JPS63295612A - Highly rigid molded product which comprises diacetylene compound with double bond - Google Patents

Highly rigid molded product which comprises diacetylene compound with double bond

Info

Publication number
JPS63295612A
JPS63295612A JP12959987A JP12959987A JPS63295612A JP S63295612 A JPS63295612 A JP S63295612A JP 12959987 A JP12959987 A JP 12959987A JP 12959987 A JP12959987 A JP 12959987A JP S63295612 A JPS63295612 A JP S63295612A
Authority
JP
Japan
Prior art keywords
group
diacetylene
compound
bond
diacetylene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12959987A
Other languages
Japanese (ja)
Inventor
Satoru Yamazaki
悟 山崎
Katsuyuki Nakamura
克之 中村
Jinichiro Kato
仁一郎 加藤
Kensaku Tokushige
徳重 健作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12959987A priority Critical patent/JPS63295612A/en
Publication of JPS63295612A publication Critical patent/JPS63295612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the title molded product whose elastic coefficient is above a specified value, and which has high rigidity and is suitable for precision machinery parts, materials used in the field of electronics, and the like, by molding a diacetylene compound comprising specific structural units. CONSTITUTION:A diacetylene compound which has as structural units one or more diacetylene group-containing hydrocarbon groups of formula I or II (wherein RI is a monovalent organic group or H; and RII, RIII and RIV are each a divalent organic group), one or more hydrocarbons having a carbon- carbon double bond, and one or more connecting groups which can connect them (e.g., an ether, ester, amino, imino or urethane linkage). As specific examples of the diacetylene compound, compounds represented by formulae III, IV, etc. can be mentioned. Then, the diacetylene compound is molded to produce the aimed molded product having a modulus elasticity of 12GPa or more.

Description

【発明の詳細な説明】 (発明の利用技術分野) 本発明は、高度な剛性を存し、精密機械部品やエレクト
ロニクス分野の材料として使用できる二重結合を含有す
るジアセチレン化合物を用いてなる成形体に関するもの
である。
Detailed Description of the Invention (Technical Field of Application of the Invention) The present invention relates to a molded product using a diacetylene compound containing a double bond, which has a high degree of rigidity and can be used as a material for precision mechanical parts and electronics fields. It's about the body.

(従来の技術) 近年ジアセチレン化合物の中にはトポケミカル重合によ
り極めて結晶性の良いポリマーが得られる物が見い出さ
れるなど種々の研究が行われている。その例として生成
したポリマーの弾性率が測定され、1次元方向には50
〜60GPaの高弾性率を発現することが知られている
(Prior Art) In recent years, various studies have been carried out, including the discovery that some diacetylene compounds can be obtained by topochemical polymerization into polymers with extremely good crystallinity. As an example, the elastic modulus of the produced polymer was measured, and the one-dimensional direction was 50
It is known to exhibit a high elastic modulus of ~60 GPa.

(発明が解決しようとする問題点) しかしながら、ジアセチレン化合物を用いて等方的に高
弾性率を発現させる試みは、これまでみられなかった。
(Problems to be Solved by the Invention) However, no attempt has been made to express high elastic modulus isotropically using a diacetylene compound.

本発明者らは、架橋により等方的な高弾性率体を得る目
的で、種々のジアセチレン化合物を成形してきた。その
結果、1つの分子内にジアセチレン基と二重結合が含有
された素材を成形することにより高度な剛性を有する成
形体が得られることを見い出し、更に鋭意検討の結果、
本発明に至った。
The present inventors have molded various diacetylene compounds for the purpose of obtaining isotropic high elastic modulus bodies by crosslinking. As a result, they discovered that a molded product with a high degree of rigidity could be obtained by molding a material containing a diacetylene group and a double bond in one molecule, and as a result of further study,
This led to the present invention.

(解決するための手段) すなわち、本発明は一般式I又はIIで表わされるジア
セチレン基含有炭化水素基の1種又は2種以上 RI−CC≡C−CC≡C−RI−・・・・・I−RI
I−c=c−c=c−RII−、、、、、n(ここで、
RIは1価の有機基又は水素原子、RI、RII 、 
RIIは2価の有機基を表わす、)炭素−炭素二重結合
を有する炭化水素基の1種又は2種以上、及びこれらを
連結する連結基の1種又は2種以上(ここで、連結基と
してエーテル結合、エステル結合、アミノ結合、イミノ
結合、ウレタン結合を表わす)を構成単位として有する
ジアセチレン化合物を用いてなる弾性率が12GPa以
上であることを特徴とする成形体に関するものである。
(Means for Solving the Problem) That is, the present invention provides one or more diacetylene group-containing hydrocarbon groups represented by the general formula I or II, RI-CC≡C-CC≡C-RI-...・I-RI
I-c=c-c=c-RII-, , , n (where,
RI is a monovalent organic group or hydrogen atom, RI, RII,
RII represents a divalent organic group;) one or more hydrocarbon groups having a carbon-carbon double bond; and one or more linking groups connecting these groups (herein, the linking group The invention relates to a molded article characterized in that it has an elastic modulus of 12 GPa or more and is made of a diacetylene compound having as a constituent unit an ether bond, an ester bond, an amino bond, an imino bond, or a urethane bond.

本発明において、−a式IのRIは1価の有機基、又は
、水素原子であり、例として、CHI。
In the present invention, RI in -a formula I is a monovalent organic group or a hydrogen atom, such as CHI.

等が挙げられる。また、RIの水素原子は他の結合に置
換されていてもよく、結合としてはエーテル結合、エス
テル結合、アミド結合、イミド結合、アミノ結合、イミ
ノ結合、ウレタン結合等が挙げられる。その際のRIを
例示するならば、シアノ基、カルボキシル基、アミノ基
、ハロゲン原子等で置換されていてもよい。
etc. Further, the hydrogen atom of RI may be substituted with another bond, and examples of the bond include an ether bond, an ester bond, an amide bond, an imide bond, an amino bond, an imino bond, and a urethane bond. In this case, RI may be substituted with a cyano group, a carboxyl group, an amino group, a halogen atom, or the like.

