JPS632951A - Production of methyl methacrylate - Google Patents

Production of methyl methacrylate

Info

Publication number
JPS632951A
JPS632951A JP61144998A JP14499886A JPS632951A JP S632951 A JPS632951 A JP S632951A JP 61144998 A JP61144998 A JP 61144998A JP 14499886 A JP14499886 A JP 14499886A JP S632951 A JPS632951 A JP S632951A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methylal
propionic acid
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144998A
Other languages
Japanese (ja)
Inventor
Koichi Kida
木田 紘一
Yasuo Yamamoto
康夫 山本
Yutaka Tamura
豊 田村
Yasushi Higuchi
靖 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61144998A priority Critical patent/JPS632951A/en
Publication of JPS632951A publication Critical patent/JPS632951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance inexpensively and simply, by reacting propionic acid with methylal in a gaseous phase by the use of a calcined solid phosphate catalyst and bringing a formed mixture to a silica catalyst containing an alkali metal of group I of the periodic table immediately. CONSTITUTION:Propionic acid is reacted with methylal in a gaseous phase by the use of a solid phosphate catalyst calcined at high temperature of 500-1,000 deg.C and a formed gas containing formaldehyde, methanol and methyl propionate is immediately brought into contact with an alkali metal of Group I of the periodic table to give the titled substance. The solid phosphate catalyst, for example, is prepared by a method wherein a solution obtained by diluting 85% phosphoric acid sold on the market in water is sprayed upon a carrier (e.g. silica gel of alumina) and preferably previously calcining the carrier at <=300 deg.C before high-temperature calcination is carried out. The catalyst of the second stage is preferably that obtained by supporting an alkali metallic compound on a porous amorphous silica.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプロピオン酸とメチラールより、メタクリル樹
脂の原料として産業上有用なメチルメタアクリレート(
以下MMAと称する)を製造する方法に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention provides methyl methacrylate (industrial application field), which is industrially useful as a raw material for methacrylic resin, from propionic acid and methylal.
The present invention relates to a method for producing MMA (hereinafter referred to as MMA).

(従来の技術) MMAの工業的製法としては、青酸とアセトンからアセ
トンシアンヒドリンを経由してMMAを製造する方法、
或いはイソブチレン又はt−ブタノールを空気酸化して
メタクロレイン、メタクリル酸を経由してMMAを製造
する方法がある。
(Prior art) Industrial methods for producing MMA include a method for producing MMA from hydrocyanic acid and acetone via acetone cyanohydrin;
Alternatively, there is a method of producing MMA through air oxidation of isobutylene or t-butanol to methacrolein and methacrylic acid.

また別の製法として、プロピオン酸又はプロピオン酸エ
ステルとホルムアルデヒドのアルドール縮合反応を利用
してメタクリル酸及びMMAを製造する方法が提案され
ている。
As another production method, a method for producing methacrylic acid and MMA using an aldol condensation reaction of propionic acid or propionic acid ester and formaldehyde has been proposed.

例えば、 IJSP3247248. USP3840
587.  特開昭61−15737  において、シ
リカゲルにアルカリ金属を担持した固体塩基触媒を用い
て。
For example, IJSP3247248. USP3840
587. In JP-A-61-15737, a solid base catalyst having an alkali metal supported on silica gel was used.

CH,CH2C0OH+   CH20→CH。CH, CH2C0OH+ CH20→CH.

CH2=C−C0OH+  H2O(1)CH,CH2
C00CH3+   CH20→CH。
CH2=C-C0OH+ H2O(1)CH,CH2
C00CH3+ CH20→CH.

CH2=C−COOCH3+ H2O(2)の反応によ
り、プロピオン酸又はプロピオン酸メチルからメタクリ
ル酸又はMMAを得ている。
Methacrylic acid or MMA is obtained from propionic acid or methyl propionate by the reaction CH2=C-COOCH3+ H2O (2).

(発明が解決しようとする問題点) アセトンシアンヒドリン法は副生硫安が大量に発生する
問題があり、空気酸化してメタクロレイン、メタクリル
酸を経由する方法は収率が低く。
(Problems to be Solved by the Invention) The acetone cyanohydrin method has the problem of generating a large amount of by-product ammonium sulfate, and the method of air oxidation via methacrolein and methacrylic acid has a low yield.

副生物との分離が厄介である。また両方法とも原料供給
に不安がある。
Separation from by-products is difficult. In addition, both methods have concerns about the supply of raw materials.

アルドール縮合反応を利用してMMAを製造する方法は
(1)式及び(2)式のルートがあり、プロピオン酸は
工業的に入手し易いので、(1)式のルートが望ましい
が、生成するメタクリル酸のエステル化工程を必要とす
る。また(2)式では前もってエステル化しておかなけ
ればならない。即ち1両式ともエステル化工程が必要で
ある。
There are two routes for producing MMA using the aldol condensation reaction: formula (1) and formula (2); route (1) is preferable because propionic acid is easily available industrially; Requires methacrylic acid esterification step. Further, in formula (2), esterification must be performed in advance. That is, both types require an esterification step.

