定範囲を広くとることが
できるので、サイクロンと比べて大きな限界粒子径とす
ることもでき、汎用性が大きい。
Since the method of the present invention can set the limit particle size over a wide range, it can also set a limit particle size larger than that of a cyclone, and has great versatility.

また、スクリーン式分級器や重力・慣性力型風力式分級
器と異なり、処理中における粉体同志の凝集の問題が少
ないため、付着性を有する粉体の処理も容易であり、例
えば、界面活性剤を含む洗剤粒子の分級に利用すること
ができる。
In addition, unlike screen classifiers and gravity/inertial force type wind classifiers, there is less problem of agglomeration of powders during treatment, so it is easy to treat powders with adhesive properties. It can be used to classify detergent particles containing agents.

発明の効果 本発明によれば、粉体中の微粒子を大きな分離効率で、
長時間連続して分離することができ、また、分離できる
限界粒子径の設定範囲が広い。
Effects of the Invention According to the present invention, fine particles in powder can be separated with high efficiency.
Separation can be performed continuously for a long period of time, and there is a wide setting range for the limit particle size that can be separated.

使用する装置内には駆動部がなく、また、比較的小型の
装置で大量処理が可能であり、能力に見合った連続化装
置が容易に実現できる。
There is no drive unit in the device used, and a relatively small device can process a large amount, making it easy to realize a continuous device that matches its capacity.

実施例 洗剤原料に捏和したのち解砕して得た顆粒状洗剤中の微
粒子を除去した。
The fine particles in the granular detergent obtained by kneading it into the detergent raw material of the example and then crushing it were removed.

下記組成物をニーダで捏和した。The following composition was kneaded using a kneader.

その他の添加剤              3重量部
得られた緊密な捏和物を2crn角のペレッ1〜(水分
含量12wt%)とした。
Other additives: 3 parts by weight The obtained tight kneaded product was made into 2 crn square pellets (moisture content: 12 wt%).

このペレット94重量部と炭酸ナトリウム(解砕助剤)
3重量部とを、解砕機(岡田精工製、スピードミルND
−30型)に定量フィーダーした。解砕機は、径15印
の解砕刃をクロス4段で3000rpmにて回転し、ス
クリーンは1.5 +nmφ、開孔率20%のパンチン
グメタルを用いた。
94 parts by weight of this pellet and sodium carbonate (crushing aid)
3 parts by weight, using a crusher (manufactured by Okada Seiko, Speed Mill ND)
-30 type) with a quantitative feeder. The crusher rotated crushing blades with a diameter of 15 marks in 4 stages at 3000 rpm, and the screen used was a punching metal with a diameter of 1.5 + nm and an opening rate of 20%.

得られた解砕顆粒品の性状を下記に示す。The properties of the obtained crushed granules are shown below.

嵩密度        0.78/(資)真密度   
    約1.4g/cc平均粒径       78
0μm 粒度          500 μm以上 =78%
250〜500μm=14% 150〜250μm:5% 150μm以上 = 3% この解砕顆粒品を用いて、第1図に示した形状の円筒容
器を使用して微粒子の分離試験を行ない、その結果を表
−1に示した。ここで円筒容器の直径はすべて0.15
mであり、また、回収率および捕集効率は以下のように
して算出した。
Bulk density 0.78/true density
Approximately 1.4g/cc average particle size 78
0 μm Particle size 500 μm or more = 78%
250-500 μm = 14% 150-250 μm: 5% 150 μm or more = 3% Using this crushed granule product, a fine particle separation test was conducted using a cylindrical container with the shape shown in Figure 1, and the results are shown below. It is shown in Table-1. Here, the diameter of all cylindrical containers is 0.15
m, and the recovery rate and collection efficiency were calculated as follows.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で用いられる装置の実施例を示す正面
図である。 第2図1よ、円筒容器内の空気流の状況を示す説明図1
である。
FIG. 1 is a front view showing an embodiment of the apparatus used in the present invention. Figure 2 1. Explanatory diagram 1 showing the state of air flow inside the cylindrical container.
It is.

Claims (1)

【特許請求の範囲】[Claims] 1、微粒子を含む粉体を、円筒容器内で旋回流を形成す
る第1の空気流に同伴させて該円筒容器内に導くととも
に、この第1の空気流と逆方向の旋回流を形成する第2
の空気流を該円筒器内に導入して該粉体を該円筒容器内
で分散し、該円筒容器から排出される空気流に粉体中の
微粒子を同伴させることを特徴とする微粒子の分離方法
1. Powder containing fine particles is guided into the cylindrical container along with a first air flow that forms a swirling flow within the cylindrical container, and a swirling flow is formed in the opposite direction to this first air flow. Second
separation of fine particles, characterized in that the powder is dispersed in the cylindrical container by introducing an air flow into the cylindrical container, and the fine particles in the powder are entrained in the air flow discharged from the cylindrical container. Method.
JP13133287A 1987-05-29 1987-05-29 Method of separating fine particles Expired - Fee Related JPH07121373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13133287A JPH07121373B2 (en) 1987-05-29 1987-05-29 Method of separating fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13133287A JPH07121373B2 (en) 1987-05-29 1987-05-29 Method of separating fine particles

Publications (2)

Publication Number Publication Date
JPS63296857A true JPS63296857A (en) 1988-12-02
JPH07121373B2 JPH07121373B2 (en) 1995-12-25

Family

ID=15055469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13133287A Expired - Fee Related JPH07121373B2 (en) 1987-05-29 1987-05-29 Method of separating fine particles

Country Status (1)

Country Link
JP (1) JPH07121373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149293A1 (en) * 2012-04-04 2013-10-10 Technological Resources Pty. Limited Separating mined material
CN112439558A (en) * 2020-12-03 2021-03-05 宁波广新纳米材料有限公司 Superfine powder gas-phase classification equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149293A1 (en) * 2012-04-04 2013-10-10 Technological Resources Pty. Limited Separating mined material
CN112439558A (en) * 2020-12-03 2021-03-05 宁波广新纳米材料有限公司 Superfine powder gas-phase classification equipment

Also Published As

Publication number Publication date
JPH07121373B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US3720314A (en) Classifier for fine solids
JP6526665B2 (en) Purification of metallurgical waste fine particles Advanced classification equipment and method of metallurgical waste fine particles purification
JPH0258989B2 (en)
US4715951A (en) Apparatus for separating granulate material
CN210187391U (en) Air classification miropowder crushing apparatus
JPH08505834A (en) Fine particle classifier
JPS63296857A (en) Separation of fine particles
JP2002361179A (en) Classifier for glass powder
JP4383073B2 (en) Cyclone type air flow separation device
JP3518751B2 (en) Airflow classifier
CN211707116U (en) Cyclone structure particle material rotor-free movable piece airflow classification equipment
JP2697015B2 (en) Granule classifier
JPH091077A (en) Method for separating fine particle
RU2132242C1 (en) Method and installation for aerodynamically separating metal powders
JP2005288270A (en) Crushing and classifying apparatus
JP2008272627A (en) Powder classification apparatus
CN205701111U (en) A kind of cyclone separator with plate
RU2193928C2 (en) Gravitational method and apparatus for classifying powder materials
JPH07328545A (en) Classifier for granule
JPH0351315Y2 (en)
CN216605538U (en) Ultramicro airflow crusher
CN216755698U (en) Dust collecting and recycling device for material bin
JPS5839824Y2 (en) Classifier
JPH06226207A (en) Dry classifier
JP3091289B2 (en) Collision type air crusher

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees