JPS63295495A - Device for molecular beam epitaxy - Google Patents

Device for molecular beam epitaxy

Info

Publication number
JPS63295495A
JPS63295495A JP13291087A JP13291087A JPS63295495A JP S63295495 A JPS63295495 A JP S63295495A JP 13291087 A JP13291087 A JP 13291087A JP 13291087 A JP13291087 A JP 13291087A JP S63295495 A JPS63295495 A JP S63295495A
Authority
JP
Japan
Prior art keywords
atoms
molecular beam
substrate
irradiating
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13291087A
Other languages
Japanese (ja)
Inventor
Iwao Nishiyama
岩男 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13291087A priority Critical patent/JPS63295495A/en
Publication of JPS63295495A publication Critical patent/JPS63295495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain thin film having high crystallinity by installing a mechanism for irradiating the surface of a substrate with fast neutral molecular beam having a specified amt. of energy. CONSTITUTION:The title device is installed with a mechanism for irradiating the surface of a substrate with fast neutral molecular beam having >=0.1eV energy, namely, the device is provided with a mechanism for irradiating the surface of a substrate with fast molecular beam of inert gas generated in order to prompt surface diffusion of atoms and to realize epitaxial growth at low temp. By letting the fast molecular beam collide with atoms adsorbed to the surface, kinetic energy necessary for causing movement of atoms on the surface is given to the atoms, moving thus the atoms to adjacent lattice points. Thus, atoms adsorbed singly to the surface diffuse on the surface, and are stabilized by being taken in a kink or a lattice defect when they reach the kin or lattice defect distributed on the surface. A thin film crystal having high flatness of atomic size level is grown at low temp. by using the device of this invention.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分子線エピタキシー装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a molecular beam epitaxy device.

(従来技術および発明が解決しようとする問題点〕原子
層レベルで膜厚の制御が可能な結晶成長装置として、分
子線エピタキシー装置が広く知られている。この装置は
超高真空技術を用い、極めて清浄な雰囲気の元で物理的
蒸着を行うことによシ、結晶性の高い薄膜を得るもので
ある。一般に蒸着法においては、表面に供給される原子
は基板表面においてランダムに到達し吸着される。した
がって、原子層レベルで平坦な結晶性の高い薄膜を得る
ためKは、表面に到達した原子を表面上で拡散させ、安
定なサイ)K運ぶ過程が必要である。そのためKは、表
面上の原子をとな〕の格子点まで移動させるために必要
なエネルギーを何等かの方法で供給する必要がある。そ
の様なエネルギーの供給法として従来の分子線エピタキ
シー装置では基板全体を高温に加熱する方法を取ってい
る。例えばG a A sの場合には600℃程度の高
温で結晶成長を行って込る。しかしながら、基板全体を
加熱する方法では界面における異種材料間の相互拡散が
生じ、デバイス特性の劣化を引き起こす。したがって、
低温における結晶成長が要求されている。
(Prior art and problems to be solved by the invention) Molecular beam epitaxy equipment is widely known as a crystal growth equipment that can control film thickness at the atomic layer level.This equipment uses ultra-high vacuum technology. A thin film with high crystallinity is obtained by performing physical vapor deposition in an extremely clean atmosphere.In general, in vapor deposition methods, atoms supplied to the surface randomly reach the substrate surface and are adsorbed. Therefore, in order to obtain a thin film with high crystallinity that is flat at the atomic layer level, it is necessary to carry out a process of transporting K atoms in a stable manner by diffusing the atoms that have reached the surface on the surface. Therefore, K must somehow provide the energy necessary to move the atoms on the surface to the next lattice point. As a method of supplying such energy, conventional molecular beam epitaxy equipment uses a method of heating the entire substrate to a high temperature. For example, in the case of GaAs, crystal growth is performed at a high temperature of about 600°C. However, the method of heating the entire substrate causes interdiffusion between different materials at the interface, causing deterioration of device characteristics. therefore,
Crystal growth at low temperatures is required.