本発明のRI 、 RII 、 RII は、同種又は
異種の2価の有機基である。例としては’、  CHz
  。
RI, RII, and RII of the present invention are the same or different divalent organic groups. For example, ', Hz
.

CH。CH.

芳香族基と脂肪族基の複合した基が挙げられる。Examples include complex groups of an aromatic group and an aliphatic group.

更に、これら炭化水素基の水素原子のいくつかが、ニト
ロ基、水酸基、シアノ基、カルボキシル基、アミノ基、
ハロゲン原子等で置換されていても良い。
Furthermore, some of the hydrogen atoms of these hydrocarbon groups are nitro groups, hydroxyl groups, cyano groups, carboxyl groups, amino groups,
It may be substituted with a halogen atom or the like.

又、この有機基は、エーテル結合、スルホニル結合、エ
ステル結合、カルボニル結合により連結RI、R* 、
 RlM は、上で説明したいずれでもよいが硬化反応
性及び合成のし易さから、 CHz。
In addition, this organic group is connected by an ether bond, a sulfonyl bond, an ester bond, a carbonyl bond,
RIM may be any of the above-mentioned values, but due to curing reactivity and ease of synthesis, it is set to CHZ.

本発明における炭素−炭素二重結合を有する炭化水素基
は、一般に炭素数1〜20の炭素−炭素二重結合を有す
る1価又は、2価以上の炭化水素基である。
The hydrocarbon group having a carbon-carbon double bond in the present invention is generally a monovalent, divalent or more hydrocarbon group having a carbon-carbon double bond and having 1 to 20 carbon atoms.

−HC= CH−、−HC= C−。-HC=CH-, -HC=C-.

CI。C.I.

−I C= CH−CH= CH−。-I C=CH-CH=CH-.

−CI□−HC= II CCHz  、等の二重結合
と水素原子又は、脂肪族基の組合せで構成された基、等
の二重結合が環構造中に含まれる基等が挙げられる。
Examples thereof include groups in which a double bond is included in the ring structure, such as groups composed of a combination of a double bond and a hydrogen atom or an aliphatic group, such as -CI□-HC=II CCHz.

これら炭化水素基の水素原子のうち、いくつかが、ニト
ロ基、水酸基、シアノ基、カルボキシル基、アミノ基、
ハロゲン原子等で置換されていてもよい。
Some of the hydrogen atoms of these hydrocarbon groups are nitro groups, hydroxyl groups, cyano groups, carboxyl groups, amino groups,
It may be substituted with a halogen atom or the like.

これらの二重結合の中で、好ましいものは、硬CH。Among these double bonds, preferred is hard CH.

Hz C= CHCHt  、   HC= CH。Hz C=CHCHt, HC=CH.

本発明のジアセチレン化合物は、上で説明したジアセチ
レン基含有炭化水素基及び炭素−炭素二重結合を有する
炭化水素基を連結する連結基が、構成単位として含まれ
る。連結基としては、ニー〇 チル結合−〇−、エステル結合−C−O−,アミしてい
る酸素原子が硫黄原子で置換されていても良い。これら
連結基のいずれを用いてもよく、又、1種類だけでなく
2種類以上を組合せてもよい。
The diacetylene compound of the present invention contains, as a structural unit, a connecting group that connects the diacetylene group-containing hydrocarbon group and the hydrocarbon group having a carbon-carbon double bond as described above. The linking group may be a nityl bond -〇-, an ester bond -C-O-, or an amide oxygen atom substituted with a sulfur atom. Any of these linking groups may be used, and not only one type but also two or more types may be combined.

更に、これらの連結基以外に、アミド結合スルホニル結
合−5OX−、カルボニル結合を部分的に含んでいても
よい。
Furthermore, in addition to these linking groups, it may partially contain an amide bond, a sulfonyl bond, -5OX-, and a carbonyl bond.

本発明のジアセチレン化合物は、上で説明したジアセチ
レン基含有炭化水素基と炭素−炭素二重結合を有する炭
化水素基が、上記連結基によって一分子中に組合されて
なる化合物である。−分子中に存在するジアセチレン基
含有炭化水素の数に制限はなく、1つだけ含む低分子化
合物であっても、繰り返し単位として2つ以上含むオリ
ゴマー更にポリマーであってもよい。又、繰り返し単位
として含まれる場合、ジアセチレン基含有炭化水素基は
、同種であっても、異種であってもよい。
The diacetylene compound of the present invention is a compound in which the diacetylene group-containing hydrocarbon group described above and the hydrocarbon group having a carbon-carbon double bond are combined into one molecule by the above-described linking group. - There is no limit to the number of diacetylene group-containing hydrocarbons present in the molecule, and it may be a low-molecular compound containing only one diacetylene group-containing hydrocarbon, or an oligomer or polymer containing two or more repeating units. Furthermore, when included as a repeating unit, the diacetylene group-containing hydrocarbon groups may be of the same type or different types.

本発明のジアセチレン化合物は、上で説明したジアセチ
レン基含有炭化水素基及び炭素−炭素二重結合を有する
炭化水素基の他に、構成要件以外の炭化水素基を連結基
によって構成単位として、部分的に含まれていてもよい
。構成要件以外の炭CHz−(mは2以上の整数)。
In addition to the diacetylene group-containing hydrocarbon group and the hydrocarbon group having a carbon-carbon double bond as explained above, the diacetylene compound of the present invention has a hydrocarbon group other than the constituent elements as a constituent unit by a linking group. It may be partially included. Charcoal other than constituent requirements CHHz- (m is an integer of 2 or more).

等であり、更に、これらの炭化水素のいくつかが、ニト
ロ基、シアノ基、水酸基、カルボキシル基、アミノ基、
ハロゲン原子等で置換されていてもよい。これらの構成
要件以外の炭化水素基を導入することは、硬化反応性と
成形性をバランスする上で、効果のある場合もある。
etc., and some of these hydrocarbons include nitro groups, cyano groups, hydroxyl groups, carboxyl groups, amino groups,
It may be substituted with a halogen atom or the like. Introducing hydrocarbon groups other than these constituents may be effective in balancing curing reactivity and moldability.

