JPS63296700A - Method for controlling concentration of culture fluid - Google Patents

Method for controlling concentration of culture fluid

Info

Publication number
JPS63296700A
JPS63296700A JP13125387A JP13125387A JPS63296700A JP S63296700 A JPS63296700 A JP S63296700A JP 13125387 A JP13125387 A JP 13125387A JP 13125387 A JP13125387 A JP 13125387A JP S63296700 A JPS63296700 A JP S63296700A
Authority
JP
Japan
Prior art keywords
concentration
component
dialyzer
culture
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13125387A
Other languages
Japanese (ja)
Inventor
Motohiko Hikima
引馬 基彦
Atsuo Shiraishi
淳雄 白石
Yumi Watabe
由美 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Original Assignee
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI filed Critical SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority to JP13125387A priority Critical patent/JPS63296700A/en
Publication of JPS63296700A publication Critical patent/JPS63296700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enable accurate measurement without requiring calibration of a concentration of a component which is an object for measurement in a culture fluid during cultivation, by previously adding the component which is the object for measurement in a control target concentration to a dialytic solution fed to a dialyzer. CONSTITUTION:A dialytic solution is fed to a dialyzer 4 in a cultivation tank 1 and the concentration of a component which is an object for measurement contained in a dialyzate discharged from the dialyzer is measured to control the concentration of the component in the culture fluid on the basis of the measured results. In the process, the component in a control target concentration is previously added into the dialytic solution. The osmotic pressure of the dialytic solution is preferably adjusted to almost the same value as that of the culture fluid. For that purpose, e.g. sodium chloride or potassium chloride, is added.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 発酵工業においては、一般に培養液の基質等の濃度が培
養の間じゅう制御されている。本発明はこの濃度制御方
法を改良するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] In the fermentation industry, the concentration of substrates, etc. in the culture solution is generally controlled throughout the culture. The present invention improves this concentration control method.

〔従来の技術〕[Conventional technology]

培養液の基質等の濃度の測定には最近は特異性が高いこ
と、測定が簡単であること等から酵素電極に代表される
バイオセンサーが広く利用されるようになってきている
。このバイオセンサーは、培養槽に直接挿入して測定し
ようとすると、培養槽を使用前に蒸気殺菌する際の熱(
120°C)によって失活する。また測定に適するpH
域が培養液と一致しなかったりするため、培養液の一部
を培養槽から引抜いて希釈、pH調整等を行ってから測
定に供していた。ところが培養液の引抜き配管にスライ
ムが付着して詰ったり、通気撹拌の気泡によるトラブル
が発生したため透析器を培養槽内に設けて透析膜を通し
て測定対象成分を取出す方法が開発された(D、W、Z
abriskie、 A、E、Humphrey、 B
eotech。
Recently, biosensors such as enzyme electrodes have been widely used to measure the concentration of substrates and the like in culture fluids due to their high specificity and ease of measurement. If you attempt to insert this biosensor directly into a culture tank for measurement, it will be difficult to measure the heat generated by steam sterilizing the culture tank before use.
It is inactivated by 120°C). Also, the pH suitable for measurement
Since the area may not match the culture solution, a portion of the culture solution was extracted from the culture tank, diluted, pH adjusted, etc., and then used for measurement. However, troubles such as slime adhering to the piping for drawing out the culture solution and clogging caused by air bubbles during aeration and agitation occurred, so a method was developed in which a dialyzer was installed inside the culture tank and the components to be measured were extracted through the dialysis membrane (D, W ,Z
abriskie, A.E., Humphrey, B.
eotech.