低温における結晶成長を実現するためには、加熱昇温以
外の方法によって表面拡散を促進させることが必要であ
る。その様な方法の一つに、表面にイオンビーム衝撃を
行いつつ結晶成長を行う方法がバーシュ、バルガらKよ
ってシン・ソリッド・フ4A/ムズ(Th1n 5ol
id Films )誌の52巻(1978年)445
頁に報告されている。この論文によれば、Geの蒸着時
に1.65keVのArイオンビームを照射すると、非
照射部に比べ均一性に優れた薄膜が成長することが確認
されている。
In order to achieve crystal growth at low temperatures, it is necessary to promote surface diffusion by a method other than heating. One such method is a method of growing crystals while bombarding the surface with an ion beam.
id Films) Volume 52 (1978) 445
It is reported on page. According to this paper, it has been confirmed that when a 1.65 keV Ar ion beam is irradiated during Ge vapor deposition, a thin film with more uniformity than the non-irradiated area grows.

他にもイオンビーム照射によシ結晶性の向上や配向性の
向上等の効果があることが報告されている。
It has also been reported that ion beam irradiation has other effects such as improving crystallinity and improving orientation.

しかしながら、このよりなkeV オーダーのイオン衝
撃を用いる方法では、表面の安定なサイトに存在する原
子をもたたき出してしまい、格子欠陥の増大や表面の損
傷を引き起こす。極端な場合、イオンビームの強度を強
くして行くとスパッタ速度が成長速度を上回シ、結晶成
長が止まってしまう。この様な効果を軽減するためには
イオンビームのエネルギーを10 eV以下になるまで
十分小さく取れば良いが、低速のイオンビームはその制
御が極めて難しい。特に低速では基板表面のチャージア
ップの影響を大きく受け、表面への有効な照射が困難で
ある。
However, this method using ion bombardment on the order of keV also knocks out atoms existing at stable sites on the surface, causing an increase in lattice defects and damage to the surface. In extreme cases, as the intensity of the ion beam is increased, the sputtering rate exceeds the growth rate and crystal growth stops. In order to reduce such effects, the energy of the ion beam can be made sufficiently small to 10 eV or less, but it is extremely difficult to control a low-velocity ion beam. Particularly at low speeds, the effect of charge-up on the substrate surface is large, making it difficult to irradiate the surface effectively.

また、イオン化された原子は、たとえ希ガス原子であっ
ても反応性が極めて高いため、固体の中に取シ込まれ結
晶性を低減させる等の欠点も有している。また、イオン
源から発生する微量不純物もMBEでは深刻な問題とな
ることが多い。たとえばイオン源として、プラズマイオ
ン源を用いた場合、放電に伴う容器の壁等からの不純物
の混入が生ずる。また通常の電子衝撃型イオン源を用い
た場合でも、高温に熱せられたフィラメントからのアル
カリ原子等の汚染が問題となる。この様なことからイオ
ンビーム衝撃法はその効果が期待されつつもMBE装置
への応用には問題点が多い。
Furthermore, since ionized atoms, even rare gas atoms, have extremely high reactivity, they also have drawbacks such as being incorporated into solids and reducing crystallinity. Furthermore, trace impurities generated from the ion source often pose a serious problem in MBE. For example, when a plasma ion source is used as an ion source, impurities are mixed in from the walls of the container etc. due to discharge. Furthermore, even when a normal electron impact type ion source is used, contamination by alkali atoms and the like from the filament heated to a high temperature poses a problem. For these reasons, although the ion beam bombardment method is expected to be effective, there are many problems in its application to MBE equipment.

(問題点を解決するための手段) 本発明の分子線エピタキシー装置は、少々くとも0,1
eV以上のエネルギーを有する高速の中性分子線を基板
表面に照射する機構を具備することを特徴としている。
(Means for Solving the Problems) The molecular beam epitaxy apparatus of the present invention has at least 0,1
It is characterized by having a mechanism for irradiating the substrate surface with a high-speed neutral molecular beam having energy of eV or more.

(作用) 原子の表面拡散を促進し、低温でのエピタキシャル成長
を実現するために、本発明の装置では高速の不活性ガス
の分子線を発生させ基板表面に照射する機構を備えてい
る。この高速分子線を表面に吸着した原子に衝突させる
ことによシ、表面上の移動に必要な運動エネルギーを原
子に与え、となシの格子点まで移動させる。こうして、
表面に単独で吸着した原子は表面上を拡散していき、表
面に存在するキンクや格子欠陥に到達した時、そこに取
シ込まれて安定化する。こうして本発明の装置を用いる
ことによ)、原子レベルで平坦性の高い薄膜結晶を低温
で成長させることができる。
(Function) In order to promote surface diffusion of atoms and realize epitaxial growth at low temperatures, the apparatus of the present invention is equipped with a mechanism for generating a high-speed molecular beam of an inert gas and irradiating it onto the substrate surface. By colliding these high-speed molecular beams with atoms adsorbed on the surface, the atoms are given the kinetic energy necessary to move on the surface, causing them to move to the next lattice point. thus,
Atoms adsorbed singly on the surface diffuse over the surface, and when they reach kinks or lattice defects present on the surface, they are incorporated into and stabilized. Thus, by using the apparatus of the present invention), thin film crystals with high flatness at the atomic level can be grown at low temperatures.