本発明のジアセチレン化合物において、上で説明したジ
アセチレン基含有炭化水素基と炭素−炭素二重結合を有
する炭化水素基の存在する比率に制限はない。好ましい
範囲は、硬化反応性が顕著であるモル比が0.2〜5で
ある。更に、0.5〜2のとき、最も顕著な効果がみら
れ、特に好ましい。
In the diacetylene compound of the present invention, there is no limit to the ratio of the diacetylene group-containing hydrocarbon group and the carbon-carbon double bond-containing hydrocarbon group described above. A preferred range is a molar ratio of 0.2 to 5 at which curing reactivity is significant. Furthermore, when the ratio is 0.5 to 2, the most remarkable effect is observed, which is particularly preferable.

本発明のジアセチレン化合物を例示するならば、HzC
C≡CI−Cflz−0−C11z−CC≡C−CC≡
C−CHt−0−C1l□−11c=clItC1h−
CtlC≡CH−C11z−0−C11□−CC≡C−
CC≡C−CHz−0−C1lz−11c=cll−C
1hHzCC≡CH−CHz−C1lz−0−CHz−
CEC−CC≡C−CHz−0−CHz−CHz−−I
I C= CI+□HzCC≡CII−CIlgN−C
tlz−CC≡C−CC≡C−C1h−NC≡CH−t
lc=cth11□CC≡CI(−Ctl=NOC−C
−CC≡C−C1−NC≡CH−11c=cH2HzC
C≡C1l Go−Cllz−CC≡C−CEC−CH
z−0−C>0−CHt−CC≡C−CC≡C−−C1
1□−oOHCC≡CH2更に、以下の繰り返し単位を
持つオリゴマー、ポリマー等が挙げられる。
To illustrate the diacetylene compound of the present invention, HzC
C≡CI-Cflz-0-C11z-CC≡C-CC≡
C-CHt-0-C1l□-11c=clItC1h-
CtlC≡CH-C11z-0-C11□-CC≡C-
CC≡C-CHz-0-C1lz-11c=cll-C
1hHzCC≡CH-CHz-C1lz-0-CHz-
CEC-CC≡C-CHz-0-CHz-CHz--I
I C= CI+□HzCC≡CII-CIlgN-C
tlz-CC≡C-CC≡C-C1h-NC≡CH-t
lc=cth11□CC≡CI(-Ctl=NOC-C
-CC≡C-C1-NC≡CH-11c=cH2HzC
C≡C1l Go-Cllz-CC≡C-CEC-CH
z-0-C>0-CHt-CC≡C-CC≡C--C1
1□-oOHCC≡CH2 Furthermore, oligomers, polymers, etc. having the following repeating units may be mentioned.

+CHz−C11C≡CH−C1h−0−C11g−C
ミc−CC≡C−C1h−0++CNx−CHC≡CH
−C1h−OG (、:C−CC≡CC)−Q−)であ
るが、好ましい化合物は、エステル結合を有する化合物
である。
+CHz-C11C≡CH-C1h-0-C11g-C
Mi c-CC≡C-C1h-0++CNx-CHC≡CH
-C1h-OG (,:C-CC≡CC)-Q-), but a preferred compound is a compound having an ester bond.

本発明のジアセチレン化合物を合成するには、既知の有
機合成反応を応用改良して合成することができる。合成
法を類型化して例示するならば、例えば、連結基として
エステル結合を構成単位として含む化合物であれば、末
端にエチニル基を持ったアルコール(例えばICC≡C
−CHt−0H)と二重結合を待った酸塩化物(例えば
り−C−ICC≡C11□)を縮合反応させ、末端にエ
チニル基を持ったエステル化合物(例えば1Ic=c−
CHt−0−8−ICC≡CI+□)を合成し、続いて
、この化合物を酸化カップリング反応によって、ジアセ
チレン化合物とすることができる。この酸化カップリン
グ反応において、用いる金属触媒のモル数は基質に対し
0.01当量から1当量、酸素の流量は10 = 10
00 id/winが好ましい、この反応に用いる溶媒
としてはピリジンが好ましく、他の溶媒を共存させるこ
とも可能であり、反応温度、反応時間については特に制
限はなく、好ましくは反応温度は一20℃から100℃
の間でよく、反応時間は20分から12時間の範囲であ
る。また、この際、用いる二重結合を持った酸塩化物に
おいて、2官態の塩化アシル基を持った化合物ニル基を
持つアルコール(例えばICC≡C−CI(z−OH)
を2当量反応させることで、両末端にエチニル基を持つ
エステル化合物 が得られるので、これを酸化カップリング反応させれば
、ジアセチレン結合を含有した高分子量体を合成できる
。又、あらかじめ酸化カップリング反応で合成したジア
セチレン化合物 (例えばlo−CHz−j:C≡C−CIC−Cl□−
〇〇)と二重結合ををする化合物(例えば11□CC≡
CIIC−(J)を縮合反応させる方法も利用できる。
The diacetylene compound of the present invention can be synthesized by applying and improving known organic synthesis reactions. To give an example of the synthesis method, for example, in the case of a compound containing an ester bond as a connecting group as a structural unit, an alcohol having an ethynyl group at the end (for example, ICC≡C
-CHt-0H) and an acid chloride (e.g. -C-ICC≡C11□) with a double bond waiting to form an ester compound having an ethynyl group at the end (e.g. 1Ic=c-
CHt-0-8-ICC≡CI+□) can be synthesized, and then this compound can be converted into a diacetylene compound by an oxidative coupling reaction. In this oxidative coupling reaction, the number of moles of the metal catalyst used is 0.01 to 1 equivalent relative to the substrate, and the flow rate of oxygen is 10 = 10.
00 id/win is preferable. Pyridine is preferable as the solvent used in this reaction, and other solvents can also be coexisting. There are no particular restrictions on the reaction temperature and reaction time, and the reaction temperature is preferably -20°C. to 100℃
The reaction time may range from 20 minutes to 12 hours. At this time, in the acid chloride having a double bond to be used, a compound having a difunctional acyl chloride group and an alcohol having a nyl group (e.g. ICC≡C-CI(z-OH)
By reacting two equivalents of , an ester compound having ethynyl groups at both ends is obtained, and by subjecting this to an oxidative coupling reaction, a polymer containing diacetylene bonds can be synthesized. In addition, a diacetylene compound synthesized in advance by an oxidative coupling reaction (for example, lo-CHz-j:C≡C-CIC-Cl□-
〇〇) and a compound that forms a double bond (for example, 11□CC≡
A method of subjecting CIIC-(J) to a condensation reaction can also be used.