Bioeng、20.1295(1978))。Bioeng, 20.1295 (1978)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

透析を利用する方法においては透析率すなわち透析器か
ら流出してくる透析液に含まれている測定対象成分の濃
度と培養液の濃度との比が一定であるということを前提
にしている。ところが、この透析による方法は測定対象
成分の透析率が培養時の通気撹拌条件や透析膜の汚染の
影響を受けて変化するという問題があった。そこで前記
影響を排除するために透析膜面積を太き(したりあるい
は透析用液を透析器に循環して充分に透析させる方法が
考えられたが、これらは透析器が大きくなりすぎたり測
定に時間がかかりすぎたりして実用的でなかった。その
結果、培養液を別途抜き出してその濃度を測定しこれに
基づいて測定系を校正する方法が採用されているが、こ
の方法は校正の頻度が多いところから煩瑣であった。
The method using dialysis is based on the premise that the dialysis rate, that is, the ratio between the concentration of the component to be measured contained in the dialysate flowing out of the dialyzer and the concentration of the culture solution, is constant. However, this dialysis method has a problem in that the dialysis rate of the component to be measured changes depending on the aeration and stirring conditions during culture and the contamination of the dialysis membrane. Therefore, in order to eliminate the above-mentioned influence, methods were considered such as increasing the area of the dialysis membrane or circulating the dialysis fluid through the dialyzer to ensure sufficient dialysis. This was not practical as it took too much time.As a result, a method has been adopted in which the culture solution is extracted separately, its concentration is measured, and the measurement system is calibrated based on this, but this method does not require frequent calibration. It was troublesome because there were a lot of things.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような問題点を解決するべく種々の
検討の結果、透析器に送る透析用液に予め測定対象成分
を制御目標濃度で添加しておくことによって、この目的
を達成することができた。
As a result of various studies to solve these problems, the present inventors achieved this objective by adding the component to be measured at a controlled target concentration in advance to the dialysis fluid sent to the dialyzer. I was able to do that.

すなわち、本発明は、培養槽に設けられた透析器に透析
用液を送り、該透析器から流出してくる透析液に含まれ
ている測定対象成分の濃度を測定しその結果に基づいて
培養液の該成分の濃度を制御する方法において、前記透
析用液に制御目標濃度の当該測定対象成分を予め添加し
ておくことを特徴とする培養濃度制御方法に関するもの
である。
That is, the present invention sends a dialysis solution to a dialyzer installed in a culture tank, measures the concentration of a component to be measured contained in the dialysate flowing out from the dialyzer, and performs culture based on the results. The present invention relates to a culture concentration control method for controlling the concentration of the component in a solution, characterized in that the component to be measured at a control target concentration is added in advance to the dialysis fluid.

透析器を設ける培養槽の種類、形状、サイズ等が特に制
限されないことはいうまでもない。透析器は培養槽内に
直接設置してもよく、また配管を介して培養槽外に設置
してもよい。透析器も通常のものでよく、透析膜も測定
対象成分等に応じて適当なものが選択される。
Needless to say, there are no particular restrictions on the type, shape, size, etc. of the culture tank in which the dialyzer is installed. The dialyzer may be installed directly within the culture tank, or may be installed outside the culture tank via piping. A normal dialyzer may be used, and an appropriate dialysis membrane is selected depending on the component to be measured.

測定対象成分は通常は基質であり、例えばグルコース、
シュークロース、その他の糖類、メタノール、エタノー
ル等のアルコール類、有機酸類などである。しかしなが
ら、本発明の方法はこれらに限定されるものではなく、
基質以外のものであっても適用可能である。
The component to be measured is usually a substrate, such as glucose,
These include sucrose, other sugars, alcohols such as methanol and ethanol, and organic acids. However, the method of the present invention is not limited to these,
It is also applicable to materials other than substrates.

基質濃度制御の特に必要な例として次のような場合があ
る。まず第一は、基質濃度がある一定値を越えると微生
物の増殖が阻害される場合である。
Examples of cases in which substrate concentration control is particularly necessary include the following. The first case is when the growth of microorganisms is inhibited when the substrate concentration exceeds a certain value.

基質濃度が低すぎると増殖速度が低下してしまうので、
基質濃度を至適値に保って培養を順調に進行させる必要
がある。
If the substrate concentration is too low, the growth rate will decrease, so
It is necessary to keep the substrate concentration at an optimal value to ensure smooth cultivation.

次に、基質濃度が高くなりすぎると目的物の生産効率が
低下したり副生物が生成する場合である。
Next, if the substrate concentration becomes too high, the production efficiency of the target product decreases or by-products are generated.