本装置で用いる高速中性分子線はエネルギー分布が狭く
、かつそのエネルギーは表面に単独で吸着した原子をと
なシのサイトに移動させるには十分な0.1eV以上の
値を有するが、安定な格子点に納まった原子を移動させ
た〕真空中に飛び出させたシする程の作用は無い程度に
設定される。そのためイオン衝撃法で問題となる、格子
欠陥の生成や表面損傷などの問題を解決している。
The fast neutral molecular beam used in this device has a narrow energy distribution, and its energy has a value of 0.1 eV or more, which is sufficient to move atoms adsorbed singly on the surface to other sites, but it is stable. It is set to such an extent that it does not have the same effect as moving an atom that is housed in a certain lattice point or ejecting it into a vacuum. This solves the problems encountered with ion bombardment methods, such as the formation of lattice defects and surface damage.

高速中性分子線の生成に用いるガスは、希ガスを中心と
した化学的活性の極めて低い分子であシ、表面への吸着
や結晶中への吸蔵の問題を生ずる事がない。また本装置
で用いる高速中性分子線源は、イオン源の様に放電部や
高温に熱せられる部分がないために不純物の混入がなく
極めてクリーンなものであjj)、MBE装置において
要求される必要条件を満足している。
The gases used to generate the fast neutral molecular beam are molecules with extremely low chemical activity, mainly rare gases, and do not cause problems of adsorption on surfaces or occlusion in crystals. In addition, unlike an ion source, the fast neutral molecular beam source used in this device is extremely clean, free from impurities, as it does not have a discharge part or heated parts to high temperatures. meets the requirements.

(実施例) 第1図に例示するところに従りて本発明の装置について
説明する。本装置は超高真空に排気される結晶成長室1
の中に、加熱機構を有する基板支持具2、結晶成長基板
3、Ga用固体ビームソース4、As用固体ビームソー
ス5.Gaソース用ビームシャッター5、As ソース
用ビームシャッター7、液体窒素シーラウド8、大排気
量の真空ポンプによって高速に排気される超音速分子線
発生室9、差動排気室10、ガス供給装置11、超音速
分子線を発生させるノズル12、スキ1−13、コリメ
ータ14、および超音速分子線用シャッター15を配置
したものである。1−8については通常用いられるMB
E装置の構成と同じである。この外に、几HEED、 
ロードロック機構等、通常のMBE装置を構成する要素
は具備されているが、簡単のため図においては省略され
ている。
(Example) The apparatus of the present invention will be explained according to the example shown in FIG. This device consists of a crystal growth chamber 1 that is evacuated to an ultra-high vacuum.
There are a substrate support 2 having a heating mechanism, a crystal growth substrate 3, a solid beam source for Ga, a solid beam source for As, and a solid beam source for As. Beam shutter 5 for Ga source, beam shutter 7 for As source, liquid nitrogen sealoud 8, supersonic molecular beam generation chamber 9 that is evacuated at high speed by a large displacement vacuum pump, differential pumping chamber 10, gas supply device 11, A nozzle 12 for generating a supersonic molecular beam, a gap 1-13, a collimator 14, and a shutter 15 for the supersonic molecular beam are arranged. For 1-8, commonly used MB
The configuration is the same as that of the E device. Besides this, 几HEED,
Elements constituting a normal MBE device, such as a load lock mechanism, are provided, but are omitted in the figure for the sake of simplicity.