更に、ジアセチレン基を生成する反応として、エチニル
基を有する化合物を臭素化し、他のエチニル基を有する
化合物と反応させるCadiot−Chod−kiew
iczカップリング法を利用することができる。
Furthermore, as a reaction to generate a diacetylene group, a compound having an ethynyl group is brominated and reacted with another compound having an ethynyl group.
The icz coupling method can be used.

この反応は、一般に、エチニル基を有する化合物(例え
ば11□c=co−c−o−cuz−叶C11)の溶液
に過剰のアミン(例えばn−ブチルアミン)と触媒量の
塩化銅(1)を加え、それにかきまぜながらエチニル基
を臭素化した化合物(例えば eCC≡C−Br)を徐
々に加えることで行われる。塩化銅(1)は、副反応を
抑えるためにモル比で1〜5%が好ましい。また、少量
のヒドロキシルアミンを加えて置く必要がある。
This reaction generally involves adding an excess of an amine (e.g. n-butylamine) and a catalytic amount of copper(1) chloride to a solution of a compound having an ethynyl group (e.g. 11□c=co-c-o-cuz-KoC11). In addition, a compound having a brominated ethynyl group (for example, eCC≡C-Br) is gradually added thereto while stirring. The molar ratio of copper chloride (1) is preferably 1 to 5% in order to suppress side reactions. It is also necessary to add a small amount of hydroxylamine.

更に、アミノ結合やウレタン結合の活性水素をメタル化
し、ハロゲン化物を反応させる方法も利用できる。
Furthermore, a method in which active hydrogen of an amino bond or urethane bond is metalated and reacted with a halide can also be used.

本発明の成形体は、該ジアセチレン化合物を硬化して得
られる成形体であり、該成形体の形状は特に制限はない
。例えば、センイ状、フィルム状、シート状、膜状、板
状、管状、棒状等必要に応じて特定の形状を取り得る。
The molded article of the present invention is a molded article obtained by curing the diacetylene compound, and the shape of the molded article is not particularly limited. For example, it can take a specific shape as needed, such as a fiber, film, sheet, membrane, plate, tube, or rod.

本発明の成形体の製造方法としては、圧縮成形、射出成
形、圧延成形、回転成形あるいは溶液や分散体からの成
形など各種の成形法が用いられ特に制限はないが、成形
時又は成形時の前又は後で硬化を起させる方法が用いら
れる。ここで、硬化とは、硬化物が融解しない状態にな
っている事、又は、溶媒に対して溶解しない状態になっ
ている事を言い、一般的に架橋的反応が起きていると考
えられる。
The molded article of the present invention can be produced by various molding methods such as compression molding, injection molding, rolling molding, rotary molding, or molding from a solution or dispersion, and is not particularly limited. Pre- or post-curing methods may be used. Here, curing refers to a state in which the cured product is not melted or is not soluble in a solvent, and it is generally considered that a crosslinking reaction is occurring.

硬化を起させる手段としては熱の賦与、光照射、加圧、
放射線や電子線の照射などが単独又は併用して用いられ
、最も簡便で有効な方法としては熱の賦与及び加圧であ
る。
Means for causing curing include application of heat, light irradiation, pressure,
Radiation, electron beam irradiation, etc. are used alone or in combination, and the simplest and most effective method is the application of heat and pressurization.

例えば、本発明のジアセチレン化合物の粉体を溶融させ
ることなく必要に応じてガス加圧下に加熱することによ
り硬化された耐熱性に優れた硬化粉体が得られる。
For example, a hardened powder with excellent heat resistance can be obtained by heating the powder of the diacetylene compound of the present invention under gas pressure, if necessary, without melting it.

あるいは、本発明のジアセチレン化合物の粉体を圧縮し
、又、必要に応じて加熱することにより硬化した圧縮成
形体が得られる。
Alternatively, a hardened compression molded product can be obtained by compressing the powder of the diacetylene compound of the present invention and heating if necessary.

又、本発明のジアセチレン化合物が高分子あるいはオリ
ゴマーの場合には繊維状やフィルム状に成形する技術と
加熱硬化を行なわせる技術の組み合せ、あるいは熱圧延
、熱圧縮する技術の組み合せが好ましい。
Further, when the diacetylene compound of the present invention is a polymer or an oligomer, a combination of a technique of forming into a fiber or a film and a technique of heat curing, or a combination of a technique of hot rolling or hot compression is preferable.

その他、本発明のジアセチレン化合物が結晶を形成しや
すい場合には、結晶を育成して、その結晶のまま融点以
下の温度で加熱したり加圧したりして硬化する方法も用
いられる。
In addition, when the diacetylene compound of the present invention tends to form crystals, a method of growing the crystals and curing the crystals by heating or applying pressure at a temperature below the melting point may also be used.

本発明の成形体を得るに際し、特に好ましい方法は、加
熱と圧力の賦与を併用する方法であり、用いるジアセチ
レン化合物の特性に応じた適正な条件を見出すことが必
要である。
When obtaining the molded article of the present invention, a particularly preferred method is a method that uses both heating and application of pressure, and it is necessary to find appropriate conditions depending on the characteristics of the diacetylene compound used.