基質濃度が低下すると目的物の生産速度が低下するので
やはり基質濃度を至適値に制御する必要がある。本発明
の方法はこれらの場合に特に有効である。
If the substrate concentration decreases, the production rate of the target product decreases, so it is necessary to control the substrate concentration to an optimal value. The method of the present invention is particularly effective in these cases.

本発明の方法は透析器に送る透析用液に測定対象成分を
予め制御目標濃度で添加しておくところに特徴がある。
The method of the present invention is characterized in that the component to be measured is added in advance to the dialysis fluid sent to the dialyzer at a controlled target concentration.

この濃度の許容範囲は濃度制御許容範囲等に応じて定ま
る。
The allowable range of this concentration is determined according to the allowable range of concentration control and the like.

透析用液は浸透圧が培養液の浸透圧と同じになるように
しておくことが好ましく、そのために塩類、例えば塩化
ナトリウム、塩化カリウム等を添加しておくことが好ま
しい。この塩類の種類は特に制限されるものではなく、
有機酸の塩であってもよい。また、測定対象成分以外の
培地成分も透析用液に培地と同一組成で添加しておくこ
とも好ましい。透析用液は測定の際にのみ透析器に送っ
てもよいが、通常は常時送液しておく。
It is preferable that the dialysis solution has the same osmotic pressure as that of the culture solution, and for this purpose, salts such as sodium chloride, potassium chloride, etc. are preferably added. The type of salts is not particularly limited;
It may also be a salt of an organic acid. It is also preferable to add culture medium components other than the measurement target components to the dialysis solution in the same composition as the culture medium. Although the dialysis fluid may be sent to the dialyzer only during measurement, it is normally sent constantly.

透析器から流出してくる透析液の濃度測定手段は公知の
方法によればよく、測定対象成分等に応じて選択される
。測定対象成分が基質の場合には一般に酵素電極、微生
物電極等のバイオセンサーが好ましく使用されるが、そ
のほか、ガスクロマトグラフィー、カラムクロマトグラ
フィー、比色法などを利用することもできる。
The means for measuring the concentration of the dialysate flowing out from the dialyzer may be any known method, and is selected depending on the component to be measured. When the component to be measured is a substrate, biosensors such as enzyme electrodes and microbial electrodes are generally preferably used, but other methods such as gas chromatography, column chromatography, and colorimetry can also be used.

本発明の方法においては透析液の測定対象成分濃度を中
心として培養液濃度との隔離度が測定され、それに応じ
て培養液の該成分の濃度制御が行われる。測定対象成分
が基質等の場合には濃度が過剰であればその供給を停止
し、−力不足していれば供給する。測定対象成分が生産
物等の場合にはその濃度が過剰の場合には、イオン交換
膜、透析器によって培養液から取り出されるのを待ち、
一方、濃度が低ければ生産を促進する手段が講じられる
。従って、透析液の測定対象成分を測定するセンサーは
上記のコントロール手段、例えば供給弁等に指令を送れ
るようにしておくことが好ましい。
In the method of the present invention, the degree of isolation between the concentration of the component to be measured in the dialysate and the concentration of the culture solution is measured, and the concentration of the component in the culture solution is controlled accordingly. If the component to be measured is a substrate, the supply is stopped if the concentration is excessive, and the supply is stopped if the concentration is insufficient. If the component to be measured is a product, etc., and its concentration is excessive, wait for it to be removed from the culture solution using an ion exchange membrane or dialyzer.
On the other hand, if the concentration is low, measures can be taken to promote production. Therefore, it is preferable that the sensor for measuring the component to be measured in the dialysate is capable of sending commands to the above-mentioned control means, such as the supply valve.

本発明の方法は培養液の生成物、副生物の制御、さらに
は固定化酵素等を利用したバイオリアクターの原料成分
濃度の制御等にも利用しうる。
The method of the present invention can be used to control the products and by-products of the culture solution, and also to control the concentration of raw material components in bioreactors using immobilized enzymes and the like.