9−15が本発明の特徴となる高速分子線源である。ガ
ス供給装置11の中で2種類以上のガスを混合する。本
実施例ではHeとXe  の9:1の混合気体を用−1
全圧を1気圧とした。混合ガスは0.1鴫程度の穴径を
有するノズル12からノズルビーム発生室9の中に自由
膨張で噴出される。
9-15 is a high-speed molecular beam source which is a feature of the present invention. Two or more types of gas are mixed in the gas supply device 11. In this example, a 9:1 mixture of He and Xe was used.
The total pressure was 1 atm. The mixed gas is ejected from the nozzle 12 having a hole diameter of about 0.1 mm into the nozzle beam generation chamber 9 by free expansion.

このとき断熱膨張により内部エネルギーが冷却し、速度
分布の狭い超音速分子線が得られる。本実施例の装置で
は噴出したガスのうち、ノズル12の前方の強度の大き
い部分のみを切〕出すためにスキマー13を設け、さら
に結晶成長室1の背圧を低くおさえることを目的に、も
う1段の差動排気室lOを配置した。差動排気室10と
結晶成長室1の間にはコリメータ14を設け、高速分子
線の指向性を高め、基板表面のみを有効に照射できるよ
うな工夫を行った。
At this time, the internal energy is cooled by adiabatic expansion, and a supersonic molecular beam with a narrow velocity distribution is obtained. In the apparatus of this embodiment, a skimmer 13 is provided in order to cut out only the strong part in front of the nozzle 12 out of the ejected gas, and a skimmer 13 is provided in order to cut out only the strong part in front of the nozzle 12. A single-stage differential exhaust chamber IO was arranged. A collimator 14 was provided between the differential pumping chamber 10 and the crystal growth chamber 1 to improve the directivity of the high-speed molecular beam and to effectively irradiate only the substrate surface.

また、吸着原子に対し、表面に平行な成分の運動量を効
率よく与えられるように、高速の中性分子線は基板に対
し斜めに入射されるように配置されている。吸着された
原子が衝突によって受は取る運動量は、分子線の入射方
向に偏った異方性を有しているが、基板を面内で回転さ
せる機構を付加することKよ〕、面内で均一な結晶成長
が可能なように工夫されている。
Furthermore, the high-speed neutral molecular beam is arranged so as to be obliquely incident on the substrate so that the momentum of the component parallel to the surface can be efficiently imparted to the adsorbed atoms. The momentum received by adsorbed atoms due to collisions has anisotropy biased toward the direction of incidence of the molecular beam, but by adding a mechanism to rotate the substrate within the plane, It has been devised to enable uniform crystal growth.

本実施例の装置で得られる分子線の速度はキャリアーガ
スの質量で決まるので、その種類を変化させることによ
シ、分子線の速度を制御することができる。本実施例で
は、Heをキャリアーガスとして、 Xeの分子線を生
成させた事により 、1.3eVのXeビームを得た。
Since the velocity of the molecular beam obtained by the apparatus of this embodiment is determined by the mass of the carrier gas, the velocity of the molecular beam can be controlled by changing the type of carrier gas. In this example, a 1.3 eV Xe beam was obtained by generating a Xe molecular beam using He as a carrier gas.

 これはボルツマン分布をした分子の平均エネルギーに
換算すると約1sooo℃に相当する。この高速Xe 
ビームを基板表面に照射しつつG a A sの結晶成
長を行った。
This corresponds to about 1 sooo°C when converted to the average energy of molecules with Boltzmann distribution. This high speed Xe
GaAs crystal growth was performed while irradiating the substrate surface with a beam.

Xe ビームを照射した時と、しない時で、成長を行い
凡HEED  パターンをとって結晶性の評価を行った
ところ、500℃以下の低温では照射時に明らかな結晶
性の向上がみられ、高速中性ビームの照射効果が確認で
きた。またこの方法によって。
When we evaluated the crystallinity by making HEED patterns of growth with and without Xe beam irradiation, we found that at low temperatures below 500°C, there was a clear improvement in crystallinity during irradiation, and even at high speeds. The irradiation effect of the sexual beam was confirmed. Also by this method.

300℃の低温においてもXeビームの照射によって、
十分にエピタキシャル成長が可能であることが解った。
By irradiating with Xe beam even at low temperature of 300℃,
It was found that sufficient epitaxial growth is possible.

また本装置は、本実施例で述べたGaAsのような化合
物半導体の結晶成長のみならず、Si等の半導体のエピ
タキシャル成長にも有効である。
Furthermore, this apparatus is effective not only for crystal growth of compound semiconductors such as GaAs described in this embodiment, but also for epitaxial growth of semiconductors such as Si.