加圧の程度は、素材の性状により異なり、予め一体化し
た素材であれば、10に+r/cd以上、4子ましくは
、50kg/c+j以上がよく、粉体成形では、200
kg/−以上、好ましくは、400 kg/cd以上で
あり、より好ましくは、3000 kg/cd以上であ
る。一般に、加圧の程度は、大きい程好ましいが工業的
プロセスの制約等により、最適な条件を選ぶようにすれ
ばよい。
The degree of pressurization varies depending on the properties of the material, and if the material is pre-integrated, 10 + r/cd or more, 4 children or 50 kg/c + j or more is better, and for powder molding, 200 kg/c + j or more.
kg/- or more, preferably 400 kg/cd or more, more preferably 3000 kg/cd or more. Generally, the higher the degree of pressurization, the better, but the optimum conditions may be selected depending on the constraints of the industrial process and the like.

一方、温度は、一般的には硬化反応が進行する温度領域
であればよく、用いるジアセチレン化合物により、その
領域は異なるが、例えば50℃から400℃、好ましく
は70℃から300℃である。
On the other hand, the temperature generally only needs to be in a temperature range where the curing reaction proceeds, and although the range varies depending on the diacetylene compound used, it is, for example, from 50°C to 400°C, preferably from 70°C to 300°C.

望ましい成形条件を見い出すため、予め示差熱分析を行
い、硬化反応が起る温度領域を調べるのは1つの方法で
ある。温度も高い程、架橋反応がより進行し好ましいが
、圧力が高い程架橋反応が進み易く、温度領域を低くす
ることもできる。一方、高過ぎると熱分解反応も起り、
かえって物性の低下を招き好ましくない、従って、より
良好な成形体を得るためには、熱分解が起らない上限の
温度に設定することが好ましい。そこで例えば、適当な
条件で硬化させた硬化物の熱挙動の解析から、熱分解開
始温度を調べ、それより若干低い温度に設定するのは1
つの方法である。しかし、熱分解開始温度は圧力により
、あるいは硬化の程度により変化し、一般には圧力が高
い程、あるいは硬化が進む程、高くなる。従って、圧力
が高い程上限の温度もより高く設定できる。又、一定の
圧力条件下でも好ましい成形体を得るためには、先の方
法で定めた設定温度で一定時間処理した後、若干温度を
上げ、再び一定時間処理する操作を物性の低下しない温
度まで繰り返し、最適条件を設定していくのが好ましい
In order to find desirable molding conditions, one method is to perform differential thermal analysis in advance to examine the temperature range in which the curing reaction occurs. The higher the temperature, the more the crosslinking reaction progresses, which is preferable, but the higher the pressure, the more easily the crosslinking reaction progresses, and the temperature range can also be lowered. On the other hand, if the temperature is too high, thermal decomposition reactions will occur,
This is undesirable because it causes a decrease in physical properties. Therefore, in order to obtain a better molded product, it is preferable to set the temperature to the upper limit at which thermal decomposition does not occur. Therefore, for example, by analyzing the thermal behavior of a cured product cured under appropriate conditions, the temperature at which thermal decomposition starts is determined, and setting the temperature slightly lower than that is 1.
There are two methods. However, the thermal decomposition initiation temperature changes depending on the pressure or the degree of curing, and generally increases as the pressure increases or as the curing progresses. Therefore, the higher the pressure, the higher the upper limit temperature can be set. In addition, in order to obtain a preferable molded product even under a constant pressure condition, after processing at the set temperature determined in the previous method for a certain period of time, raise the temperature slightly and repeat the process for a certain period of time until the temperature does not deteriorate the physical properties. It is preferable to repeatedly set the optimal conditions.

本発明の成形体において、本発明のジアセチレン化合物
以外に熱硬化性樹脂、熱可塑性樹脂、無機物、金属、炭
素材料、安定剤、流れ調節剤、離型材、着色材、紫外線
吸収剤や硬化促進・抑制剤等を混ぜる事もでき、必要に
応じてはそれらの形状が、シート状、織物状、繊維状、
薄片状、板状、棒状、管状等に成形されている物も使用
できる。
In the molded article of the present invention, in addition to the diacetylene compound of the present invention, a thermosetting resin, a thermoplastic resin, an inorganic substance, a metal, a carbon material, a stabilizer, a flow control agent, a mold release agent, a coloring agent, an ultraviolet absorber, and a curing accelerator are used.・It is also possible to mix inhibitors, etc., and the shape can be changed to sheet, woven, fibrous, etc. as necessary.
Items formed into flakes, plates, rods, tubes, etc. can also be used.

本発明によって得られる成形体は、機械的物性に優れ、
弾性率がl2GPa以上、化合物の選定、成形条件によ
っては2QGPa程度の弾性率も発現する0本発明にお
ける弾性率は、成形物の形状に依り、曲げ弾性率あるい
は引張弾性率を適用できるが、粉体を好ましい条件下で
加圧・加熱して得られる様な板状、棒状あるいは直方体
状等の塊状の成形体の場合、特に2直角方向で測定する
曲げ弾性率が共に12GPa以上を有する特徴を持つ。
The molded article obtained by the present invention has excellent mechanical properties,
The elastic modulus is 12 GPa or more, and depending on the selection of the compound and the molding conditions, an elastic modulus of about 2 Q GPa can also be expressed.For the elastic modulus in the present invention, depending on the shape of the molded product, bending elastic modulus or tensile elastic modulus can be applied, but powder In the case of a block-shaped molded body such as a plate, rod or rectangular parallelepiped, which is obtained by pressurizing and heating a body under favorable conditions, the molded body is particularly characterized in that the bending elastic modulus measured in two orthogonal directions is both 12 GPa or more. have

曲げ弾性率の測定方法は、標準的な方法としてASTM
 −0790−66が使用できる。しかし、本発明の成
形物は必ずしもASTHの測定法で測定できるだけの大
型(長い)の成形物を製造するとは限らない場合がある
。このため、本発明では、小型成形物の曲げ弾性率の測
定方法として、次の方法を用いた。
The standard method for measuring flexural modulus is ASTM.
-0790-66 can be used. However, the molded product of the present invention may not necessarily be large enough (long enough) to be measured by the ASTH measurement method. Therefore, in the present invention, the following method was used to measure the flexural modulus of a small molded product.