〔作用〕[Effect]

本発明の方法においては、透析器に送られる透析用液の
測定対象成分濃度を中心として培養液濃度のそれに対す
る隔離度が測定される。すなわち制御目標濃度(透析用
液の測定対象成分濃度)をCo、透析器から流出してく
る透析液の測定対象成分をCi、とすると、もし培養液
の測定対象成分濃度のほうが高ければ培養液から透析膜
を通って当該成分が透析用液に拡散してくるのでCi 
> Coとなり、逆の場合にはCi<Coとなる。但し
、この関係は厳密には浸透圧や他の成分の濃度も受ける
ので、これらも一致させておくことが好ましい。
In the method of the present invention, the degree of isolation of the concentration of the culture fluid relative to the concentration of the component to be measured in the dialysate fluid sent to the dialyzer is measured. In other words, if the control target concentration (the concentration of the component to be measured in the dialysis fluid) is Co, and the component to be measured in the dialysate flowing out from the dialyzer is Ci, then if the concentration of the component to be measured in the culture fluid is higher, the culture fluid Since the component diffuses into the dialysis solution through the dialysis membrane, Ci
>Co, and in the opposite case, Ci<Co. However, strictly speaking, this relationship also depends on the osmotic pressure and the concentration of other components, so it is preferable that these also match.

〔実施例〕〔Example〕

第1図に示すような装置を用いた、撹拌器2及び通気配
管3を有するガラス製の11ジャーファーメンタ−1の
内部に透析器4が設けられている。
A dialyzer 4 is provided inside an 11-jar fermentor 1 made of glass and having a stirrer 2 and a ventilation pipe 3, using an apparatus as shown in FIG.

該透析器には膜厚17μm、径2IIn、長さ7cmの
アセチルセルロース膜を透析膜として装着されている。
The dialyzer is equipped with an acetylcellulose membrane having a thickness of 17 μm, a diameter of 2 IIn, and a length of 7 cm as a dialysis membrane.

この透析器4には定量ポンプ5により透析用液が一定の
流速で連続供給され、透析器4から流出した透析液は切
換弁9を介してアルコールオキシダーゼを用いた既存の
酵素電極6に送られ、そこで測定対象成分の濃度が測定
されてから廃棄される。切換弁9は、測定時間ごとに作
動し、通常は酵素電極6を通らないで廃棄されている。
Dialysis fluid is continuously supplied to this dialyzer 4 at a constant flow rate by a metering pump 5, and the dialysate flowing out from the dialyzer 4 is sent via a switching valve 9 to an existing enzyme electrode 6 that uses alcohol oxidase. There, the concentration of the component to be measured is measured and then discarded. The switching valve 9 is activated at each measurement time, and the enzyme electrode 6 is normally discarded without passing through it.

酵素電極6の信号は制御装置7に入れられ、その指令に
より基質溶液投入配管の弁8が開閉するようになってい
る。
A signal from the enzyme electrode 6 is input to a control device 7, and a valve 8 of a substrate solution injection pipe is opened and closed in accordance with the command.

このような装置を用い、培養槽1には下記組成でメタノ
ールを種々の濃度で含む培地を張り込むとともに透析器
4にもこの培地と同じ組成でメタノール濃度が0.7%
のものを透析用液として流した。
Using such an apparatus, the culture tank 1 is filled with a medium containing methanol at various concentrations with the following composition, and the dialyzer 4 is filled with a medium containing the same composition as this medium with a methanol concentration of 0.7%.
was used as the dialysis fluid.

透析器4から流出する透析液のメタノール濃度を前記酵
素電極6によって測定した結果を第2図に示す。同図に
示されているように培地のメタノール濃度が0.7%を
越えると透析器から流出する透析液のメタノール濃度も
0.7%を越え、逆に0.7%未満のときは、この透析
液の濃度も0.7%になる。通気撹拌条件に及び透析膜
の汚染度の進行したものについて種り測定したのが同様
の関係が得られた。
FIG. 2 shows the results of measuring the methanol concentration of the dialysate flowing out from the dialyzer 4 using the enzyme electrode 6. As shown in the figure, when the methanol concentration of the culture medium exceeds 0.7%, the methanol concentration of the dialysate flowing out from the dialyzer also exceeds 0.7%, and conversely, when it is less than 0.7%, The concentration of this dialysate is also 0.7%. A similar relationship was obtained when seeding was measured under aeration and agitation conditions and when the degree of contamination of the dialysis membrane progressed.