更に、 (1)(2)式ともアルドール縮合反応で水が
副生ずるので、未反応ホルムアルデヒドは水溶液として
回収される。またホルムアルデヒドは原料自身も工業的
には37〜55%の水溶液として入手される。
Furthermore, in both equations (1) and (2), since water is produced as a by-product in the aldol condensation reaction, unreacted formaldehyde is recovered as an aqueous solution. Further, the raw material itself of formaldehyde is industrially available as a 37-55% aqueous solution.

ホルムアルデヒドは単量体ではガスであるが。As a monomer, formaldehyde is a gas.

重合性が高いため高温で保持しなければならず。Because it is highly polymerizable, it must be kept at high temperatures.

また水溶液中では水と会合してメチレングリコールを形
成しているので、ホルムアルデヒドモノマーを水溶液か
ら簡単に取り出すことはできない。
Further, in an aqueous solution, formaldehyde monomer cannot be easily removed from the aqueous solution because it associates with water to form methylene glycol.

更に水溶液のまま反応に供することは大量の水の存在の
ため触媒の失活が促進され、またプロピオン酸メチルや
MMAの加水分解を起こすため好ましくない。
Furthermore, it is not preferable to subject the aqueous solution to the reaction because the presence of a large amount of water accelerates the deactivation of the catalyst and also causes hydrolysis of methyl propionate and MMA.

現実的な方法としてホルマールを利用する方法がある。A practical method is to use formal.

ホルマール、即ち多くの場合メチラールを利用する方法
は1通常のホルムアルデヒド水溶液とメタノールから容
易にメチラールが合成され、水と分離できるので上記の
如き欠点が無い。例えば、 1IsP 411858B
、 ll5P 4447641及びGB2001647
では下式の如く反応させる。
The method using formal, ie, methylal in most cases, does not have the above-mentioned drawbacks because methylal is easily synthesized from a normal aqueous formaldehyde solution and methanol and can be separated from water. For example, 1IsP 411858B
, ll5P 4447641 and GB2001647
Now let's react as shown below.

CH,C)(2C00CH,+  CH2(OCR,)
2H3 →CH,=C−C00CH,+2C1(30H(3)C
Ha  CH2C0OH+   CH2(OCH3)2
CH。
CH,C)(2C00CH,+CH2(OCR,)
2H3 →CH,=C-C00CH,+2C1(30H(3)C
Ha CH2C0OH+ CH2(OCH3)2
CH.

→CH2=C−COOCH3+ H3O+  CH30
H(4) (3)式ではアルドール縮合で生成する水はメチラール
の分解に費やされるので、水が生成しない。
→CH2=C-COOCH3+ H3O+ CH30
H(4) In formula (3), water produced by aldol condensation is used for decomposition of methylal, so no water is produced.

従ってプロピオン酸メチルやMMAの加水分解が抑制さ
れる利点があるが、原料プロピオン酸メチルに予めエス
テル化しておく必要がある。−方。
Therefore, there is an advantage that hydrolysis of methyl propionate and MMA is suppressed, but it is necessary to esterify the raw material methyl propionate in advance. - direction.

(4)式ではプロピオン酸から直接MMAが生成するメ
リットがあり、副生メタノールも(3)式の半分になる
Formula (4) has the advantage that MMA is directly generated from propionic acid, and the amount of by-product methanol is also half that of formula (3).

しかしながら上記(3)(4)式の反応を進めるために
はメチラールを分解するための酸点を有する触媒が必要
であると共に、プロピオン酸が原料の場合はエステル化
の活性、またアルドール縮合の活性の三つの機能を保有
する触媒が必要である。
However, in order to proceed with the reactions of formulas (3) and (4) above, a catalyst with acid sites for decomposing methylal is required, and when propionic acid is used as a raw material, esterification activity and aldol condensation activity are required. A catalyst that possesses three functions is required.

このため、前記USP 4118588では燐酸アルミ
ナ触媒、 ll5P 4447641では合成ゼオライ
ト触媒、 GB2001647では燐酸塩担持のアルミ
ナ触媒を用いている。しかし、このような酸性の触媒を
ではメタクリル酸、MMAへの良好な選択率を得ること
は雑しく、また−般にメチラールに対してプロピオン酸
又はプロピオン酸メチルを化学量論よりも大過剰にする
必要があり、従って単流収率も不十分である。また、カ
ーボンが触媒上に沈着すると反応活性が低下するなどか
ら、工業的に実施できるまでに至っていない。
For this reason, the aforementioned USP 4118588 uses a phosphate alumina catalyst, 115P 4447641 uses a synthetic zeolite catalyst, and GB2001647 uses a phosphate-supported alumina catalyst. However, it is difficult to obtain good selectivity to methacrylic acid and MMA using such acidic catalysts, and it is generally necessary to use propionic acid or methyl propionate in a large excess of methyl propionate relative to the stoichiometric amount. Therefore, the single-stream yield is also insufficient. Furthermore, if carbon is deposited on the catalyst, the reaction activity decreases, so it has not been possible to implement it industrially.