基板に照射する中性分子線の運動エネルギーの効果を調
べるために、Xeを希釈するガスの種類をHeからAT
  にかえて同様の結晶成長を試みたところ、この混合
ガスを用いた場合には結晶性の向上に関する効果を見い
だす事はできなかった。
In order to investigate the effect of the kinetic energy of the neutral molecular beam irradiating the substrate, the type of gas used to dilute Xe was changed from He to AT.
When similar crystal growth was attempted instead, no effect on improving crystallinity could be found when using this mixed gas.

このjJ%合、Xeビームのエネルギーは約0.13e
Vであり、このエネルギーでは表面上の原子を移動させ
るには不十分であったためと推定される。
With this jJ% ratio, the energy of the Xe beam is approximately 0.13e
This is presumed to be because this energy was insufficient to move atoms on the surface.

なお1本装置でXe ビームを照射するために混合ガス
を流すと、当然真空度は下がる。本実施例の場合、背圧
は10  Torr台まで上昇した。しかしその中身は
超高純度の希ガスのみであシ、成長した結晶には不純物
等の汚染に関する悪影響は検出できなかった。また、平
均自由行程も十分大き(、Ga +As  の分子線へ
の影響も無視できるものであった。
Note that when a mixed gas is flowed in order to irradiate the Xe beam with one device, the degree of vacuum naturally decreases. In the case of this example, the back pressure rose to the order of 10 Torr. However, the content was only ultra-high purity rare gas, and no adverse effects of contamination such as impurities could be detected in the grown crystals. In addition, the mean free path was sufficiently large (and the influence of Ga + As on the molecular beam was negligible).

混合ガスを構成するガスの種類としては希ガスの外、窒
素、水素等の化学的に安定なガスも使用可能である。ガ
スソースとしてパルス分子線を用いるξとも可能であシ
、これを用いた場合には、制御性の向上、ポンプ負荷の
軽減等の利点が付加される。
As for the type of gas constituting the mixed gas, in addition to rare gases, chemically stable gases such as nitrogen and hydrogen can also be used. It is also possible to use a pulsed molecular beam as a gas source, and when this is used, there are additional advantages such as improved controllability and reduced pump load.

中性の高速分子線を得る手段として、本実施例ではノズ
ルビーム法を用いたが、その外に超高速で回転する回転
子を用いてガス分子に直接運動量を与えて加速する方法
も可能である。また、イオン化したビームを電荷移動法
にて中性化して用いることも可能である。
In this example, we used a nozzle beam method as a means of obtaining a neutral high-speed molecular beam, but it is also possible to use a rotor that rotates at ultra-high speed to directly give momentum to gas molecules and accelerate them. be. It is also possible to use the ionized beam by neutralizing it by a charge transfer method.

(発明の効果) 上記実施例にて説明したように、本発明による高速の中
性分子線を基板表面に照射する機構を備えた分子線エピ
タキシー装置を周込ることにより、従来よりも低温でエ
ピタキシャル成長が実現できた。また、既に報告のある
イオンビームな用いる場合に比べ、表面での損傷や格子
欠陥の生成を伴わないソフトな結晶成長が可能であシ、
かつ、不純物の混入を伴わないクリーンな結晶成長も可
能であることが実証された。
(Effects of the Invention) As explained in the above embodiment, by incorporating a molecular beam epitaxy device equipped with a mechanism for irradiating the substrate surface with a high-speed neutral molecular beam according to the present invention, the epitaxy can be performed at a lower temperature than before. Epitaxial growth was achieved. In addition, compared to the previously reported case of using an ion beam, it is possible to achieve soft crystal growth without damaging the surface or creating lattice defects.
It was also demonstrated that clean crystal growth without contamination with impurities is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略的構造を示す模式的な
断面図である。 図に於て、l・・・・・・結晶成長室、2・・・・・・
基板支持具、3・・・・・・結晶成長基板、4・・・・
・・Ga用固体ビームソース、5・・・・・・As用固
体ビームソース、6・・・・・・Ga ソース用ビーム
シャッター、7・・・・・・As ソース用ビームシャ
ッター、8・・・・・・w体窒xシュラウド、9・・・
・・・超音速分子線発生室、10・・・・・・差動排気
室、11・・・・・・ガス供給装置、12・・・・・・
ノズル、13・・・・・・スキマー、14・・・・・・
コリメータ、15・・・・・・超音速分子線用シャッタ
ー、である。
FIG. 1 is a schematic sectional view showing a schematic structure of an embodiment of the present invention. In the figure, l...crystal growth chamber, 2...
Substrate support, 3...Crystal growth substrate, 4...
... Solid beam source for Ga, 5... Solid beam source for As, 6... Beam shutter for Ga source, 7... Beam shutter for As source, 8... ...w body nitrogen x shroud, 9...
...Supersonic molecular beam generation chamber, 10...Differential pumping chamber, 11...Gas supply device, 12...
Nozzle, 13... Skimmer, 14...
Collimator 15... Shutter for supersonic molecular beams.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも0.1eV以上のエネルギーを有する高速の
中性分子線を基板表面に照射する機構を具備することを
特徴とした分子線エピタキシー装置。
A molecular beam epitaxy apparatus comprising a mechanism for irradiating a substrate surface with a high-speed neutral molecular beam having an energy of at least 0.1 eV or more.
JP13291087A 1987-05-27 1987-05-27 Device for molecular beam epitaxy Pending JPS63295495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13291087A JPS63295495A (en) 1987-05-27 1987-05-27 Device for molecular beam epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13291087A JPS63295495A (en) 1987-05-27 1987-05-27 Device for molecular beam epitaxy