次に、メタノールを基質としてハンゼヌラ酵母の培養を
行った。培地には前記組成のものを用い、培養途中に添
加する基質溶液には20%メタノールを使用した。下記
に示す条件下で連続培養を行い、透析器4には0.7%
メタノールを含有する前記培地と同一組成の液を流した
Next, Hansenula yeast was cultured using methanol as a substrate. The medium with the above composition was used, and 20% methanol was used as the substrate solution added during the culture. Continuous culture was performed under the conditions shown below, and 0.7% was added to dialyzer 4.
A solution containing methanol and having the same composition as the above medium was flowed.

張込量    600d 通気量    300d/min 撹拌数    50 Or、p、m 温度      37°C pH5,0 透析器4には0.7%メタノールを含有する前記培地と
同一組成の液を流した。透析器4から流出する透析液の
メタノール濃度を10分ごとに測定し、その濃度が0.
7%以下の場合には基質溶液を培養槽1に投入した。投
入方法としては、制御装置7によって弁8が一定時間間
隔で一定時間開き基質溶液が培養液へ一定量ごとに徐々
に添加されるようにした。培養液のメタノール濃度が0
.7%を越えると弁8が閉じて基質溶液の供給を停止し
た。
Loading amount: 600 d Aeration amount: 300 d/min Stirring number: 50 Or, p, m Temperature: 37° C. pH: 5,0 A solution having the same composition as the medium containing 0.7% methanol was flowed into the dialyzer 4. The methanol concentration of the dialysate flowing out from the dialyzer 4 is measured every 10 minutes, and when the concentration is 0.
When the concentration was 7% or less, the substrate solution was put into the culture tank 1. The feeding method was such that the control device 7 opened the valve 8 at fixed time intervals for a fixed period of time so that the substrate solution was gradually added to the culture solution in fixed amounts. The methanol concentration of the culture solution is 0.
.. When the concentration exceeds 7%, valve 8 closes to stop supplying the substrate solution.

その結果、培養液のメタノール濃度を0.7%±0.2
%で制御することができハンゼヌラ酵母は良好な速度で
増殖した。
As a result, the methanol concentration of the culture solution was reduced to 0.7% ± 0.2
Hansenula yeast that could be controlled in % grew at a good rate.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により培養液中の測定対象成分の濃度を培
養中、特に校正を行うことなく正確に求めることができ
、基質等の測定対象成分を制御目標濃度に一定に保つと
かできる。
By the method of the present invention, the concentration of the component to be measured in the culture solution can be accurately determined during culture without any particular calibration, and the component to be measured, such as the substrate, can be kept constant at a control target concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御方法に使用される装置の一例の構
成を示す図であり、第2図はこの装置を用いて透析器か
ら流出してくる透析液のメタノール濃度と培養液のメタ
ノール濃度との関係を測定した結果を示す図である。 1・・・培養槽    4・・・透析器特許出願人 生
体機能利用化学晶析製造技術研究組合 代理人   弁理士 国中 政情 はか1名第1図 第2図 堵t、次、メタール濃九(覧
FIG. 1 is a diagram showing the configuration of an example of a device used in the control method of the present invention, and FIG. 2 shows the methanol concentration of the dialysate flowing out from the dialyzer and the methanol concentration of the culture solution using this device. FIG. 3 is a diagram showing the results of measuring the relationship with concentration. 1...Culture tank 4...Dylyzer patent applicant Representative of Biofunctional Chemical Crystallization Manufacturing Technology Research Association Patent attorney Kuninaka Masami Haka 1 person Figure 1 Figure 2 Tot, Next, Metal concentration nine (See

Claims (2)