(問題点を解決するための手段) 本発明者は(4)式の反応を次の二段階に分けて逐次的
に進行させることにより容易にMMAを得られることを
見出し1本発明に到達した。
(Means for Solving the Problems) The present inventor discovered that MMA could be easily obtained by dividing the reaction of formula (4) into the following two steps and proceeding sequentially, and arrived at the present invention. .

CH3CH2C0OH+   CH2(OCHa)*→
CHa CH2COOCH3+CH2O+CH,OH(
5) CH3CH2COOCH,+  CH20CH。
CH3CH2C0OH+ CH2(OCHa)*→
CHa CH2COOCH3+CH2O+CH,OH(
5) CH3CH2COOCH, + CH20CH.

→CH,=CCOOCH3+  H2O(6)そして未
反応のホルムアルデヒド、メタノール、及び生成水は次
式でメチラールを合成し、水と分離する。
→CH,=CCOOCH3+ H2O (6) Then, unreacted formaldehyde, methanol, and produced water synthesize methylal using the following formula, which is separated from water.

CH2O+  2CH,OH →CH2(OCRll)2 +  820     (
7)本発明では、(5)と(6)式で別々の触媒を使用
する。即ち(5)式ではメチラールの分解とプロピオン
酸のエステル化を行う酸性触媒として固体燐酸触媒を使
用し、高い選択率が得られる。
CH2O+ 2CH,OH →CH2(OCRll)2 + 820 (
7) In the present invention, different catalysts are used in formulas (5) and (6). That is, in formula (5), a solid phosphoric acid catalyst is used as the acidic catalyst for decomposing methylal and esterifying propionic acid, and a high selectivity can be obtained.

そして(5)式の反応生成ガスは、そのまま第2段目の
反応器に供給され(6)式の反応を行う。このアルドー
ル縮合反応の触媒としては塩基性の触媒が好ましく、ア
ルカリ金属を担持したシリカ触媒を用いる。
The reaction product gas of formula (5) is then directly supplied to the second-stage reactor to carry out the reaction of formula (6). The catalyst for this aldol condensation reaction is preferably a basic catalyst, and a silica catalyst supporting an alkali metal is used.

即ち1本発明は、プロピオン酸とメチラールを500〜
1100℃で焼成した固体燐酸触媒を用いて気相で反応
させ、生成するホルムアルデヒド、メタノール及びプロ
ピオン酸メチルを含有するガスを直ちに周期律表第一族
アルカリ金属を含有するシリカ触媒に接触さることを特
徴とするMMAの製造方法である。
That is, 1 the present invention uses propionic acid and methylal in an amount of 500 to
The reaction is carried out in the gas phase using a solid phosphoric acid catalyst calcined at 1100°C, and the resulting gas containing formaldehyde, methanol and methyl propionate is immediately brought into contact with a silica catalyst containing an alkali metal of Group 1 of the periodic table. This is a characteristic method for producing MMA.

メチラールの分解及びプロピオン酸のエステル化反応に
好適な固体燐酸触媒とは、正燐酸、ピロ燐酸、メタ燐酸
あるいはポリ燐酸(三燐酸、四燐酸)などの燐酸、又は
燐酸アンモニウム、燐酸力ルシュウムなどの燐酸塩を担
体に担持させ焼成した触媒である。
The solid phosphoric acid catalyst suitable for the decomposition of methylal and the esterification reaction of propionic acid is phosphoric acid such as orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, or polyphosphoric acid (triphosphoric acid, tetraphosphoric acid), or phosphoric acid such as ammonium phosphate, lysium phosphate, etc. This is a catalyst in which phosphate is supported on a carrier and fired.

固体燐酸触媒に用いられる担体としては、シリカゲル、
アルミナ、ジルコニア、チタニア、トリア、及びシリカ
アルミナ、シリカチタニア、シリカジルコニアなどの複
合酸化物1合成ゼオライト、或いは天然の珪藻土、酸性
白土、ゼオライトなどがある。これらの担体は単独ある
いは2種以上を併用することもできる。
Supports used for solid phosphoric acid catalysts include silica gel,
Examples include alumina, zirconia, titania, thoria, and composite oxide 1 synthetic zeolites such as silica alumina, silica titania, and silica zirconia, as well as natural diatomaceous earth, acid clay, and zeolites. These carriers can be used alone or in combination of two or more.