すなわち、本発明で用いた曲げ弾性率の測定法としては
、試験片を長さ1511以上、幅4籠、高さ211とし
、支点開路fed 10 tm、支点先端半径2RI加
圧くさび先端半径5RI試験速度5mm/winに設定
して測定した。この場合ASTHの方法に比べ曲げ弾性
率は若干小さく測定されるもののほぼ近い値が得られた
That is, the method for measuring the bending elastic modulus used in the present invention is to use a test piece with a length of 1511 or more, a width of 4 cages, and a height of 211, a fulcrum open circuit fed 10 tm, a fulcrum tip radius of 2 RI, and a pressurized wedge tip radius of 5 RI test. The measurement was performed at a speed of 5 mm/win. In this case, although the flexural modulus was measured to be slightly smaller than the ASTH method, almost similar values were obtained.

(発明の効果) 本発明による成形体は、その成形時に適切な硬化成形条
件を賦与することにより、弾性率が12GPa以上を有
するものである。特に、粉体等を加圧・加熱により圧縮
成形することで、2直角方向で曲げ弾性率が12GPa
以上を発現させることもできる。
(Effects of the Invention) The molded product according to the present invention has an elastic modulus of 12 GPa or more by applying appropriate curing conditions during molding. In particular, by compression molding powder etc. by applying pressure and heating, the bending elastic modulus is 12 GPa in two orthogonal directions.
The above can also be expressed.

以上の様に本発明の成形体は、等方的に良好な機械物性
を有し、例えば精密機械部品の分野やエレクトロニクス
材料分野等高剛性を要求される分野で極めて有用である
As described above, the molded article of the present invention has isotropically good mechanical properties and is extremely useful in fields that require high rigidity, such as the field of precision mechanical parts and the field of electronic materials.

(実施例) 実施例1 プロパルギルアルコールとアクリル酸クロライドをジメ
チルアニリンの存在下で反応させて、HIC−C1l−
Coo・CII*−CC≡CHを得た。得られた合成物
をピリジンを溶媒として、塩化第1銅の存在下で、酸素
をバブリングして反応させ、 (HzC−CH−Coo・CHI・C=叶りを得た。
(Example) Example 1 Propargyl alcohol and acrylic acid chloride were reacted in the presence of dimethylaniline to produce HIC-C1l-
Coo.CII*-CC≡CH was obtained. Using pyridine as a solvent, the resulting compound was reacted by bubbling oxygen in the presence of cuprous chloride to obtain (HzC-CH-Coo.CHI.C).

この化合物の再結晶物を室温で150kg/cdで予め
加圧して一体化した後、150℃で6500kg/−の
静水圧下で5時間の成形を行ない、厚さ2.1鶴の成形
体を得た。この成形体は、溶媒には全く溶けない、この
成形体の曲げ弾性率を測定したところ、16.5GPa
であった。
The recrystallized product of this compound was pre-pressured at room temperature at 150 kg/cd to integrate it, and then molded at 150°C under hydrostatic pressure of 6500 kg/- for 5 hours to form a molded body with a thickness of 2.1 mm. Obtained. This molded body is completely insoluble in solvents, and the bending elastic modulus of this molded body was measured to be 16.5 GPa.
Met.

実施例2 プロパルギルアルコールと(温HC= CII −C−
1jをジメチルアニリンの存在下で反応させて、(Xu
 c = CH−C00・CHI−CECHを得た。こ
の化合物をピリジンを溶媒として、塩化第1銅の存在下
で、酸素をバブリングして反応させ、 (0’HCC≡CH−COO−CHm−CC≡C+zを
得た。
Example 2 Propargyl alcohol and (warm HC= CII -C-
1j in the presence of dimethylaniline to form (Xu
c=CH-C00.CHI-CECH was obtained. This compound was reacted with pyridine as a solvent in the presence of cuprous chloride by bubbling oxygen to obtain (0'HCC≡CH-COO-CHm-CC≡C+z).

この化合物の再結晶物を室温で150kg/−で予め加
圧して一体化した後、180℃で6500kg / c
dの静水圧下で2時間の処理を行ない、厚さ1.9鶴の
成形体を得た。この成形体は、溶媒に不溶であった。又
、曲げ弾性率を測定したところ、16.3GPaであっ
た。
The recrystallized product of this compound was pre-pressured at room temperature at 150 kg/- to integrate it, and then at 180°C it was 6500 kg/c.
The treatment was carried out for 2 hours under a hydrostatic pressure of d to obtain a molded article with a thickness of 1.9 mm. This molded article was insoluble in the solvent. Moreover, when the bending elastic modulus was measured, it was 16.3 GPa.

実施例3 反応させることにより、 11c=c−C1h−00C−HCC≡CH−COO−
CHz−CC≡CII (化合物A)を得た。この化合
物Aをピリジンを溶媒として、塩化第1銅の存在下で、
酸素をバブリングして反応させたところ、粉末状物を得
た。この粉末は、化合物Aを溶解するエタノールには不
溶であった。
Example 3 By reacting, 11c=c-C1h-00C-HCC≡CH-COO-
CHz-CC≡CII (compound A) was obtained. This compound A was prepared using pyridine as a solvent in the presence of cuprous chloride,
When oxygen was bubbled to cause a reaction, a powdery substance was obtained. This powder was insoluble in ethanol, which dissolves Compound A.

この粉末を室温下で150kg/c+4で予備成形した
後、120℃で6500 kg/aJの静水圧下で2時
間の処理を行い、厚さ2.2龍の成形体を得た。
This powder was preformed at room temperature at 150 kg/c+4, and then treated at 120° C. under hydrostatic pressure of 6500 kg/aJ for 2 hours to obtain a molded body with a thickness of 2.2 mm.