【特許請求の範囲】[Claims] (1)培養槽に設けられた透析器に透析用液を送り、該
透析器から流出してくる透析液に含まれている測定対象
成分の濃度を測定し、その結果に基づいて培養液の該成
分の濃度を制御する方法において、前記透析用液に制御
目標濃度の当該測定対象成分を予め添加しておくことを
特徴とする培養液濃度制御方法
(1) Send the dialysis fluid to a dialyzer installed in the culture tank, measure the concentration of the component to be measured contained in the dialysate flowing out from the dialyzer, and use the results to determine the concentration of the target component in the culture fluid. A method for controlling the concentration of a culture solution, characterized in that the component to be measured at a control target concentration is added in advance to the dialysis solution.
(2)透析用液の浸透圧が培養液と略同一である特許請
求の範囲第1項記載の培養液濃度制御方法
(2) The culture solution concentration control method according to claim 1, wherein the osmotic pressure of the dialysis solution is approximately the same as that of the culture solution.
JP13125387A 1987-05-29 1987-05-29 Method for controlling concentration of culture fluid Pending JPS63296700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13125387A JPS63296700A (en) 1987-05-29 1987-05-29 Method for controlling concentration of culture fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13125387A JPS63296700A (en) 1987-05-29 1987-05-29 Method for controlling concentration of culture fluid

Publications (1)

Publication Number Publication Date
JPS63296700A true JPS63296700A (en) 1988-12-02

Family

ID=15053587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13125387A Pending JPS63296700A (en) 1987-05-29 1987-05-29 Method for controlling concentration of culture fluid

Country Status (1)

Country Link
JP (1) JPS63296700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221136A (en) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp Membrane separation method
KR20210050814A (en) * 2019-10-29 2021-05-10 강동국 Capsule for controlling concentration of nutrient solution and use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221136A (en) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp Membrane separation method
KR20210050814A (en) * 2019-10-29 2021-05-10 강동국 Capsule for controlling concentration of nutrient solution and use of the same

Similar Documents

Publication Publication Date Title
JP4883067B2 (en) Culture apparatus and culture method
Mulchandani et al. Principles and applications of biosensors for bioprocess monitoring and control
Brown et al. The effect of acid pH on the growth kinetics of Trichoderma viride
CN107267385A (en) Carbon dioxide level and pH control in small volume reactor
Zeng et al. Continuous culture
JPH01139199A (en) Method and apparatus for producing microbiological cell mass
Bradley et al. Optimisation of the biosensor for in situ fermentation monitoring of glucose concentration
JPS63296700A (en) Method for controlling concentration of culture fluid
Bayer et al. On-line monitoring of media components during the production of cephalosporin C
GB2059990A (en) Enhancement of the sensitivity of viable microbial cell count by bioluminescent assay of ATP and its use for identification of microbes by means of a short incubation in nutrient media
Kumar et al. An automated flow injection analysis system for on-line monitoring of glucose and L-lactate during lactic acid fermentation in a recycle bioreactor
Gowthaman et al. Estimation of KLa in solid-state fermentation using a packed-bed bioreactor
Ogbomo et al. On-line determination of ethanol in bioprocesses based on sample extraction by continuous pervaporation
JP2012501632A (en) Method and system for improved process parameter control of liquids in reverse electro-enhanced dialysis (REED) systems
Win et al. Growth kinetics of Saccharomyces cerevisiae in batch and fedbatch cultivation using sugarcane molasses and glucose syrup from cassava starch
van der Pol et al. On-line monitoring of an animal cell culture with multi-channel flow injection analysis
US6677132B1 (en) Device and method for monitoring and controlling biologically active fluids
Takahashi et al. Development of a feed-forward control system for medium in shake-flask culture
Ferreira et al. A lactose FIA-biosensor system for monitoring and process control
Eliasson Regulation of arginase activity in Chang's liver cells in tissue culture
JPS61293380A (en) Cultivation of microorganism and apparatus therefor
Fleischaker et al. Instrumentation for process control in cell culture
JP2023509434A (en) Single-use cell culture vessel with one or more in-situ online sensors
Volesky et al. Continuous‐flow monitoring of lactose concentration
Stamm et al. On-line measurement of extracellular proteins in the continuous cellulase production by flow injection analysis (FIA)