担体に燐酸を担持させる方法としては例えば市販の85
%燐酸を水に希釈した溶液を加熱された担体に吹きつけ
る方法、或いは燐酸水溶液又は燐酸塩水溶液に担体を浸
漬した後、乾燥焼成する方法、更に粉末の担体と燐酸又
は燐酸塩を混練成型したものを乾燥焼成する方法などが
一般的である。
As a method for supporting phosphoric acid on a carrier, for example, commercially available 85
% phosphoric acid diluted in water onto a heated carrier, or by immersing the carrier in an aqueous phosphoric acid solution or an aqueous phosphate solution and then drying and baking, or by kneading and molding a powdered carrier and phosphoric acid or phosphate. Common methods include drying and firing things.

担体に担持させる燐酸又は燐酸塩の量は、担体の種類に
よって異なり、−概に特定し得ないが。
The amount of phosphoric acid or phosphate salt supported on the carrier varies depending on the type of carrier and cannot be generally specified.

P2O5換算で示して実用上、担体100重量部に対し
て1〜50重量部、好ましくは2〜30重量部が適当で
ある。
In terms of P2O5, it is practically appropriate to use 1 to 50 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the carrier.

触媒は少なくとも60mesh以上の粒径を持ち、工業
的には1〜5 mm径x2〜10mm程度に成型される
ことが好ましい。
The catalyst has a particle size of at least 60 mesh, and industrially it is preferably formed into a size of about 1 to 5 mm in diameter x 2 to 10 mm.

燐酸を担持した触媒は、500℃以上の高温焼成処理に
先立って、300℃以下で乾燥もしくは予備焼成を行っ
ておくことが好ましい。
It is preferable that the catalyst supporting phosphoric acid is dried or pre-calcined at a temperature of 300°C or lower before being subjected to a high-temperature firing treatment of 500°C or higher.

高温焼成処理はマツフル炉、ロータリーキルン、熱風炉
などで行われ、焼成の雰囲気は空気、窒素など、触媒に
対して不活性なガスが好ましい。
The high-temperature firing process is performed in a Matsufuru furnace, rotary kiln, hot blast furnace, etc., and the firing atmosphere is preferably a gas inert to the catalyst, such as air or nitrogen.

高温焼成処理は500〜1100℃で実施される。50
0℃より焼成温度が低いとジメチルエーテルの副生が著
しくなり、ホルムアルデヒドの分解も起き易くなる。又
、 1100℃を越えて焼成すると触媒の活性低下が著
しくなる。焼成時間はP2O,担持量、焼成温度および
担体の種類によって異なるが1通常0.5〜50hrが
好適である。
The high temperature firing process is carried out at 500-1100°C. 50
If the firing temperature is lower than 0°C, dimethyl ether will be produced as a significant by-product, and formaldehyde will be more likely to decompose. Furthermore, if the temperature exceeds 1100°C, the activity of the catalyst will be significantly reduced. The firing time varies depending on the amount of P2O supported, the firing temperature, and the type of carrier, but it is usually 0.5 to 50 hours.

(6)式のアルドール縮合反応を行う触媒は周期律表第
一族のアルカリ金属化合物をシリカ化合物に担持したも
のを使用する。
The catalyst used for carrying out the aldol condensation reaction of formula (6) is one in which an alkali metal compound of Group 1 of the periodic table is supported on a silica compound.

担体のシリカ化合物としては、結晶質、非晶質のいずれ
でも良いが1表面積が大で多孔性の非晶質のものが好適
である。
The silica compound of the carrier may be either crystalline or amorphous, but a porous amorphous compound with a large surface area is preferred.

触媒の調製方法としては市販のシリカゲルにアルカリ塩
水溶液を含浸させて乾燥焼成する方法。
The catalyst is prepared by impregnating commercially available silica gel with an aqueous alkali salt solution and drying and calcining it.

シリカゲルの充填層にアルカリ塩水溶液を通過させるこ
とにより、シリカゲルに吸着及びイオン交換させてアル
カリ金属を担持させ、乾燥焼成する方法、あるいはコロ
イダルシリカにアルカリ塩水溶液を加えてゲル化したも
のを乾燥焼成する方法等があるが、これらに限定される
ものではない。
A method in which an aqueous alkali salt solution is passed through a packed bed of silica gel to cause the silica gel to adsorb and ion-exchange the alkali metal, and then dry and sinter, or an aqueous alkali salt solution is added to colloidal silica to form a gel, which is then dried and sintered. There are several methods to do this, but the method is not limited to these.

担体のシリカゲルには通常、製法によりアルミナ、ナト
リウム等を含んでいるが、その他に担体の物性改良のた
め、アルミナ、ジルコニア、硼酸など触媒性能を劣化さ
せないものを添加することができる。
The silica gel carrier usually contains alumina, sodium, etc. depending on the manufacturing method, but in order to improve the physical properties of the carrier, substances such as alumina, zirconia, boric acid, etc. that do not deteriorate the catalyst performance can be added.