この成形体の曲げ弾性率を測定したところ、15.40
Paであった。処理温度を150℃、170℃、180
℃、190℃、200℃と上げていった結果を以下に示
す。
When the flexural modulus of this molded body was measured, it was found to be 15.40.
It was Pa. Processing temperature: 150℃, 170℃, 180℃
The results obtained by increasing the temperature to 190°C, 190°C, and 200°C are shown below.

処理温度(’C)   弾性率(GPa)120   
   15、4 150      18.3 170      19.6 180      20.7 190      19、0 200      18.5 同様に10000kg/cjの静水圧下で2時間処理し
た結果を示す。
Processing temperature ('C) Elastic modulus (GPa) 120
15, 4 150 18.3 170 19.6 180 20.7 190 19, 0 200 18.5 The results of the same treatment under hydrostatic pressure of 10,000 kg/cj for 2 hours are shown.

処理温度(”C)   弾性率(GPa)150   
   19.2 180      23、0 実施例4 蒸留精製したクロルベンゼンとO−ジクロルベンゼンを
それぞれ容積比80:20の割合に混ぜ、これを溶媒と
した。この溶媒に、 110−CHg−CHC≡CH−l10−CHを7重量
部と110−CHz−CC≡C−’CC≡C−CHz−
OHを11!1部、更にHzC−CH−CHz−OBを
0.6重量部を加え、加熱して環流させて、更に33重
量部のへキサメチレンジイソシアナートを溶かした溶液
を、激しくかきまぜながら、加えた後、1時間環流し続
けたところ、粉末状物を得た。
Processing temperature ("C) Elastic modulus (GPa) 150
19.2 180 23.0 Example 4 Chlorobenzene and O-dichlorobenzene purified by distillation were mixed at a volume ratio of 80:20, and this was used as a solvent. In this solvent, 7 parts by weight of 110-CHg-CHC≡CH-l10-CH and 110-CHg-CC≡C-'CC≡C-CHz-
Add 11!1 parts of OH and 0.6 parts by weight of HzC-CH-CHz-OB, heat to reflux, and then stir the solution containing 33 parts by weight of hexamethylene diisocyanate. However, after the addition, refluxing was continued for 1 hour to obtain a powdery substance.

この粉末を室温下で1501g/cfflで予備成形し
た後、140℃で4000 kg/cdの静水圧下で2
時間の成形を行ない、厚さ1.9鰭の成形体を得た。
This powder was preformed at 1501 g/cffl at room temperature and then 2
Molding was carried out for several hours to obtain a molded product with a thickness of 1.9 fins.

この成形体の曲げ弾性率を測定したところ、14.2G
Paであった。
When the bending elastic modulus of this molded body was measured, it was found to be 14.2G.
It was Pa.

実施例5 十分に乾燥させた2−ブテン−1,4−ジオールに金属
ナトリウムを加え、続いて臭化プロパルギルを反応させ
ることにより、 HCEC−CHz−0−C1h−HCC≡C1l−C1
l□−0−CHz−CC≡CHを得た。
Example 5 By adding metallic sodium to sufficiently dried 2-butene-1,4-diol and subsequently reacting with propargyl bromide, HCEC-CHz-0-C1h-HCC≡C1l-C1
l□-0-CHz-CC≡CH was obtained.

この化合物をピリジンを溶媒として、塩化第1銅の存在
下で、酸素をバブリングして反応させたところ、粉末物
を得た。
When this compound was reacted with pyridine as a solvent in the presence of cuprous chloride by bubbling oxygen, a powder was obtained.

この粉末を室温下で150kg/−で予備成形した後、
150℃で4500kg/−の静水圧により2時間の成
形を行ない、厚さ2.1鶴の成形体を得た。この成形体
の曲げ弾性率を測定したところ、14.6GPaであっ
た。
After preforming this powder at room temperature at 150 kg/-,
Molding was carried out for 2 hours at 150 DEG C. under a hydrostatic pressure of 4500 kg/- to obtain a molded article with a thickness of 2.1 mm. The flexural modulus of this molded body was measured and found to be 14.6 GPa.

実施例6 合物を臭素とN a OIIの存在下で反応させて、重
量部と実施例3で合成した HC≡C−CHz−00C−11cC≡CII−COO
−CTo−CC≡CH13,3重量部をエタノールを溶
媒として、塩化第1銅、n−ブチルアミン、 NHtO
H−H(Jの存在下で反応させ淡黄色の粉末を得た。
Example 6 The compound was reacted with bromine in the presence of NaOII to calculate the weight part and HC≡C-CHz-00C-11cC≡CII-COO synthesized in Example 3.
-CTo-CC≡CH13.3 parts by weight were mixed with cuprous chloride, n-butylamine, NHtO using ethanol as a solvent.
The reaction was carried out in the presence of H-H(J) to obtain a pale yellow powder.

この粉末を室温、150kg/cI]lで予備成形した
後、50℃、3000kg/c11の静水圧下で2時間
の成形を行ない、引き続き6500kg/cjに昇圧し
た後、200℃に昇温し、3時間の成形を行って、厚さ
2.0鶴の成形体を得た。この成形体の曲げ弾性率を測
定したところ、17.3GPaであった。
This powder was preformed at room temperature at 150 kg/cI]l, then molded for 2 hours at 50°C under a hydrostatic pressure of 3000 kg/c11, then the pressure was increased to 6500 kg/cj, and the temperature was raised to 200°C. Molding was performed for 3 hours to obtain a molded product with a thickness of 2.0 mm. The flexural modulus of this molded body was measured and found to be 17.3 GPa.