Publications (1)

Publication Number Publication Date
JPS63295495A true JPS63295495A (en) 1988-12-01

Family

ID=15092385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13291087A Pending JPS63295495A (en) 1987-05-27 1987-05-27 Device for molecular beam epitaxy

Country Status (1)

Country Link
JP (1) JPS63295495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160826A2 (en) * 2000-05-30 2001-12-05 Ebara Corporation Coating, modification and etching of substrate surface with particle beam irradiation
JP2002338385A (en) * 2001-05-23 2002-11-27 Fujitsu Ltd Method and apparatus for growing thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160826A2 (en) * 2000-05-30 2001-12-05 Ebara Corporation Coating, modification and etching of substrate surface with particle beam irradiation
EP1160826A3 (en) * 2000-05-30 2006-12-13 Ebara Corporation Coating, modification and etching of substrate surface with particle beam irradiation
JP2002338385A (en) * 2001-05-23 2002-11-27 Fujitsu Ltd Method and apparatus for growing thin film

Similar Documents

Publication Publication Date Title
US9947549B1 (en) Cobalt-containing material removal
US4740267A (en) Energy intensive surface reactions using a cluster beam
Toyoda et al. Gas cluster ion beam equipment and applications for surface processing
Suemune et al. Incidence angle effect of a hydrogen plasma beam for the cleaning of semiconductor surfaces
Kuiper et al. Ion cluster beam deposition of silver and germanium on silicon
JPH06184738A (en) Formation of carbon thin film, its modifying method, electronic device formed by using this modifying method as well as x-ray multilayer film mirror and its production
EP0399470B1 (en) Method for growing thin film by beam deposition
JPS63295495A (en) Device for molecular beam epitaxy
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
US6057233A (en) Process for producing thin film
JP2001140066A (en) Thin film deposition method and deposition system
JP2018532258A (en) Epitaxial growth using a preparation process with atmospheric pressure plasma
KR100665846B1 (en) Thin film forming method for fabricating semiconductor device
JP3091466B2 (en) Thin film manufacturing method
JP2583672B2 (en) Plasma / radiation assisted molecular beam epitaxy method and apparatus
JPS63260035A (en) Hydrogen plasma semiconductor manufacturing apparatus
Torres et al. Selected energy epitaxial deposition of GaN and AlN on SiC (0001) using seeded supersonic free jets of NH 3 in helium
Shanygin et al. Nanomorphological characteristics of the single-crystal Si (100) surface subjected to microwave plasma processing at weak adsorption
JPH0231491B2 (en)
JPS63177413A (en) Method and apparatus for forming semiconductor thin film
CN116536650A (en) Film growth interface optimization method for film growth optimization
CN116656363A (en) Treatment method and application of quantum dot surface ligand
JPH0543786B2 (en)
EP0435639A2 (en) Method of thin film formation
JPH01150322A (en) High speed corpuscular ray irradiation and apparatus therefor