アルカリ金属化合物よしては、水酸化物きしてNa01
l、 KOII、 Rb0II、 Cs011.炭酸塩
及び重炭酸塩としてNazCOa、 Na1lCOa、
 K2CO3,KIICO3,R1)2cOs、 Rb
1lCO3,[:52COa、 Cs1lCL、硝酸塩
としてNaN0a、 KNOa、 RhN0i、 Cs
N0.、硫酸塩及び重硫酸塩としてNa25O,、Na
1lSQ、。
Alkali metal compounds, hydroxides and Na01
l, KOII, Rb0II, Cs011. NazCOa, Na1lCOa, as carbonates and bicarbonates;
K2CO3, KIICO3, R1)2cOs, Rb
1lCO3, [:52COa, Cs1lCL, as nitrate NaN0a, KNOa, RhN0i, Cs
N0. , Na25O as sulfate and bisulfate, , Na
1lSQ,.

K2SO4,KIISO4,Rb*SO4,Rh1l、
so4. C82SO4,C3llSO4,ハOゲン化
物として Nap、 NaCL、 NaBr、 Nal
、 KF、 KCL、 Kl。
K2SO4, KIISO4, Rb*SO4, Rh1l,
so4. C82SO4, C3llSO4, as halides Nap, NaCL, NaBr, Nal
, KF, KCL, Kl.

RbP、 RbCL、 Rbl、 CsP、 C5CL
、 Csl、燐酸塩および燐酸水素塩としてNa*P0
4. Na、1IPo4. Na1lzP[ln、 R
b、PO4,Rb1lPOn、 Rb1lzPOn、 
C83PO4,C8211PO4,Cs112P04な
どかある。アルカリ金属としては原子量の大なるものの
方が好適でRhやCsが好ましいが1価格が低いのでN
a、 Kも使用される。
RbP, RbCL, Rbl, CsP, C5CL
, Csl, phosphate and hydrogen phosphate as Na*P0
4. Na, 1IPo4. Na1lzP[ln, R
b, PO4, Rb1lPOn, Rb1lzPOn,
There are C83PO4, C8211PO4, Cs112P04, etc. As the alkali metal, those with large atomic weights are more suitable, and Rh and Cs are preferable, but N is preferable because the price is low.
a, K are also used.

アルカリ金属化合物の担持量としては担体100部(重
量部)に対し01O1〜30部、好ましくは0.5〜2
0部である。
The amount of the alkali metal compound supported is 1 to 30 parts, preferably 0.5 to 2 parts of 01O per 100 parts (parts by weight) of the carrier.
It is 0 copies.

両触媒の充填方法としては、(1)固体燐酸触媒とアル
カリ・シリカ触媒を別個の反応器とする二段反応器、(
2)単一反応器で両触媒層を交互に配置する多段反応器
、(3)両触媒を混合して配置する混合床反応器の形式
がある。(1)では両者の触媒を別々の温度で操作でき
る利点があり、 (2)(3)では吸熱反応と発熱反応
が相殺するので熱的に有利に操作できる。(3)の混合
床の場合、固定床以外に流動床や移動床にすることもで
きる。
The charging methods for both catalysts include (1) a two-stage reactor in which the solid phosphoric acid catalyst and the alkali silica catalyst are separate reactors;
There are two types: 2) a multi-stage reactor in which both catalyst layers are arranged alternately in a single reactor, and (3) a mixed bed reactor in which both catalyst layers are arranged in a mixed manner. (1) has the advantage that both catalysts can be operated at different temperatures, and (2) and (3) can be operated thermally advantageously because the endothermic reaction and exothermic reaction cancel each other out. In the case of the mixed bed (3), in addition to a fixed bed, a fluidized bed or a moving bed can also be used.

次に反応条件について述べる。Next, the reaction conditions will be described.

分解、エステル化を行う固体燐酸触媒上では。On a solid phosphoric acid catalyst that performs decomposition and esterification.

反応温度150〜400℃、好ましくは200〜400
℃の範囲で操作される。150℃より低いときは反応は
十分に進行せず、400℃より高い温度ではホルムアル
デヒドの分解やジメチルエーテルの生成が著しくなり好
ましくない。アルドール縮合を行うアルカリ・シリカ触
媒上では1反応器度を250〜450℃、好ましくは3
00〜400℃の範囲で操作する。
Reaction temperature 150-400°C, preferably 200-400°C
Operated in the °C range. When the temperature is lower than 150°C, the reaction does not proceed sufficiently, and when the temperature is higher than 400°C, the decomposition of formaldehyde and the formation of dimethyl ether become significant, which is not preferable. On alkali-silica catalysts carrying out aldol condensation, one reactor temperature is 250-450°C, preferably 3
Operate in the range of 00-400°C.

反応圧力は特に限定されず1反応系を気相に保つ範囲内
で減圧から加圧まで選択できるが、−般には常圧が好ま
しい。
The reaction pressure is not particularly limited and can be selected from reduced pressure to increased pressure within a range that keeps one reaction system in the gas phase, but normal pressure is generally preferred.