Claims (1)

【特許請求の範囲】 1)一般式 I 又はIIで表わされるジアセチレン基含有
炭化水素基の1種又は2種以上 R^ I −C≡C−C≡C−R^II−・・・・・ I −R
^III−C≡C−C≡C−R^IV−・・・・・II(ここ
で、R^ I は1価の有機基又は水素原子、R^II、R
^III、R^IVは2価の有機基を表わす。)炭素−炭素
2重結合を有する炭化水素基の1種又は2種以上、及び
これらを連結する連結基の1種又は2種以上(ここで、
連結基としてエーテル結合、エステル結合、アミノ結合
、イミノ結合、ウレタン結合を表わす。)を構成単位と
して有するジアセチレン化合物を用いてなる弾性率12
GPa以上であることを特徴とする成形体 2)一般式 I 又はIIで表わされるジアセチレン基含有
炭化水素基と2重結合を有する炭化水素基の比率がモル
比で0.2〜5の範囲である特許請求の範囲第1項記載
の成形体
[Claims] 1) One or more diacetylene group-containing hydrocarbon groups represented by the general formula I or II R^ I -C≡C-C≡C-R^II-...・I-R
^III-C≡C-C≡C-R^IV-・・・・・II (Here, R^I is a monovalent organic group or hydrogen atom, R^II,
^III and R^IV represent a divalent organic group. ) One or more types of hydrocarbon groups having a carbon-carbon double bond, and one or more types of linking groups connecting these (here,
The linking group represents an ether bond, ester bond, amino bond, imino bond, or urethane bond. ) using a diacetylene compound having as a constituent unit an elastic modulus 12
2) A molded article characterized by having a temperature of at least GPa 2) A molar ratio of a diacetylene group-containing hydrocarbon group represented by general formula I or II to a double bond-containing hydrocarbon group in the range of 0.2 to 5. The molded article according to claim 1, which is
JP12959987A 1987-05-28 1987-05-28 Highly rigid molded product which comprises diacetylene compound with double bond Pending JPS63295612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12959987A JPS63295612A (en) 1987-05-28 1987-05-28 Highly rigid molded product which comprises diacetylene compound with double bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12959987A JPS63295612A (en) 1987-05-28 1987-05-28 Highly rigid molded product which comprises diacetylene compound with double bond

Publications (1)

Publication Number Publication Date
JPS63295612A true JPS63295612A (en) 1988-12-02

Family

ID=15013436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12959987A Pending JPS63295612A (en) 1987-05-28 1987-05-28 Highly rigid molded product which comprises diacetylene compound with double bond

Country Status (1)

Country Link
JP (1) JPS63295612A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295639A (en) * 1987-05-28 1988-12-02 Agency Of Ind Science & Technol Molding prepared from double bond-containing diacetylene compound
JPH02150668A (en) * 1988-12-01 1990-06-08 Nippondenso Co Ltd Refrigerating cycle
JPH02151648A (en) * 1988-12-03 1990-06-11 Agency Of Ind Science & Technol Composition of diacetylene compound
JPH0337213A (en) * 1989-07-04 1991-02-18 Asahi Chem Ind Co Ltd Diacetylene composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295639A (en) * 1987-05-28 1988-12-02 Agency Of Ind Science & Technol Molding prepared from double bond-containing diacetylene compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295639A (en) * 1987-05-28 1988-12-02 Agency Of Ind Science & Technol Molding prepared from double bond-containing diacetylene compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295639A (en) * 1987-05-28 1988-12-02 Agency Of Ind Science & Technol Molding prepared from double bond-containing diacetylene compound
JPH02150668A (en) * 1988-12-01 1990-06-08 Nippondenso Co Ltd Refrigerating cycle
JPH02151648A (en) * 1988-12-03 1990-06-11 Agency Of Ind Science & Technol Composition of diacetylene compound
JPH0378426B2 (en) * 1988-12-03 1991-12-13 Kogyo Gijutsuin
JPH0337213A (en) * 1989-07-04 1991-02-18 Asahi Chem Ind Co Ltd Diacetylene composition

Similar Documents

Publication Publication Date Title
Coşkun et al. Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization
JPS59191721A (en) Manufacture of diacrylate compound
US4362860A (en) Addition curing polystyryl pyridine
Shi et al. A modified imidazole as a novel latent curing agent with toughening effect for epoxy
US5733951A (en) Poly(propylene fumarate)
JPH0554846B2 (en)
Ueda et al. Synthesis and homopolymerization kinetics of α-methylene-δ-valerolactone, an exo-methylene cyclic monomer with a nonplanar ring system spanning the radical center
Qu et al. Thermoset polyimide matrix resins with improved toughness and high Tg for high temperature carbon fiber composites
JPS63295612A (en) Highly rigid molded product which comprises diacetylene compound with double bond
Laskoski et al. Synthesis and properties of a liquid oligomeric cyanate ester resin
Chern Synthesis and properties of new polycyclic polyesters from 1, 6-diamantanedicarboxylic acyl chloride and aromatic diols
Huang et al. Organic/inorganic hybrid bismaleimide resin with octa (aminophenyl) silsesquioxane
JP2684049B2 (en) Process for producing heat-resistant polymer based on maleimide containing bis (maleinimide) -siloxane and aromatic diamine
JPS63295639A (en) Molding prepared from double bond-containing diacetylene compound
Rong et al. Preparation and properties of dipropargyl ether of bisphenol A‐modified bismaleimide resins and composites
US4987257A (en) Diacetylene compound having double bond and shaped article thereof
Shu et al. Studies of phosphonate‐containing bismaleimide resins. I. Synthesis and characteristics of model compounds and polyaspartimides
US5175307A (en) Diacetylene compound having double bond and shaped article thereof
JP3329416B2 (en) Curable compound and method for producing the same
Hulubei et al. Synthesis and characterization of new functional bismaleimides
JPS63145337A (en) Molding of double bond-containing diacetylene amide oligomer and polymer
CN111944145A (en) Thermosetting polytriazole ester resin, composite material thereof and preparation method thereof
KR102306923B1 (en) Preparation of room temperature-reprocessable sulfur-containing polymer networks using ultrasonication
JPH02115208A (en) Room-temperature stable thermosetting reactive resin mixture, latent curing catalyst complex for said mixture, preparation of said complex, and thermosetting resin obtained from said mixture
CN116621733B (en) Unsaturated monomer containing polyallylphenoxy and nitrile group structure, and preparation method and application thereof