原料プロピオン酸のメチラールに対するモル比は、17
2〜4/1が好適である。モル比が172以下では未反
応ホルムアルデヒドの回収が厄介になり。
The molar ratio of raw material propionic acid to methylal is 17
A ratio of 2 to 4/1 is suitable. When the molar ratio is less than 172, recovery of unreacted formaldehyde becomes difficult.

モル比が471以上では未反応プロピオン酸とプロピオ
ン酸メチルの循環量が増加するので好ましくない。実際
のプロセスでは、循環するプロピオン酸メチルが再び反
応に使用される。プロピオン酸メチルは新たに供給する
プロピオン酸とメチラールと共に分解、エステル化工程
に供給しても良いし、あるいは分解、エステル化工程の
生成ガスと合体してアルドール縮合工程に供給しても良
い。
If the molar ratio is 471 or more, the amount of circulating unreacted propionic acid and methyl propionate increases, which is not preferable. In the actual process, the recycled methyl propionate is used again in the reaction. Methyl propionate may be supplied to the decomposition and esterification steps together with newly supplied propionic acid and methylal, or may be combined with the gas generated from the decomposition and esterification steps and supplied to the aldol condensation step.

触媒との接触時間は触媒単位重量当たりの原料の供給速
度(WIISV)で規定する。第1段目の固体燐酸触媒
に対しては0,05〜50g/g触媒・hr、好ましく
は0.2〜20g/g、 hr、第2段目のアルカリ・
シリカ触媒では0.1〜50g/g、 hr、好ましく
は0.3〜20g/g、hrである。長時間の運転では
第1段目および第2段目の触媒ともコークを析出するの
で定期的にコークを燃焼除去することが望ましい。
The contact time with the catalyst is defined by the feed rate of raw material per unit weight of catalyst (WIISV). 0.05 to 50 g/g catalyst/hr for the solid phosphoric acid catalyst in the first stage, preferably 0.2 to 20 g/g, hr, and an alkali catalyst in the second stage.
For silica catalysts, it is 0.1 to 50 g/g, hr, preferably 0.3 to 20 g/g, hr. During long-term operation, coke is deposited on both the first and second stage catalysts, so it is desirable to periodically burn and remove the coke.

(効果) 本発明によれば、前述の触媒に要求されるメチラールの
分解、エステル化、及びアルドール縮合の三つの機能を
二種の触媒に分担し、各々の反応に最適な触媒を選択す
ることができる。しかも反応を2段に分割しているが、
途中に何の工程も挿入されず直結しているので、事実上
一段の反応と変わる事がない。
(Effects) According to the present invention, the three functions of methylal decomposition, esterification, and aldol condensation required of the catalyst described above are shared between two types of catalysts, and the optimal catalyst for each reaction is selected. Can be done. Moreover, the reaction is divided into two stages,
Since there is no process inserted in the middle and there is a direct connection, there is virtually no difference from a single-stage reaction.

このプロセスが従来の方法に比較して優れている点を列
挙する。
List the advantages of this process compared to conventional methods.

(1)原料として安価なプロピオン酸、メチラールを使
用できる。
(1) Cheap propionic acid and methylal can be used as raw materials.

(2)エステル化が同時に起きるので、別途にエステル
化の工程が不要である。
(2) Since esterification occurs simultaneously, a separate esterification step is not necessary.

(3)二段の反応にして最適触媒を用いることができる
ので反応成績、触媒寿命が優れている。
(3) Since the reaction is carried out in two stages and the optimum catalyst can be used, the reaction results and catalyst life are excellent.

(4)メチラールに対してプロピオン酸を大過剰に使用
する必要が無いので1反応生成物中のMMA濃度が高く
1分離コストが低い。
(4) Since it is not necessary to use a large excess of propionic acid relative to methylal, the MMA concentration in one reaction product is high and the separation cost is low.

以上の如く2本発明によれば、従来の問題点が大幅に改
善され、その工業的意味は大きい。
As described above, according to the present invention, the conventional problems are greatly improved, and the industrial significance thereof is great.

(実施例) 以下、実施例によって本発明の効果を示すが。(Example) The effects of the present invention will be shown below through Examples.

勿論これらに限定されるものではない。なお、各実施例
において用いた略号および用語の定義は次の通りである
Of course, it is not limited to these. The definitions of abbreviations and terms used in each example are as follows.

PA:プロピオン酸 MA:メタクリル酸 FA:ホルムアルデヒド MPΔ:プロピオン酸メチル M A L :メチラール FA骨格転化率− MMΔ選択率(PAベース)− MA選択率(PΔベース)= MMA+MA選択率−MM八へ択率十MA選択率MMA
選択率(FAベース)− 実施例1゜ メチラール分解およびエステル化用の固体燐酸触媒とし
て、市販の日揮化学製N−631を10〜32mesh
に砕き、15%燐酸アンモニウム塩水溶液に一昼夜浸漬
した後、ロータリーエバポレーターで水分を留去し含浸
させる。これをオーブンで16hr、 100℃で乾爆
後、マツフル炉・空気雰囲気で1000℃、 6hr焼
戊したものを調製しtこ。このときのP2O,含有率は
10%であった。この触媒20gを内径15mm、長さ
60cmのパイレックスガラス製の反応管の上部に充填
した。
PA: Propionic acid MA: Methacrylic acid FA: Formaldehyde MPΔ: Methyl propionate MA L: Methyral FA skeleton conversion rate - MMΔ selectivity (PA base) - MA selectivity (PΔ base) = MMA + MA selectivity - Selection to MM8 rate ten MA selection rate MMA
Selectivity (FA based) - Example 1 As a solid phosphoric acid catalyst for methylal decomposition and esterification, 10 to 32 mesh of commercially available N-631 manufactured by JGC Chemical was used.
After crushing into pieces and immersing them in a 15% ammonium phosphate aqueous solution overnight, water is distilled off using a rotary evaporator and impregnated. This was dried in an oven at 100°C for 16 hours, and then burned at 1000°C in an air atmosphere for 6 hours. The P2O content at this time was 10%. 20 g of this catalyst was packed into the upper part of a reaction tube made of Pyrex glass and having an inner diameter of 15 mm and a length of 60 cm.

またアルドール縮合反応用の触媒として富士ディビソン
社製シリカゲルIn−57にCs0115%溶液を浸漬
後口−タリーエバポレーターで水分を留去させた。これ
を110℃で16hr乾燥後、マツフル炉で500℃4
hr焼成したものを調製した。このときCs担持濃度は
4.3%であった。この触媒を前述の反応管下部に10
gを充填した。
Further, as a catalyst for the aldol condensation reaction, a 15% Cs01 solution was immersed in silica gel In-57 manufactured by Fuji Davison, and then water was distilled off using a tarry evaporator. After drying this at 110℃ for 16 hours, it was heated to 500℃ in a Matsufuru furnace.
A product was prepared by firing for hr. At this time, the Cs supported concentration was 4.3%. This catalyst was placed at the bottom of the reaction tube for 10 minutes.
filled with g.

反応管の上部と下部は別々のヒーターでコントロールし
、上部分解エステル化層では290〜300℃、下部ア
ルドール縮合反応層では350〜360℃に保持した。
The upper and lower parts of the reaction tube were controlled by separate heaters, and the temperature was maintained at 290 to 300°C in the upper decomposition esterification layer and 350 to 360°C in the lower aldol condensation reaction layer.

原料はプロピオン酸とメチラールをモル比1:1で混合
し、プランジャーポンプで反応管上部から30g/hr
で供給した。反応管頂部は1〜2mm径のガラス球の充
填層になっており、外側からのヒーターにより原料は蒸
発、予熱され分解。
The raw material is a mixture of propionic acid and methylal in a molar ratio of 1:1, and the mixture is pumped from the top of the reaction tube at 30 g/hr using a plunger pump.
It was supplied by The top of the reaction tube is a packed bed of glass spheres with a diameter of 1 to 2 mm, and the raw material is evaporated, preheated, and decomposed by a heater from the outside.

エステル化触媒層に入る。ここから生成するガスは更に
ガラス球の充填層を通ってアルドール縮合触媒層に導い
た。反応管下部からの反応生成ガスを冷却、捕集して反
応生成液を取得し、ガスクロマトグラフィーにて分析し
て反応結果を求めた。
Enters the esterification catalyst layer. The gas generated from this was further led to the aldol condensation catalyst bed through a packed bed of glass bulbs. The reaction product gas from the lower part of the reaction tube was cooled and collected to obtain a reaction product liquid, which was analyzed by gas chromatography to determine the reaction results.

従って反応結果は1次のようになる。Therefore, the reaction result is of the first order.

PΔ転化率:            96.1%PA
骨格転化率;          32.9MMA選択
率(PAベース);82.IMA選択率(PAベース)
;8.6 MMA十MΔ選択率(PΔベース);90,7ホルムア
ルデヒド転化率;      41.OMMA選択率(
FAベース);    71.IMA選択率(FAベー
ス);      7.4MMA十MA選択率(FAベ
ース);7g、5実施例2〜5 実施例1と同じ反応器、触媒を用いて、原料組成1反応
条件を変えて実験を行った。
PΔ conversion rate: 96.1% PA
Skeleton conversion rate; 32.9 MMA selectivity (PA base); 82. IMA selection rate (PA base)
;8.6 MMA+MΔ selectivity (PΔ base); 90.7 formaldehyde conversion rate; 41. OMMA selection rate (
FA base); 71. IMA selectivity (FA base); 7.4 MMA + MA selectivity (FA base); 7 g, 5 Examples 2 to 5 Experiments were conducted using the same reactor and catalyst as in Example 1, but changing the raw material composition 1 reaction conditions. I did it.

実験結果を表1に示す。The experimental results are shown in Table 1.

実施例6〜9 種々のメチラール分解、エステル化触媒及びアルドール
触媒を選び、実施例1と同様に充填しPA/MALモル
比−1,0の原料を通して反応させた時の反応成績を表
2に示す。
Examples 6 to 9 Various methylal decomposition, esterification catalysts and aldol catalysts were selected, charged in the same manner as in Example 1, and reacted through raw materials with a PA/MAL molar ratio of -1.0. Table 2 shows the reaction results. show.

Claims (1)

【特許請求の範囲】[Claims] プロピオン酸とメチラールを500〜1100℃で焼成
した固体燐酸触媒を用いて気相で反応させ、生成するホ
ルムアルデヒド、メタノール及びプロピオン酸メチルを
含有するガスを直ちに周期律表第一族アルカリ金属を含
有するシリカ触媒に接触させることを特徴とするメチル
メタアクリレートの製造方法。
Propionic acid and methylal are reacted in the gas phase using a solid phosphoric acid catalyst calcined at 500 to 1100°C, and the resulting gas containing formaldehyde, methanol, and methyl propionate is immediately converted to a gas containing an alkali metal of Group 1 of the periodic table. A method for producing methyl methacrylate, which comprises bringing it into contact with a silica catalyst.
JP61144998A 1986-06-23 1986-06-23 Production of methyl methacrylate Pending JPS632951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144998A JPS632951A (en) 1986-06-23 1986-06-23 Production of methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144998A JPS632951A (en) 1986-06-23 1986-06-23 Production of methyl methacrylate

Publications (1)

Publication Number Publication Date
JPS632951A true JPS632951A (en) 1988-01-07

Family

ID=15375091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144998A Pending JPS632951A (en) 1986-06-23 1986-06-23 Production of methyl methacrylate

Country Status (1)

Country Link
JP (1) JPS632951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511336A (en) * 1998-04-08 2002-04-16 イネオス アクリリックス ユーケー リミティド Unsaturated acids or their esters and catalysts therefor
KR100407510B1 (en) * 1998-06-05 2003-12-01 루사이트 인터내셔널 유케이 리미티드 Dewatering process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511336A (en) * 1998-04-08 2002-04-16 イネオス アクリリックス ユーケー リミティド Unsaturated acids or their esters and catalysts therefor
JP2012166200A (en) * 1998-04-08 2012-09-06 Lucite Internatl Uk Ltd Unsaturated acid or ester thereof, and catalyst for the same
KR100407510B1 (en) * 1998-06-05 2003-12-01 루사이트 인터내셔널 유케이 리미티드 Dewatering process
JP2007254484A (en) * 1998-06-05 2007-10-04 Lucite Internatl Uk Ltd Dewatering process
US7338579B2 (en) 1998-06-05 2008-03-04 Lucite International Uk Limited Dewatering process
JP2014111594A (en) * 1998-06-05 2014-06-19 Lucite Internatl Uk Ltd Dewatering method

Similar Documents

Publication Publication Date Title
KR101711220B1 (en) Process for manufacturing acrolein from glycerol
US3977998A (en) Process for preparing phosphorus-vanadium-oxygen catalysts
JP2016522825A (en) Method for producing vinylidenecarboxylic acid (ester) by reacting formaldehyde with alkylcarboxylic acid (ester)
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
US4247419A (en) Single phase vanadium(IV)bis(metaphosphate) oxidation catalyst with improved intrinsic surface area
JPS632951A (en) Production of methyl methacrylate
EP0756518B1 (en) Process for the preparation of vanadium-phosphorus catalysts and use thereof for the production of maleic anhydride
US3752878A (en) Hydrolysis of aryl halides with a rare earth metal phosphate
US4700009A (en) Process for preparing a substituted benzaldehyde
US3313840A (en) Process for the production of the dinitriles of fumaric acid and maleic acid
JPH1121114A (en) Production of new iron phosphate
JPS6048495B2 (en) Method for producing methacrylic acid
US4014952A (en) Process for the preparation of isoprene
US4088822A (en) Simultaneous production of methacrylic acid and a methacrylate or acrylic acid and an acrylate
JPS5896041A (en) Preparation of methacrylic acid
US4298533A (en) Production of maleic anhydride
KR102052708B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
JPS63162658A (en) Production of unsaturated carboxylic acid methyl ester
US4304723A (en) Process for manufacturing maleic anhydride
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
GB1560238A (en) Production of metharcrylic and acrylick acids and their esters
JP2578028B2 (en) Preparation of dihydric phenol alkyl ether
US3907828A (en) Process for production of pivalolactone
JPH08183753A (en) Production of pyruvic acid
JPS625420B2 (en)